1Ω SPDT Switch

NL5S4157A

The NL5S4157A is a low $\mathrm{R}_{\text {ON }}$ SPDT analog switch. The device is designed for low operating voltage, high current switching of speaker output for mobile applications. It can switch a balanced stereo output. It can handle a balanced microphone/speaker/ringtone generator in monophone mode.

Features

- Wide V_{CC} Operating Range: 1.65 V to 5.5 V
- OVT up to +5.5 V for Control pin
- R_{ON} : Typically $<1 \Omega$ at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- Rail-to-Rail Input/Output
- This Device is $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and is RoHS Compliant

Typical Applications

- Cell Phone Speaker/Microphone Switching
- Ringtone-Chip/Amplifier Switching
- Stereo Balanced (Push-Pull) Switching
- RF PA Routing
- General Switching

ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

MARKING DIAGRAM

(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION
See detailed ordering and shipping information on page 6 of this data sheet.

PIN ASSIGNMENTS

Figure 1. NL5S4157A (Top View)

Figure 2. Analog Symbol

PIN DESCRIPTION

Pin	Name	Description
1	NO	Normally-Open Port
2	GND	Supply Ground
3	NC	Normally-Closed Port
4	COM	Common Port
5	VCC	IN
6	Supply	

FUNCTION TABLE

IN	Switch
L	NC to COM
H	NO to COM

NL5S4157A

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Switch Input / Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	-0.5 to +6.0	V
I_{OK}	I/O Port Diode Current	± 100	mA
I_{IK}	Select Input Diode Current	-100	mA
$\mathrm{I}_{\mathrm{I} / \mathrm{O}}$	Continuous DC Current Through Analog Switch	± 100	mA
$\mathrm{I}_{\mathrm{I} / \mathrm{O}-\mathrm{pk}}$	Peak Current Through Analog Switch, 10% Duty Cycle	± 300	mA
$\mathrm{~T}_{\mathrm{S}}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (HBM)	2	kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	Positive DC Supply Voltage		1.65	5.5	V
$\mathrm{V}_{\text {IS }}$	Switch Input / Output Voltage		GND	V_{CC}	V
$\mathrm{V}_{\text {IN }}$	Digital Select Input Voltage		GND	5.5	V
T_{A}	Operating Temperature Range		-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Transition Rise or Fall Time (Select Input IN)	$\mathrm{V}_{\mathrm{CC}} \leq 3.0 \mathrm{~V}$	0	20	ns / V
		$\mathrm{V}_{\mathrm{CC}}>3.0 \mathrm{~V}$	0	10	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

NL5S4157A

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Guaranteed Limit							Unit
				$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Input High Voltage		2.7	1.1			1.1		1.1		V
			5.0	1.42			1.42		1.42		
$\mathrm{V}_{\text {IL }}$	Input Low Voltage		2.7			0.4		0.4		0.4	V
			5.0			0.7		0.7		0.7	
In	Input Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	1.65-5.5			± 0.1		± 1		± 1	$\mu \mathrm{A}$
IoFF	Input Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \text { to } \\ 5.5 \mathrm{~V} \end{gathered}$	0			0.05		1		1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON }}$	ON-State Switch Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{IS}}=\mathrm{GND} \\ \text { to } \mathrm{V}_{\mathrm{CC}}, \\ \mathrm{~V}_{\mathrm{OS}}=\mathrm{Open} \end{gathered}$	5.5			± 10		± 200		± 600	nA
$\mathrm{I}_{\text {S(OFF) }}$	OFF-State Switch Leakage Current	$\begin{gathered} \mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{CC}} \\ \text { and } \\ \mathrm{V}_{\mathrm{OS}}=\mathrm{GND}, \\ \text { or } \\ \text { IS }=\mathrm{GND} \\ \text { and } \\ \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \end{gathered}$	5.5			± 10		± 200		± 600	nA
I_{CC}	Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or } \mathrm{GND}, \\ & \mathrm{I}_{\mathrm{OS}}=0 \mathrm{~mA} \end{aligned}$	5.5			0.5		5		5	$\mu \mathrm{A}$

NL5S4157A

ANALOG SWITCH CHARACTERISTICS

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Guaranteed Limit					Unit
				250C			$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
RoN $_{\text {ON }}$(Note 1)	Switch ON Resistance	$\begin{gathered} \mathrm{V}_{\mathrm{IS}}=0 \text { to } \\ \mathrm{V}_{\mathrm{CC}}, \\ \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA} \end{gathered}$	2.7		0.9	1.2		1.4	Ω
			4.5		0.6	0.8		1.0	
$\Delta \mathrm{R}_{\mathrm{ON}}$ (Notes 1, 2, 3)	ON Resistance Match	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA} \end{aligned}$	2.7		0.05	0.15		0.15	Ω
	Between Channels	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=2.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{A}}=100 \mathrm{~mA} \end{aligned}$	4.5		0.04	0.12		0.15	
$\begin{gathered} \mathrm{R}_{\text {FLAT }} \\ (\text { Notes } 1,2,4) \end{gathered}$	ON Resistance Flatness	$\begin{aligned} \mathrm{V}_{\mathrm{IS}} & =0 \text { to } \mathrm{V}_{\mathrm{CC}}, \\ \mathrm{I}_{\mathrm{O}} & =100 \mathrm{~mA} \end{aligned}$	2.7		0.3	0.4		0.4	Ω
			4.5		0.2	0.4		0.4	
$\begin{gathered} \text { Q } \\ (\text { Note 5) } \end{gathered}$	Charge Injection	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \\ \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}, \end{gathered}$	2.7		38				pC
		$\mathrm{R}_{\text {GEN }}=0 \Omega$	4.5		55				
$\begin{aligned} & \text { VISO } \\ & \text { (Note 6) } \end{aligned}$	Off-Isolation	$\begin{aligned} & R_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$2.7-5.5$		-66				dB
V_{CT}	Crosstalk	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$2.7-5.5$		-66				dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	2.7-5.5		57				MHz
$\begin{aligned} & \text { THD } \\ & \text { (Note 5) } \end{aligned}$	Total Harmonic Distortion	$\begin{gathered} R_{L}=600 \Omega, \\ V_{I S}=0.5 \mathrm{~V}_{P-P}, \\ \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \\ \mathrm{kHz} \end{gathered}$	2.7-5.5		0.004				\%
C_{1}	Select Input Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	0		3.0				pF
CofF	NC/NO Port Off Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	4.5		23				pF
$\mathrm{Con}^{\text {a }}$	COM Port ON Capacitance	$\mathrm{f}=1 \mathrm{MHz}$	4.5		93				pF

1. Measured by the voltage drop between NC/NO and COM pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two ($\mathrm{NO}, \mathrm{NC}, \mathrm{COM}$).
2. Parameter is characterized but not tested in production.
3. $\Delta R_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}} \mathrm{max}-\mathrm{R}_{\mathrm{ON}}$ min measured at identical V_{CC}, temperature and voltage levels.
4. Flatness is defined as the difference between the maximum and minimum value of On Resistance over the specified range of conditions.
5. Guaranteed by Design.
6. $\mathrm{V}_{\text {ISO }}=20 \log 10\left[\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\mathrm{NO}, \mathrm{NC}}\right]$.

SWITCHING CHARACTERISTICS

Symbol	Parameter	Condition	V_{cc} (V)	Guaranteed Limit					Unit
				$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\begin{gathered} \hline \mathrm{t}_{\mathrm{PD}} \\ \text { (Note 7) } \end{gathered}$	Propagation Delay	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\text {IL }}$	2.7			2.0		2.0	ns
			4.5			0.3		0.3	
t_{ON}	Turn-on Time, (COM to NO or NC)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$							ns
		$\mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}$	2.7			30		35	
		$\mathrm{V}_{\text {IS }}=3.0 \mathrm{~V}$	4.5			20		25	
		$\begin{gathered} R_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \end{gathered}$							
		$\mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}$	3.3			100		100	
$\mathrm{t}_{\text {OFF }}$	Turn-off Time, (COM to NO or NC)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \end{aligned}$							ns
		$\mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}$	2.7			20		25	
		$\mathrm{V}_{\text {IS }}=3.0 \mathrm{~V}$	4.5			15		20	
		$\begin{gathered} R_{\mathrm{L}}=50 \Omega, \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \end{gathered}$							
		$\mathrm{V}_{\text {IS }}=1.5 \mathrm{~V}$	3.3			100		100	
$\begin{gathered} \mathrm{T}_{\mathrm{BBM}} \\ (\text { Note 5) } \end{gathered}$	Break Before Make Time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$	2.7	0.5			0.5		ns
			4.5	0.5			0.5		

7. This parameter is guaranteed by design but not tested. The bus switch contributes no propagation delay other than the RC delay of the On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping †
NL5S4157ADFT2G	SC-88/SC70-6/SOT-363	AT	Q4	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN 1 ORIENTATION IN TAPE AND REEL
Pin 1 Orientation in Tape and Reel Direction of Feed

Figure 3.

Test Setups

Figure 4. $\mathrm{t}_{\text {ввм }}$ (Time Break-Before-Make)

Figure 5. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 6. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

NL5S4157A

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. Crosstalk is measured from an off channel to an on channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\mathrm{ISO}}, \mathrm{V}_{\mathrm{CT}}$, Bandwidth and $\mathrm{V}_{\mathrm{ONL}}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}$ or $\mathrm{V}_{\mathrm{CT}}=$ Off Channel Isolation or crosstalk $=20$ Log for $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$
$\mathrm{V}_{\mathrm{ONL}}=$ On Channel Loss $=20$ Log for $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$ at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
Figure 7. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/VONL

Figure 8. Charge Injection: (Q)

Figure 9. $\mathrm{V}_{\text {ISO }}$ vs. Frequency
@ $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 11. Total Harmonic Distortion

Figure 13. ON Resistance vs. Switch Voltage @ $\mathrm{V}_{\mathrm{Cc}}=4.5 \mathrm{~V}$

Figure 10. Bandwidth vs. Frequency

Figure 12. ON Resistance vs. Switch Voltage
@ $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$

Figure 14. ON Resistance vs. Switch Voltage

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 2. CONTROLLING DIMENSION: MILLIMETERS.
2. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END.
3. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF DIMENSIONS D AND E1 AT THE OUT
THE PLASTIC BODY AND DATUM H.
THE PLASTIC BODY AND DATUM H.
4. DATUMS A AND B ARE DETERMINED AT DATUM H.
5. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE DIMENSIONS b AND c APPLY TO THE FLAT SEC
LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP.
6. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION b AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	---	---	1.10	---	---	0.043
A1	0.00	--	0.10	0.000	---	0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
C	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
E	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
e	0.65 BSC			0.026 BSC		
L	0.26	0.36	0.46	0.010	0.014	0.018
L2	0.15 BSC			0.006 BSC		
aaa	0.15			0.006		
bbb	0.30			0.012		
ccc	0.10			0.004		
ddd	0.10			0.004		
	GENERIC					
	MARKING DIAGRAM*					

XXX $=$ Specific Device Code
M = Date Code*

- = Pb-Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 1 OF 2 |

[^0] rights of others.

SC-88/SC70-6/SOT-363

CASE 419B-02
ISSUE Y
STYLE 1:
PIN 1. EMITTER 2
2. BASE 2
3. COLLECTOR 1
4. EMITTER 1
5. BASE 1
6. COLLECTOR 2

STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2

STYLE 13:
PIN 1. ANODE
2. N/C
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE

STYLE 19:
PIN 1. IOUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF
STYLE 25:
PIN 1. BASE 1
2. CATHODE
3. COLECTOR 2
4. BASE 2
5. EMITTER
6. COLLECTOR 1
STYLE 2:

CANCELLED
STYLE 8:
CANCELLED

STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC

STYLE 20:
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. EMITTER
5. COLLECTOR
6. COLLECTOR
STYLE 26:
PIN 1. SOURCE 1
2. GATE 1
3. DRAAN 2
4. SOURCE 2
5. GATE 2
6. DRAIN 1

STYLE 3 : CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6 : PIN 1. ANODE 2 2. N / C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:
PIN 1. EMITTER 2	PIN 1. SOURCE 2	PIN 1. CATHODE 2	PIN 1. ANODE 2
2. EMITTER 1	2. SOURCE 1	2. CATHODE 2	2. ANODE 2
3. COLLECTOR 1	3. GATE 1	3. ANODE 1	3. CATHODE 1
4. BASE 1	4. DRAIN 1	4. CATHODE 1	4. ANODE 1
5. BASE 2	5. DRAIN 2	5. CATHODE 1	5. ANODE 1
6. COLLECTOR 2	6. GATE 2	6. ANODE 2	6. CATHODE 2
STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. N / C	2. GND	2. CH 1	2. ANODE
3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. N/C	5. VBUS	5. CH 2	5. CATHODE
6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88/SC70-6/SOT-363 | PAGE 2 OF 2 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

