




OPA177  
OPA77

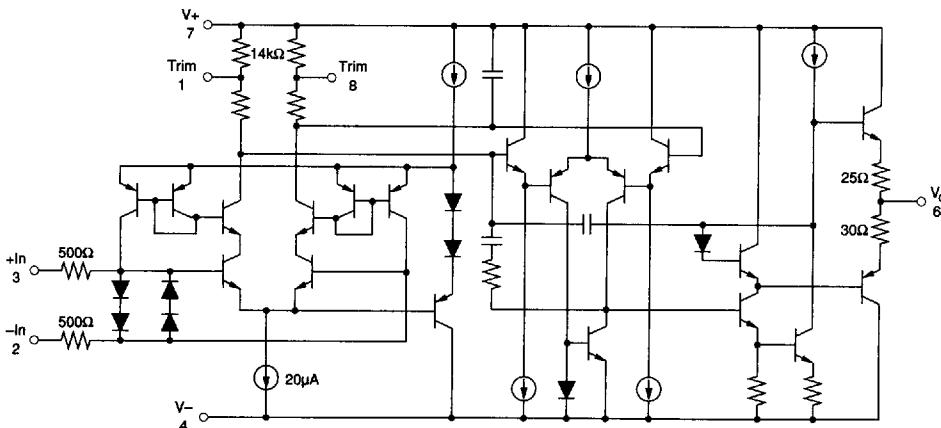
## Precision OPERATIONAL AMPLIFIER

### FEATURES

- LOW OFFSET VOLTAGE:  $10\mu\text{V}$  max
- LOW DRIFT:  $0.1\mu\text{V}/^\circ\text{C}$
- HIGH OPEN-LOOP GAIN:  $130\text{dB}$  min
- LOW QUIESCENT CURRENT:  $1.5\text{mA}$  typ
- REPLACES INDUSTRY-STANDARD OP AMPS: OP-07, OP-77, OP-177, AD707, ETC.

### APPLICATIONS

- PRECISION INSTRUMENTATION
- DATA ACQUISITION
- TEST EQUIPMENT
- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER


### DESCRIPTION

The OPA177 and OPA77 precision bipolar op amps feature very low offset voltage and drift. Laser-trimmed offset, drift and input bias current virtually eliminate the need for costly external trimming. Their high performance and low cost make them ideally suited to a wide range of precision instrumentation.

The low quiescent current of the OPA177 and OPA77 dramatically reduce warm-up drift and errors due to

thermoelectric effects in input interconnections. They provide an effective alternative to chopper-stabilized amplifiers. The low noise of the OPA177 and OPA77 maintains accuracy.

OPA177 and OPA77 performance gradeouts are available. Packaging options include 8-pin plastic DIP, 8-pin ceramic DIP, and SO-8 surface-mount packages.



International Airport Industrial Park • Mailing Address: PO Box 11400 • Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd. • Tucson, AZ 85706  
Tel: (520) 746-1111 • Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

## OPA177 SPECIFICATIONS

## ELECTRICAL

At  $V_S = \pm 15V$ ,  $T_A = +25^\circ C$  unless otherwise noted.

| PARAMETER                              | CONDITION                                        | OPA177E    |            |           | OPA177F |     |         | OPA177G |      |           | UNITS      |
|----------------------------------------|--------------------------------------------------|------------|------------|-----------|---------|-----|---------|---------|------|-----------|------------|
|                                        |                                                  | MIN        | Typ        | MAX       | MIN     | Typ | MAX     | MIN     | Typ  | MAX       |            |
| <b>OFFSET VOLTAGE</b>                  |                                                  |            |            |           |         |     |         |         |      |           |            |
| Input Offset Voltage                   |                                                  |            | 4          | 10        |         | 10  | 25      |         | 20   | 60        | $\mu V$    |
| Long-Term Input Offset <sup>(1)</sup>  |                                                  |            | 0.2        |           |         | 0.3 |         |         | 0.4  |           | $\mu V/Mo$ |
| Voltage Stability                      |                                                  |            |            |           |         |     |         |         |      |           |            |
| Offset Adjustment Range                |                                                  |            |            |           |         |     |         |         |      |           |            |
| Power Supply Rejection Ratio           | $R_P = 20k\Omega$<br>$V_S = \pm 3V$ to $\pm 18V$ | 120        | $\pm 3$    | 125       | 115     | •   |         | 110     | 120  |           | $mV$<br>dB |
| <b>INPUT BIAS CURRENT</b>              |                                                  |            |            |           |         |     |         |         |      |           |            |
| Input Offset Current                   |                                                  |            | 0.3        | 1         |         | •   | 1.5     |         | •    | 2.8       | $nA$       |
| Input Bias Current                     |                                                  |            | 0.5        | $\pm 1.5$ |         | •   | $\pm 2$ |         | •    | $\pm 2.8$ | $nA$       |
| <b>NOISE</b>                           |                                                  |            |            |           |         |     |         |         |      |           |            |
| Input Noise Voltage                    | 1Hz to 100Hz <sup>(2)</sup>                      |            | 85         | 150       |         | •   |         |         | •    |           | $nVrms$    |
| Input Noise Current                    | 1Hz to 100Hz                                     |            | 4.5        |           |         | •   |         |         | •    |           | $pArms$    |
| <b>INPUT IMPEDANCE</b>                 |                                                  |            |            |           |         |     |         |         |      |           |            |
| Input Resistance                       | Differential Mode <sup>(3)</sup>                 | 26         | 45         |           |         | •   | •       |         | 18.5 | •         | $M\Omega$  |
|                                        | Common-Mode                                      |            | 200        |           |         | •   | •       |         |      |           | $G\Omega$  |
| <b>INPUT VOLTAGE RANGE</b>             |                                                  |            |            |           |         |     |         |         |      |           |            |
| Common-Mode Input Range <sup>(4)</sup> |                                                  |            |            |           |         |     |         |         |      |           | $V$        |
| Common-Mode Rejection                  | $V_{CM} = \pm 13V$                               | $\pm 13$   | $\pm 14$   |           |         | •   | •       |         | 115  | •         | $dB$       |
|                                        |                                                  | 130        | 140        |           |         | •   | •       |         |      |           |            |
| <b>OPEN-LOOP GAIN</b>                  |                                                  |            |            |           |         |     |         |         |      |           |            |
| $R_L \ge 2k\Omega$                     | $R_L \ge 2k\Omega$                               | 5000       | 12000      |           |         | •   | •       |         | 2000 | 6000      | $V/mV$     |
| Large Signal Voltage Gain              | $V_O = \pm 10V^{(5)}$                            |            |            |           |         |     |         |         |      |           |            |
| <b>OUTPUT</b>                          |                                                  |            |            |           |         |     |         |         |      |           |            |
| Output Voltage Swing                   | $R_L \ge 10k\Omega$                              | $\pm 13.5$ | $\pm 14$   |           |         | •   | •       |         | •    | •         | $V$        |
|                                        | $R_L \ge 2k\Omega$                               | $\pm 12.5$ | $\pm 13$   |           |         | •   | •       |         | •    | •         | $V$        |
| Open-Loop Output Resistance            | $R_L \ge 1k\Omega$                               | $\pm 12$   | $\pm 12.5$ | 60        |         | •   | •       |         | •    | •         | $V$        |
|                                        |                                                  |            |            |           |         | •   | •       |         |      |           | $\Omega$   |
| <b>FREQUENCY RESPONSE</b>              |                                                  |            |            |           |         |     |         |         |      |           |            |
| Slew Rate                              | $R_L \ge 2k\Omega$                               | 0.1        | 0.3        |           |         | •   | •       |         | •    | •         | $V/\mu s$  |
| Closed-Loop Bandwidth                  | $G = +1$                                         | 0.4        | 0.6        |           |         | •   | •       |         | •    | •         | $MHz$      |
| <b>POWER SUPPLY</b>                    |                                                  |            |            |           |         |     |         |         |      |           |            |
| Power Consumption                      | $V_S = \pm 15V$ , No Load                        |            | 40         | 60        |         |     |         |         |      |           | $mW$       |
|                                        | $V_S = \pm 3V$ , No Load                         |            | 3.5        | 4.5       |         |     |         |         |      |           | $mW$       |
| Supply Current                         | $V_S = \pm 15V$ , No Load                        |            | 1.3        | 2         |         |     |         |         |      |           | $mA$       |

## ELECTRICAL

At  $V_S = \pm 15V$ ,  $-40^\circ C \le T_A \le +85^\circ C$ , unless otherwise noted.

|                              |                                      |          |            |         |     |     |     |     |      |         |               |
|------------------------------|--------------------------------------|----------|------------|---------|-----|-----|-----|-----|------|---------|---------------|
| <b>OFFSET VOLTAGE</b>        |                                      |          | 10         | 20      |     | 15  | 40  |     | 20   | 100     | $\mu V$       |
| Input Offset Voltage         |                                      |          | 0.03       | 0.1     |     | 0.1 | 0.3 |     | 0.7  | 1.2     | $\mu V/\mu C$ |
| Average Input Offset         |                                      |          |            |         |     |     |     |     |      |         |               |
| Voltage Drift <sup>(6)</sup> |                                      |          |            |         |     |     |     |     |      |         |               |
| Power Supply Rejection Ratio | $V_S = \pm 3V$ to $\pm 18V$          | 120      | 125        |         | 110 | 120 |     | 106 | 115  |         | $dB$          |
| <b>INPUT BIAS CURRENT</b>    |                                      |          |            |         |     |     |     |     |      |         |               |
| Input Offset Current         |                                      |          | 0.5        | 1.5     |     | •   | 2.2 |     | •    | 4.5     | $nA$          |
| Average Input Offset Current |                                      |          | 1.5        | 25      |     | •   | 40  |     | •    | 85      | $pA^\circ C$  |
| Drift <sup>(7)</sup>         |                                      |          |            |         |     |     |     |     |      |         |               |
| Input Bias Current           |                                      |          | 0.5        | $\pm 4$ |     | •   | •   |     | •    | $\pm 6$ | $nA$          |
| Average Input Bias Current   |                                      |          | 8          | 25      |     | •   | 40  |     | 15   | 60      | $pA^\circ C$  |
| Drift <sup>(7)</sup>         |                                      |          |            |         |     | •   | •   |     |      |         |               |
| <b>INPUT VOLTAGE RANGE</b>   |                                      |          |            |         |     |     |     |     |      |         |               |
| Common-Mode Input Range      | $V_{CM} = \pm 13V$                   | $\pm 13$ | $\pm 13.5$ |         |     | •   | •   |     | 110  | •       | $V$           |
| Common-Mode Rejection        |                                      | 120      | 140        |         |     | •   | •   |     |      |         | $dB$          |
| <b>OPEN-LOOP GAIN</b>        |                                      |          |            |         |     |     |     |     |      |         |               |
| Large Signal Voltage Gain    | $R_L \ge 2k\Omega$ , $V_O = \pm 10V$ | 2000     | 6000       |         |     | •   | •   |     | 1000 | 4000    | $V/mV$        |
| <b>OUTPUT</b>                |                                      |          |            |         |     |     |     |     |      |         |               |
| Output Voltage Swing         | $R_L \ge 2k\Omega$                   | $\pm 12$ | $\pm 13$   |         |     | •   | •   |     | •    | •       | $V$           |
| <b>POWER SUPPLY</b>          |                                      |          |            |         |     |     |     |     |      |         |               |
| Power Consumption            | $V_S = \pm 15V$ , No Load            |          | 60         | 75      |     |     |     |     |      |         | $mW$          |
| Supply Current               | $V_S = \pm 15V$ , No Load            |          | 2          | 2.5     |     |     |     |     |      |         | $mA$          |

\* Same as specification for product to left.

NOTES: (1) Long-Term Input Offset Voltage Stability refers to the averaged trend line of  $V_{OS}$  vs time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in  $V_{OS}$  during the first 30 operating days are typically less than  $2\mu V$ . (2) Sample tested. (3) Guaranteed by design. (4) Guaranteed by CMRR test condition. (5) To insure high open-loop gain throughout the  $\pm 10V$  output range,  $A_{OL}$  is tested at  $-10V \le V_O \le 0V$ ,  $0V \le V_O \le +10V$ , and  $-10V \le V_O \le +10V$ . (6) OP177EZ and OP177FZ:  $TCV_{OS}$  is 100% tested. (7) Guaranteed by end-point limits.

For Immediate Assistance, Contact Your Local Salesperson

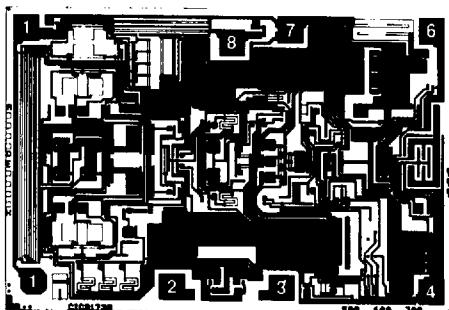
## OPA77 SPECIFICATIONS

### ELECTRICAL

At  $V_S = \pm 15V$ ,  $T_A = +25^\circ C$  unless otherwise noted.

| PARAMETER                                               | CONDITION                            | OPA77E     |          |         | OPA77F |      |           | OPA77G |     |     | UNITS          |
|---------------------------------------------------------|--------------------------------------|------------|----------|---------|--------|------|-----------|--------|-----|-----|----------------|
|                                                         |                                      | MIN        | TYP      | MAX     | MIN    | TYP  | MAX       | MIN    | TYP | MAX |                |
| <b>OFFSET VOLTAGE</b>                                   |                                      |            |          |         |        |      |           |        |     |     |                |
| Input Offset Voltage                                    |                                      |            | 10       | 25      |        | 20   | 60        |        | 50  | 100 | $\mu V$        |
| Long-Term Input Offset Voltage Stability <sup>(1)</sup> |                                      |            | 0.3      |         |        | 0.4  |           |        |     |     | $\mu V/Mo$     |
| Offset Adjustment Range                                 | $R_{TRIM} = 20k\Omega$               |            | $\pm 3$  |         |        | *    | *         |        | *   |     | $mV$           |
| Power Supply Rejection Ratio                            | $V_S = \pm 3V$ to $\pm 18V$          |            | 0.7      | 3       |        | *    | *         |        | *   |     | $\mu V/V$      |
| <b>INPUT BIAS CURRENT</b>                               |                                      |            |          |         |        |      |           |        |     |     |                |
| Input Offset Current                                    |                                      |            | 0.3      | 1.5     |        | *    | 2.8       |        | *   |     | $nA$           |
| Input Bias Current                                      |                                      |            | 1.2      | $\pm 2$ |        | *    | $\pm 2.8$ |        | *   |     | $nA$           |
| <b>NOISE</b>                                            |                                      |            |          |         |        |      |           |        |     |     |                |
| Input Noise Voltage                                     | 0.1Hz to 10Hz <sup>(2)</sup>         |            | 0.35     | 0.6     |        | 0.38 | 0.65      |        | *   |     | $\mu Vp-p$     |
| Input Noise Voltage Density                             | $f = 10Hz^{(2)}$                     |            | 8.5      | 18      |        | *    | 20        |        | *   |     | $nV/\sqrt{Hz}$ |
|                                                         | $f = 100Hz^{(2)}$                    |            | 7.5      | 13      |        | *    | 13.5      |        | *   |     | $nV/\sqrt{Hz}$ |
|                                                         | $f = 1000Hz^{(2)}$                   |            | 7.5      | 11      |        | *    | 11.5      |        | *   |     | $nV/\sqrt{Hz}$ |
| Input Noise Current                                     | 0.1Hz to 10Hz                        |            | 35       |         |        | *    |           |        | *   |     | $pAp-p$        |
| Input Noise Current Density                             | $f = 10Hz$                           |            | 0.73     |         |        | *    |           |        | *   |     | $pA/\sqrt{Hz}$ |
|                                                         | $f = 100Hz$                          |            | 0.26     |         |        | *    |           |        | *   |     | $pA/\sqrt{Hz}$ |
|                                                         | $f = 1000Hz$                         |            | 0.22     |         |        | *    |           |        | *   |     | $pA/\sqrt{Hz}$ |
| <b>INPUT RESISTANCE</b>                                 |                                      |            |          |         |        |      |           |        |     |     |                |
| Differential Input Resistance <sup>(3)</sup>            |                                      | 26         | 45       |         |        | 18.5 | *         |        | *   |     | $M\Omega$      |
| Common-Mode Input Resistance                            |                                      |            | 200      |         |        |      |           |        |     |     | $G\Omega$      |
| <b>INPUT VOLTAGE RANGE</b>                              |                                      |            |          |         |        |      |           |        |     |     |                |
| Common Mode Input Range                                 |                                      | $\pm 13$   | $\pm 14$ |         |        | *    | *         |        | *   |     | $V$            |
| Common-Mode Rejection                                   | $V_{CM} = \pm 13V$                   |            | 0.1      | 1       |        | *    |           |        | *   |     | $\mu V/V$      |
| <b>OPEN-LOOP GAIN</b>                                   |                                      |            |          |         |        |      |           |        |     |     |                |
| Large-Signal Voltage Gain                               | $R_L \ge 2k\Omega$ , $V_O = \pm 10V$ | 5000       | 12000    |         |        | 2000 | 6000      |        | *   |     | $V/mV$         |
| <b>OUTPUT</b>                                           |                                      |            |          |         |        |      |           |        |     |     |                |
| Output Voltage Swing                                    | $R_L \ge 10k\Omega$                  | $\pm 13.5$ | $\pm 14$ |         |        | *    | *         |        | *   |     | $V$            |
|                                                         | $R_L \ge 2k\Omega$                   | $\pm 12.5$ | $\pm 13$ |         |        | *    | *         |        | *   |     | $V$            |
|                                                         | $R_L \ge 1k\Omega$                   | $\pm 12$   | 60       |         |        | *    | *         |        | *   |     | $V$            |
| Open-Loop Output Resistance                             |                                      |            |          |         |        |      |           |        |     |     | $\Omega$       |
| <b>FREQUENCY RESPONSE</b>                               |                                      |            |          |         |        |      |           |        |     |     |                |
| Slew Rate                                               | $R_L \ge 2k\Omega$                   | 0.1        | 0.3      |         |        | *    | *         |        | *   |     | $V/\mu s$      |
| Closed-Loop Bandwidth                                   | $AVCL = +1$                          | 0.4        | 0.6      |         |        | *    | *         |        | *   |     | MHz            |
| <b>POWER SUPPLY</b>                                     |                                      |            |          |         |        |      |           |        |     |     |                |
| Power Consumption                                       | $V_S = \pm 15V$ , No Load            |            | 50       | 60      |        |      |           |        |     |     | $mW$           |
|                                                         | $V_S = \pm 3V$ , No Load             |            | 3.5      | 4.5     |        |      |           |        |     |     | $mW$           |

### ELECTRICAL


At  $V_S = \pm 15V$ ,  $-25^\circ C \le T_A \le +85^\circ C$  for OPA77EZ and OPA77FZ,  $0^\circ C \le T_A \le +70^\circ C$  for OPA77FP and OPA77GP, unless otherwise noted.

|                                               |                                      |          |            |         |  |      |         |  |     |     |                 |
|-----------------------------------------------|--------------------------------------|----------|------------|---------|--|------|---------|--|-----|-----|-----------------|
| <b>OFFSET VOLTAGE</b>                         |                                      |          |            |         |  |      |         |  |     |     |                 |
| Input Offset Voltage                          | Z Package                            |          | 10         | 45      |  | 20   | 100     |  | *   | *   | $\mu V$         |
|                                               | P Package                            |          | 10         | 55      |  | 20   | 100     |  | *   | 150 | $\mu V$         |
| Average Input Offset <sup>(4)</sup>           | Z Package                            | 0.1      | 0.3        |         |  | 0.2  | 0.6     |  | 0.7 | 1.2 | $\mu V$         |
| Voltage Drift                                 | P Package                            | 0.3      | 0.6        |         |  | 0.4  | 1       |  | *   | *   | $\mu V^\circ C$ |
| Power Supply Rejection Ratio                  | $V_S = \pm 3V$ to $\pm 18V$          |          | 1          | 3       |  | *    | 5       |  | *   | *   | $\mu V^\circ C$ |
| <b>INPUT BIAS CURRENT</b>                     |                                      |          |            |         |  |      |         |  |     |     |                 |
| Input Offset Current                          |                                      |          | 0.5        | 2.2     |  | *    | 4.5     |  | *   |     | $nA$            |
| Avg Input Offset Current Drift <sup>(5)</sup> |                                      |          | 1.5        | 40      |  | *    | 85      |  | *   |     | $pA^\circ C$    |
| Input Bias Current                            |                                      |          | 2.4        | $\pm 4$ |  | *    | $\pm 6$ |  | *   |     | $nA$            |
| Avg Input Bias Current Drift <sup>(5)</sup>   |                                      |          | 8          | 40      |  | 15   | 60      |  | *   |     | $pA^\circ C$    |
| <b>INPUT VOLTAGE RANGE</b>                    |                                      |          |            |         |  |      |         |  |     |     |                 |
| Common Mode Input Range                       | $V_{CM} = \pm 13V$                   | $\pm 13$ | $\pm 13.5$ |         |  | *    | 3       |  | *   |     | $V$             |
| Common-Mode Rejection                         |                                      |          | 0.1        | 1       |  | *    |         |  | *   |     | $\mu V/V$       |
| <b>OPEN-LOOP GAIN</b>                         |                                      |          |            |         |  |      |         |  |     |     |                 |
| Large Signal Voltage Gain                     | $R_L \ge 2k\Omega$ , $V_O = \pm 10V$ | 2000     | 6000       |         |  | 1000 | 4000    |  | *   |     | $V/mV$          |
| <b>OUTPUT</b>                                 |                                      |          |            |         |  |      |         |  |     |     |                 |
| Output Voltage Swing                          | $R_L \ge 2k\Omega$                   | $\pm 12$ | $\pm 13$   |         |  | *    | *       |  | *   |     | $V$             |
|                                               |                                      |          |            |         |  |      |         |  |     |     |                 |
| <b>POWER SUPPLY</b>                           |                                      |          |            |         |  |      |         |  |     |     |                 |
| Power Consumption                             | $V_S = \pm 15V$ , No Load            |          | 60         | 75      |  | *    | *       |  | *   |     | $mW$            |

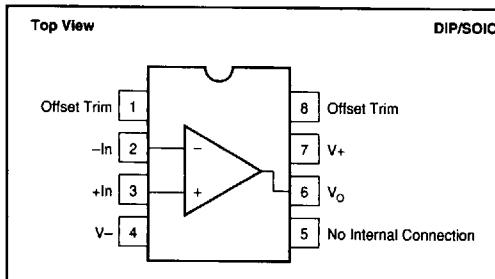
\* Same as specification for product to left. NOTES: (1) Long-Term Input Offset Voltage Stability refers to the averaged trend line of  $V_{OS}$  vs time over extended period after the first 30 days of operation. Excluding the initial hour of operation, changes in  $V_{OS}$  during the first 30 operating days are typically  $2.5\mu V$ . (2) Sample tested. (3) Guaranteed by design. (4) OPA77E:  $TCV_{OS}$  is 100% tested on Z package. (5) Guaranteed by end-point limits.

**Or, Call Customer Service at 1-800-548-6132 (USA Only)**

## DICE INFORMATION



## OPA177/77 DIE TOPOGRAPHY


| PAD | FUNCTION       |
|-----|----------------|
| 1   | Offset Trim    |
| 2   | -In            |
| 3   | +In            |
| 4   | V-             |
| 5   | NC             |
| 6   | V <sub>o</sub> |
| 7   | V <sub>+</sub> |
| 8   | Offset Trim    |

**Substrate Bias:  $-V_S$**   
**NC: No Connection.**

## MECHANICAL INFORMATION

|                  | MILS (0.001") | MILLIMETERS      |
|------------------|---------------|------------------|
| Die Size         | 63 x 92 ±5    | 1.60 x 2.34 ±0.1 |
| Die Thickness    | 20 ±3         | 0.51 ±0.08       |
| Min. Pad Size    | 4 x 4         | 0.10 x 0.10      |
| Transistor Count |               | 46               |
| Backing          |               | Gold             |

## PIN CONFIGURATION



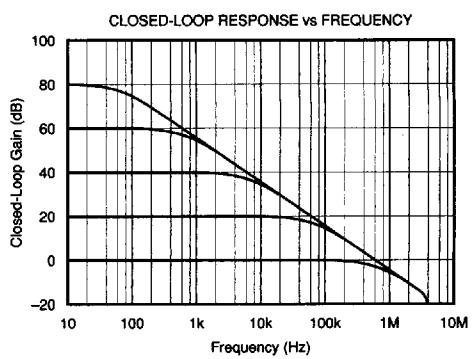
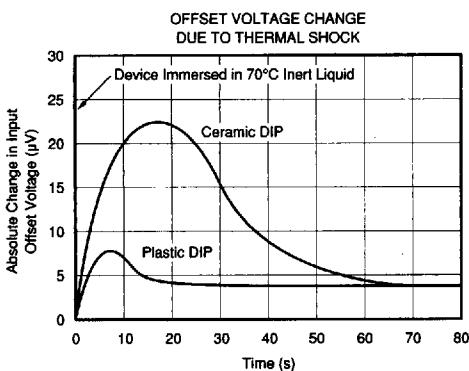
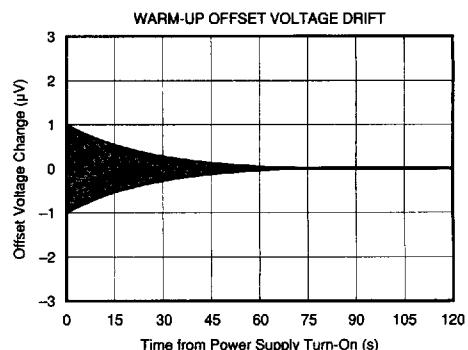
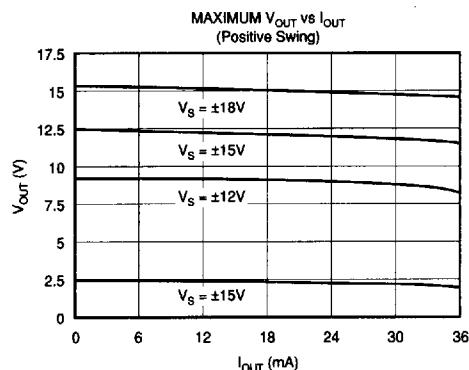
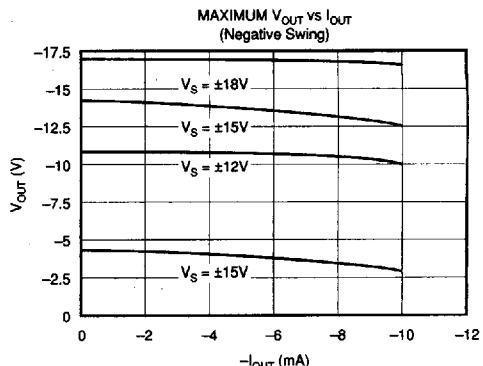
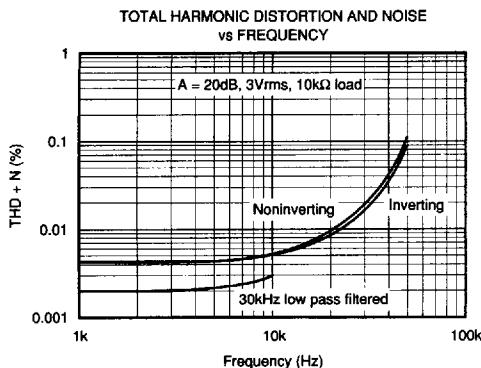
#### **ABSOLUTE MAXIMUM RATINGS**

|                                                       |                 |
|-------------------------------------------------------|-----------------|
| Power Supply Voltage .....                            | ±22V            |
| Differential Input Voltage .....                      | ±30V            |
| Input Voltage .....                                   | ±Vs             |
| Output Short Circuit .....                            | Continuous      |
| Operating Temperature:                                |                 |
| Ceramic DIP (Z) .....                                 | -55°C to +125°C |
| Plastic DIP (P), SO-8 (S) .....                       | -40°C to +85°C  |
| $\theta_{JA}$ (PDIP) .....                            | 100°C/W         |
| $\theta_{JA}$ (SOIC) .....                            | 160°C/W         |
| $\theta_{JA}$ (Ceramic) .....                         | 148°C/W         |
| Storage Temperature:                                  |                 |
| Ceramic DIP (Z) .....                                 | -65°C to +150°C |
| Plastic DIP (P), SO-8 (S) .....                       | -65°C to +125°C |
| Junction Temperature .....                            |                 |
| +150°C                                                |                 |
| Lead Temperature (soldering, 10s) P, Z packages ..... | +300°C          |
| (soldering, 3s) S package .....                       | +260°C          |

## ORDERING INFORMATION

| MODEL    | PACKAGE            | TEMP. RANGE    |
|----------|--------------------|----------------|
| OPA177FP | 8-Pin Plastic DIP  | -40°C to +85°C |
| OPA177GP | 8-Pin Plastic DIP  | -40°C to +85°C |
| OPA177GS | SO-8 Surface-Mount | -40°C to +85°C |
| OPA177EZ | 8-Pin Ceramic DIP  | -40°C to +85°C |
| OPA177FZ | 8-Pin Ceramic DIP  | -40°C to +85°C |
| OPA177GZ | 8-Pin Ceramic DIP  | -40°C to +85°C |
| OPA77FP  | 8-Pin Plastic DIP  | 0°C to +70°C   |
| OPA77GP  | 8-Pin Plastic DIP  | 0°C to +70°C   |
| OPA77EZ  | 8-Pin Ceramic DIP  | -25°C to +85°C |
| OPA77FZ  | 8-Pin Ceramic DIP  | -25°C to +85°C |

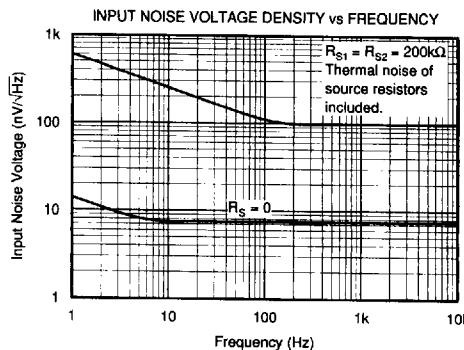
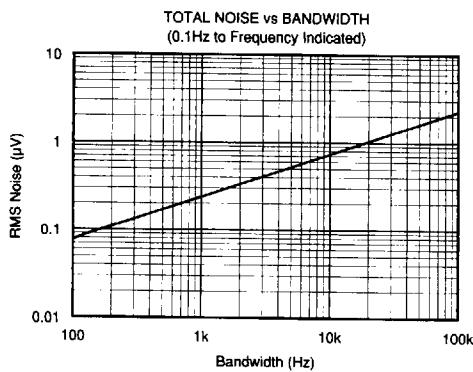
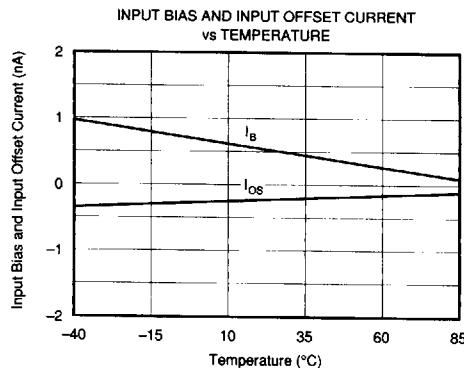
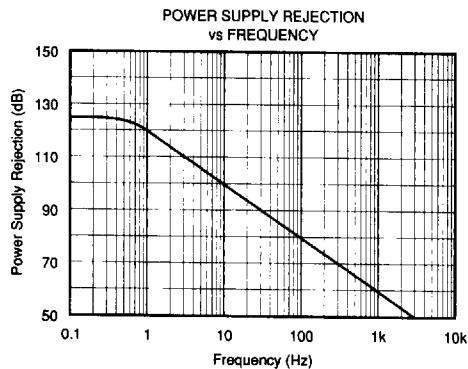
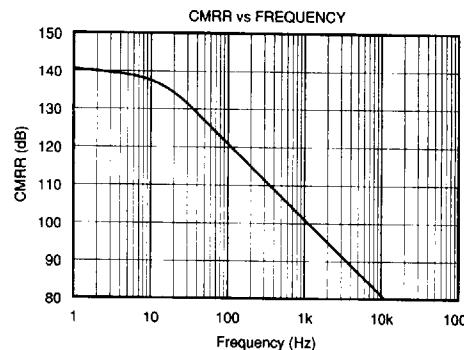
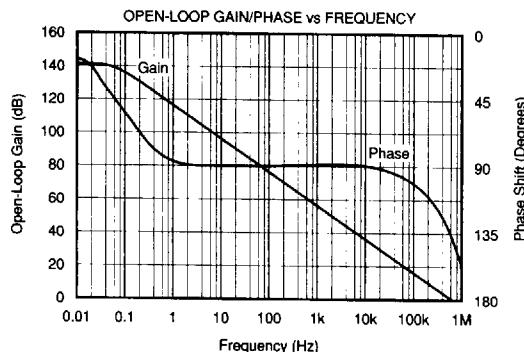
## PACKAGE INFORMATION







| MODEL    | PACKAGE            | PACKAGE DRAWING NUMBER <sup>(1)</sup> |
|----------|--------------------|---------------------------------------|
| OPA177FP | 8-Pin Plastic DIP  | 006                                   |
| OPA177GP | 8-Pin Plastic DIP  | 006                                   |
| OPA177GS | SO-8 Surface-Mount | 182                                   |
| OPA177EZ | 8-Pin Ceramic DIP  | 254                                   |
| OPA177FZ | 8-Pin Ceramic DIP  | 254                                   |
| OPA177GZ | 8-Pin Ceramic DIP  | 254                                   |
| OPA77FP  | 8-Pin Plastic DIP  | 006                                   |
| OPA77GP  | 8-Pin Plastic DIP  | 006                                   |
| OPA77EZ  | 8-Pin Ceramic DIP  | 254                                   |
| OPA77FZ  | 8-Pin Ceramic DIP  | 254                                   |

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

*For Immediate Assistance, Contact Your Local Salesperson*

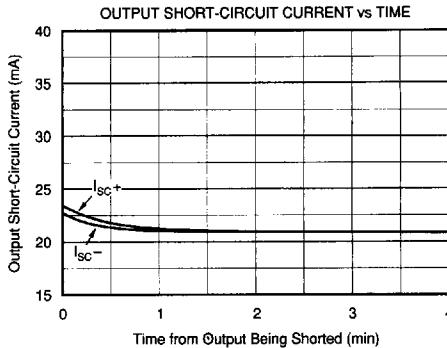
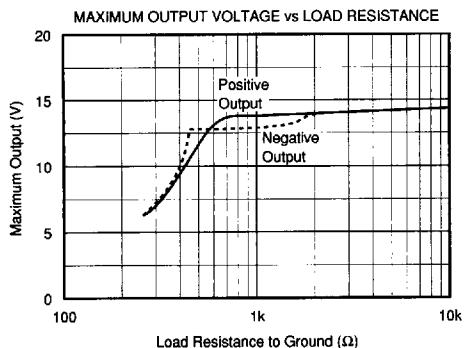
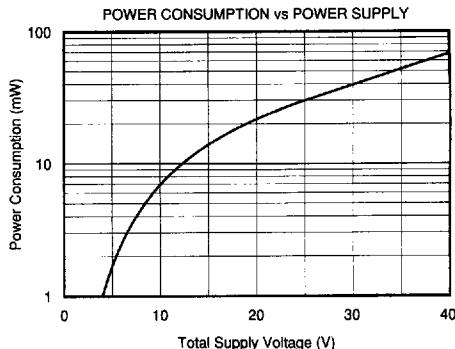
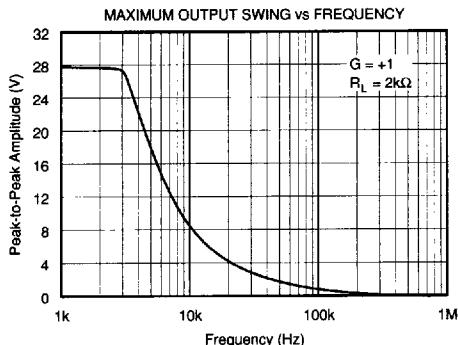
## TYPICAL PERFORMANCE CURVES







$T_A = +25^\circ\text{C}$ ,  $V_S = \pm 15\text{V}$  unless otherwise noted.



Or, Call Customer Service at 1-800-548-6132 (USA Only)

## TYPICAL PERFORMANCE CURVES (CONT)





$T_A = +25^\circ\text{C}$ ,  $V_S = \pm 15\text{V}$  unless otherwise noted.



For Immediate Assistance, Contact Your Local Salesperson

## TYPICAL PERFORMANCE CURVES (CONT)

$T_A = +25^\circ\text{C}$ ,  $V_S = \pm 15\text{V}$  unless otherwise noted.



### ELECTROSTATIC DISCHARGE SENSITIVITY

Any integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. ESD can cause damage ranging from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet published specifications.

Burr-Brown's standard ESD test method consists of five 1000V positive and negative discharges (100pF in series with  $1.5\text{k}\Omega$ ) applied to each pin.

Failure to observe proper handling procedures could result in small changes to the OPA177's input bias current.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

## APPLICATIONS INFORMATION

The OPA177 is unity-gain stable, making it easy to use and free from oscillations in the widest range of circuitry. Applications with noisy or high impedance power supply lines may require decoupling capacitors close to the device pins. In most cases 0.1 $\mu$ F ceramic capacitors are adequate.

The OPA177 has very low offset voltage and drift. To achieve highest performance, circuit layout and mechanical conditions must be optimized. Offset voltage and drift can be degraded by small thermoelectric potentials at the op amp inputs. Connections of dissimilar metals will generate thermal potential which can mask the ultimate performance of the OPA177. These thermal potentials can be made to cancel by assuring that they are equal in both input terminals.

1. Keep connections made to the two input terminals close together.
2. Locate heat sources as far as possible from the critical input circuitry.
3. Shield the op amp and input circuitry from air currents such as cooling fans.

### OFFSET VOLTAGE ADJUSTMENT

The OPA177 and OPA77 have been laser-trimmed for low offset voltage and drift so most circuits will not require external adjustment. Figure 1 shows the optional connection of an external potentiometer to adjust offset voltage. This adjustment should not be used to compensate for offsets created elsewhere in a system since this can introduce excessive temperature drift.

### INPUT PROTECTION

The inputs of the OPA177 and OPA77 are protected with 500 $\Omega$  series input resistors and diode clamps as shown in the simplified circuit diagram. The inputs can withstand  $\pm 30V$  differential inputs without damage. The protection diodes will, of course, conduct current when the inputs are overdriven. This may disturb the slewing behavior of unity-gain follower applications, but will not damage the op amp.

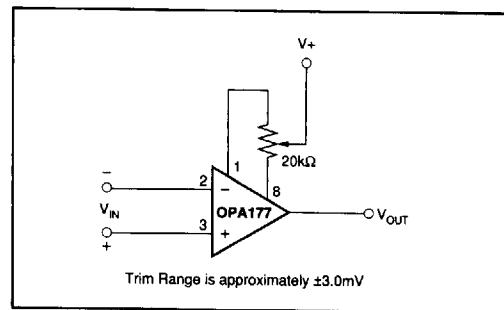
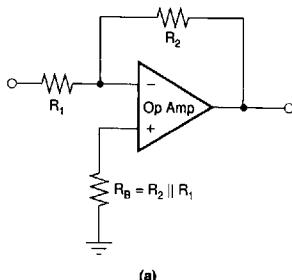
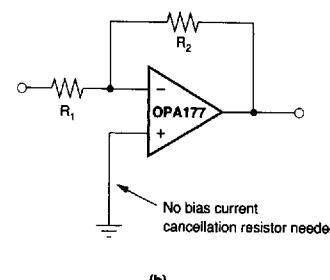



FIGURE 1. Optional Offset Nulling Circuit.


### NOISE PERFORMANCE

The noise performance of the OPA177 and OPA77 is optimized for circuit impedances in the range of 2k $\Omega$  to 50k $\Omega$ . Total noise in an application is a combination of the op amp's input voltage noise and input bias current noise reacting with circuit impedances. For applications with higher source impedance, the OPA627 FET-input op amp will generally provide lower noise. For very low impedance applications, the OPA27 will provide lower noise.


### INPUT BIAS CURRENT CANCELLATION

The input stage base current of the OPA177 is internally compensated with an equal and opposite cancellation current. The resulting input bias current is the difference between the input stage base current and the cancellation current. This residual input bias current can be positive or negative.

When the bias current is cancelled in this manner, the input bias current and input offset current are approximately the same magnitude. As a result, it is not necessary to balance the DC resistance seen at the two input terminals (Figure 2). A resistor added to balance the input resistances may actually increase offset and noise.



Conventional op amp with external bias current cancellation resistor.



OPA177 with no external bias current cancellation resistor.

FIGURE 2. Input Bias Current Cancellation.