## Application Note: AN_SY7301A

## 40V High Current Boost LED Driver

## SIIERGY

## General Description

SY7301A develops a step-up DC/DC converter that delivers an accurate constant current for driving LEDs. Operating at a fixed switching frequency of 1 MHz allows the device to be used with small value external ceramic capacitors and inductor. LEDs connected in series are driven with a regulated current set by the external resistor. The SY7301A is ideal for driving up to ten white LEDs in series or up to 40 V .

## Ordering Information



| Ordering Number | Package type | Note |
| :---: | :---: | :---: |
| SY7301AADC | TSOT23-6 | ---- |
| SY7301ADBC | DFN3X3-10 | ---- |

## Features

- Input voltage range: 2.8 to 40 V
- Switch current limit:2A
- Drives LED strings up to 40 V
- 1 MHz fixed frequency minimizes the external components
- $200 \mathrm{~Hz} \sim 1 \mathrm{MHz}$ dimming frequency for EN/PWM pin
- Internal softstart limits the inrush current
- Open LED over voltage protection
- RoHS Compliant and Halogen F ee
- Compact package: TSOT23-6/DFN3X3-10


## Applications

- GPS Navigation Systems
- Handheld Devices
- Portable Media Players


## Typical Applications



Figure 1. Schematic Diagram

Efficiency vs. Input Voltage Outpu Load:10PCS LEDs $\left(V_{\text {out }}=30 \mathrm{~V}\right)$, LED $=20 \mathrm{~mA}$


Figure 2. Efficiency Figure

## 

Pinout (top view)

(TSOT23-6)



| Pin Name | TSOT23-6 | DFN3X3-10 | Pin Description |
| :---: | :---: | :---: | :---: |
| LX | 1 | 4,5 | Inductor node. Connect an inductor from power input to LX pin. |
| GND | 2 | 11(Exposed Paddle) | Ground pin. |
| FB | 3 | 2 | Feedback pin. Connect a resistor $\mathrm{R}_{\mathrm{FB}}$ between FB and GND to program the output current: $\operatorname{ILED}=0.3 \mathrm{~V} / \mathrm{R}_{\mathrm{FB}}$. |
| EN/PWM | 4 | 9 | Enable and dimming control. Pull high to turn on IC. When used as dimming input, the first pulse should be longer than 200 ns to turn on IC, and then shorter than 100 nS to turn off IC. The recommend dimming frequency range is $200 \mathrm{~Hz} \sim 1 \mathrm{MHz}$. |
| OVP | 5 | 8 | Over voltage protection input. Connect to the output of circuit. The typical OVP value is 37 V . |
| IN | 6 | 7 | Input pin. Decouple this pin to GND pin with luF or more ceramic cap. |
| NC | 6 | $1,3,6,10$ | No connection |

Absolute Maximum Ratings (Note 1)
LX, IN, EN,OVP ..... 42 V
All other pins ..... 4 V
Power Dissipation, PD @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ TSOT23-6/DFN3X3-10 ..... $0.6 / 2.6 \mathrm{~W}$Package Thermal Resistance (Note 2)

Recommended Operating Conditions (Note 3)
Input Voltage Supply ..... 2.8 V to 40 V
Junction Temperature Range ..... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Ambient Temperature Range ..... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

## SHIERGY

## Electrical Characteristics

$\left(\mathrm{Vin}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified $)$

| Parameter | Symbol | Test Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Voltage Range | VIN |  | 2.8 |  | 40 | V |
| Quiescent Current | IQ | $\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$ |  | 100 | 200 | $\mu \mathrm{A}$ |
| Shutdown Current | Ishdn | EN=0 |  | 10 | 15 | $\mu \mathrm{A}$ |
| Feedback Reference Voltage | Vref |  | 294 | 300 | 306 | mV |
| FB Input Current | Ifb | $\mathrm{V}_{\mathrm{FB}}=0.3 \mathrm{~V}$ |  |  | 1 | $\mu \mathrm{A}$ |
| Low Side Main FET RON | $\mathrm{RdS}(\mathrm{ON}) 1$ |  |  | 200 |  | $\mathrm{m} \Omega$ |
| Main FET Current Limit | ILim1 |  | 2 |  |  | A |
| EN Rising Threshold | Venh |  | 1.5 |  |  | V |
| EN Falling Threshold | Vent |  |  |  | 0.4 | V |
| PWM Dimming Frequency |  |  | 0.2 |  | 1000 | kHz |
| IN UVLO Rising Threshold | Vin,uvio |  |  |  | 2.7 | V |
| UVLO Hysteresis | Uvlo,Hys |  |  | 0.1 |  | V |
| Switching Frequency | Fsw |  | 0.8 | 1 | 1.2 | MHz |
| Minimum ON Time | Ton,min |  |  | 100 |  | nS |
| Maximum Duty Cycle | Dmax |  |  | 95 |  | \% |
| OVP Threshold | Vovp | Open LED | 35 | 37 | 39 | V |
| Thermal Shutdown Temperature | Tsd |  |  | 150 |  | ${ }^{\circ} \mathrm{C}$ |
| Thermal Hysteresis | THYS |  |  | 20 |  | ${ }^{\circ} \mathrm{C}$ |

Note 1: Stresses beyond the "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2: $\theta \mathrm{JA}$ is measured in the natural convection at $\mathrm{TA}=25^{\circ} \mathrm{C}$ on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Test condition: Device mounted on 2" x 2" FR-4 substrate PCB, 2oz copper, with minimum recommended pad on top layer and thermal vias to bottom layer ground plane.

Note 3: The device is not guaranteed to function outside its operating conditions.
Block Diagram


## Typical Performance Characteristics

$(\mathrm{V}$ IN $=3.6 \mathrm{~V}$, LLed $=40 \mathrm{~mA}, 6$ PCS LED $\operatorname{Series(Vout=18V))~}$


LED Current vs. Input Voltage



Efficiency vs. Input Voltage



Quiescent Current vs. Input Voltage


Startup from Enable


AN_SY7301A



Time ( $400 \mu \mathrm{~s} / \mathrm{div}$ )


PWM Dimming ( $\mathrm{f}=\mathbf{4 0 k H z}$ )


## Applications Information

SY7301A is a boost regulator IC that integrates the PWM control, power MOSFET on the same die to minimize the switching transition loss and conduction loss. With ultra low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ power switches and proprietary PWM control, this regulator IC can achieve the high efficiency and the high switch frequency simultaneously to minimize the external inductor and capacitor size, and thus achieving the minimum solution footprint.
Only input capacitor $\mathrm{C}_{\mathrm{IN}}$, output capacitor $\mathrm{C}_{\text {OUT }}$, inductor L, Schottky diode D and sense resistors R1 need to be selected for the targeted applications specifications.

## Sense resistor R1:

Choose R1 to program the proper LED Current. The R1 can be calculated to be:


Iled is the average LED current.

## Input capacitor CIN:

The ripple current through input capacitor is calculated as:

$$
\mathrm{I}_{\mathrm{CIN} \_ \text {RMS }}=\frac{\mathrm{V}_{\mathrm{IN}} \cdot\left(\mathrm{~V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right)}{2 \sqrt{3} \cdot \mathrm{~L} \cdot \mathrm{Fsw} \cdot \mathrm{~V}_{\text {out }}}
$$

An X5R or better grade ceramic capacitor with capacitance larger than 4.7 uF is recommended to handle this ripple current. Place this ceramic capacitor really close to the IN and GND ins to minimize the potential noise problem. Ca e should be taken to minimize the loop area f rmed by CIN, and IN/GND pins.

## Output capacitor Cout:

The output capacitor is selected to handle the output ripple noise $r$ quirements. This ripple voltage is related to the capacitor's capacitance and its equivalent series resistance (ESR). For the best performance, it is recommended to use X5R or better grade low ESR ceramic capacitor. The voltage rating of the output capacitor should be higher than the maximum output voltage. The minimum required capacitance can be calculated as:

$$
\text { Cout }=\frac{\text { Iout, MAX } \cdot\left(\text { Vout }- \text { Vin }^{2}\right)}{\text { Fsw }^{2} \cdot V_{\text {out }} \cdot V_{\text {RIPPLE }}}
$$

$V_{\text {RIPpLE }}$ is the peak to peak output ripple voltage. For LED applications, the equivalent resistance of the LED is typically low. The output capacitance should be large enough to attenuate the ripple current through LED. A capacitor larger than 2.2 uF is recommended.

## Inductor L:

There are several considerations in choo ing this inductor.

1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about $40 \%$ of the average input current. The inductance is calculated as:

$$
\mathrm{L}=\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\text {out }}} \frac{\left(\mathrm{V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right)}{\mathrm{F}_{\text {sw }} \times \text { Iout, MAX } \times 40 \%}
$$

where $\mathrm{F}_{\text {SW }}$ is the switching frequency and $\mathrm{I}_{\text {OUT,MAX }}$ is the maximum load current.
The SY7301A regulator IC is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance.
2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$
\text { Isaft, min }>^{\text {Vout }_{\text {IIN }}} \quad \times \text { Iout, Max }+\frac{\text { Vin }^{2}}{\text { Vout }^{2}} \frac{\left(\mathrm{~V}_{\text {out }}-\mathrm{V}_{\text {IN }}\right)}{2 \times \mathrm{Fsw} \times \mathrm{L}}
$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with $\mathrm{DCR}<50 \mathrm{mohm}$ to achieve a good overall efficiency.

## Schottky Diode D:

Because of high switching speed of SY7301A, a Schottky diode with low forward voltage drop and fast switching speed is desirable for the application. The voltage rating of the diode must be higher than maximum output voltage. The diode's average and
peak current rating should exceed the average output current and peak inductor current.

## Dimming Control

SY7301A offer several different dimming schemes for LED brightness control. One way is to apply a PWM signal to the EN/PWM pin. Fig. 3 shows the internal block diagram of the dimming circuit of SY7301A. The PWM signal changes the regulation voltage by change the duty cycle. The relationship between the duty cycle and FB voltage is calculated as:
$\mathrm{V}_{\mathrm{FB}}=$ Duty $* 300 \mathrm{mV}$


Since the cut-off frequency of the internal low pass filter is near 3.5 kHz . When the dimming frequency is lower than 3.5 kHz , EA is directly connected a PWM signal and the LED current is controlled by it. When the dimming frequency is higher than 3.5 kHz , the EA receive a DC signal so the LED current is a DC current. Another way is to use a DC voltage as shown in Fig.4. The LED current decreases as the DC voltage rises. The relationship between LED current and DC voltage is:

$$
I_{L E D}=\frac{V_{R E F} \times\left(R_{1}+R_{2}\right)-V_{D C} \times R_{1}}{R_{2} \times R_{F B}}
$$

Where $V_{\text {REF }}$ is the 300 mV internal reference voltage, VDC is the dimming DC voltage.


Figure 4

A filtered PWM signal can be used to substituted the DC input as shown in Fig.5.To better filter out the AC components of the PWM signal, it is recommend choosing the same value for R2 and R3 and the cut-off frequency of the low pass filter (formed by R2//R3 and $\mathrm{C} 1)$ to be well below the dimming signal frequency. The LED current decreases as the duty cycle increases. The LED current can be calculated using equat on below:

$$
I=\frac{V_{R E F} \times\left(R_{1}+R_{2}+R_{3}\right)-V_{P W M} \times D u t y \times R_{1}}{\left(R_{2}+R_{3}\right) \times R_{F B}}
$$

Where $\mathrm{V}_{\text {REF }}$ is the 300 mV internal reference voltage, $\mathrm{V}_{\text {PWM }}$ is the high voltage level of PWM signal, Duty is the duty cycle of PWM signal.


Figure 5

## Layout Design:

The layout design of SY7301A regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: Cin, Cout, L, R1 and D.

1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.
2) Civ must be close to Pins IN and GND. The loop area formed by $\mathrm{C}_{\mathrm{IN}}$ and GND must be minimized.
3) Minimize the loop area of LX, D, Cout and GND.
4) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.
5) The components R1, the trace connecting to the FB pin must NOT be adjacent to the LX net on the PCB layout to avoid the noise problem.

## AN_SY7301A

## SHERGY

6) If the system chip interfacing with the EN pin has a high impedance state at shutdown mode and the IN pin is connected directly to a power source such as a Li-Ion battery, it is desirable to add a pull down 1Mohm
resistor between the EN and GND pins to prevent the noise from falsely turning on the regulator at shutdown mode.

# TSOT23-6L Package outline \& PCB layout 



Recommended Pad Layout


Notes: All dimension in millimeter and exclude mold flash \& metal burr.

## DFN3x3-10 Package outline



Pin1 identifier: two options

## Bottom View

Notes: All dimensions are in millimeters.
All dimensions don't include mold flash \& metal burr.

## Taping \& Reel Specification

## 1. Taping orientation

$$
\text { Feeding direction } \longrightarrow
$$



Feeding direction $\qquad$
2. Carrier Tape \& Reel specification for packages


## 3. Others: NA

