

LC²MOS Complete, 12-Bit, 100 kHz, Sampling ADCs

AD7870/AD7870A/AD7875/AD7876

FEATURES

Complete Monolithic 12-Bit ADC with:

2 µs Track/Hold Amplifier

8 µs A/D Converter

On-Chip Reference
Laser-Trimmed Clock
Parallel, Byte and Serial Digital Interface

72 dB SNR at 10 kHz Input Frequency (AD7870,
AD7870A, AD7875)

57 ns Data Access Time
Low Power —60 mW typ
Variety of Input Ranges:

±3 V for AD7870/AD7870A

0 to +5 V for AD7875

±10 V for AD7876

GENERAL DESCRIPTION

The AD7870/AD7870A/AD7875/AD7876 is a fast, complete, 12-bit A/D converter. It consists of a track/hold amplifier, 8 μs successive-approximation ADC, 3 V buried Zener reference and versatile interface logic. The ADC features a self-contained internal clock which is laser trimmed to guarantee accurate control of conversion time. No external clock timing components are required; the on-chip clock may be overridden by an external clock if required.

The parts offer a choice of three data output formats: a single, parallel, 12-bit word; two 8-bit bytes, or serial data. Fast bus access times and standard control inputs ensure easy interfacing to modern microprocessors and digital signal processors.

All parts operate from ± 5 V power supplies. The AD7870 and AD7876 accept input signal ranges of ± 3 V and ± 10 V, respectively, while the AD7875 accepts a unipolar 0 to ± 5 V input range. The parts can convert full power signals up to 50 kHz.

The AD7870/AD7870A/AD7875/AD7876 feature dc accuracy specifications such as linearity, full-scale and offset error. In addition, the AD7870/AD7870A and AD7875 are fully specified for dynamic performance parameters including distortion and signal-to-noise ratio.

The parts are fabricated in Analog Devices' Linear Compatible CMOS (LC²MOS) process, a mixed technology process that combines precision bipolar circuits with low-power CMOS logic. The parts are available in a 24-pin, 0.3 inch-wide, plastic or hermetic dual-in-line package (DIP). The AD7870/AD7870A and AD7875 are available in a 28-pin plastic leaded chip carrier (PLCC), while the AD7876 is available and in a 24-pin small outline (SOIC) package.

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- Complete 12-Bit ADC on a Chip.
 The AD7870/AD7870A/AD7875/AD7876 provides all the functions necessary for analog-to-digital conversion and combines a 12-bit ADC with internal clock, track/hold amplifier and reference on a single chip.
- Dynamic Specifications for DSP Users.
 The AD7870/AD7870A and AD7875 are fully specified and tested for ac parameters, including signal-to-noise ratio, harmonic distortion and intermodulation distortion.
- 3. Fast Microprocessor Interface. Data access times of 57 ns make the parts compatible with modern 8- and 16-bit microprocessors and digital signal processors. Key digital timing parameters are tested and guaranteed over the full operating temperature range.

This is an abridged data sheet. To obtain the most recent version or complete data sheet, call our fax retrieval system at 1-800-446-6212.

AD7870/AD7870A/AD7875/AD7876 — SPECIFICATIONS ($V_{DD}=+5\ V\pm5\%$, $V_{SS}=-5\ V\pm5\%$, AGND = DGND = 0 V, $f_{CLK}=2.5$ MHz external, unless otherwise stated. All Specifications T_{min} to T_{max} unless otherwise noted.)

		AD7870/AD7870A							
Parameter	J, A¹	K, B1	L, C1	S1	T¹	Units	Test Conditions/Comments		
DYNAMIC PERFORMANCE ²	<u> </u>								
Signal to Noise Ratio ³ (SNR)									
@ +25°C	70	70	72	69	69	dB min	$V_{IN} = 10 \text{ kHz Sine Wave, } f_{SAMPLE} = 100 \text{ kHz}$		
T_{\min} to T_{\max}	70	70	71	69	69	dB min	Typically 71.5 dB for $0 < V_{IN} < 50 \text{ kHz}$		
Total Harmonic Distortion (THD)	-80	-80	-80	-78	-78	dB max	$V_{IN} = 10 \text{ kHz Sine Wave, } f_{SAMPLE} = 100 \text{ kHz}$		
Peak Harmonic or Spurious Noise	-80	-80	-80	-78	-78	dB max	Typically -86 dB for $0 < V_{IN} < 50$ kHz $V_{IN} = 10$ kHz, $f_{SAMPLE} = 100$ kHz Typically -86 dB for $0 < V_{IN} < 50$ kHz		
Intermodulation Distortion (IMD)							Typically 60 db for 6 1 Vin 1 50 RHz		
Second Order Terms	-80	-80	-80	-78	-78	dB max	$fa = 9 \text{ kHz}, fb = 9.5 \text{ kHz}, f_{SAMPLE} = 50 \text{ kHz}$		
Third Order Terms	-80	-80	-80	-78	-78	dB max	$fa = 9 \text{ kHz}, fb = 9.5 \text{ kHz}, f_{\text{SAMPLE}} = 50 \text{ kHz}$		
Track/Hold Acquisition Time	2	2	2	2	2	μs max	SAMPLE SO KEE		
DC ACCURACY									
Resolution	12	12	12	12	12	Bits			
Minimum Resolution for which				1					
No Missing Codes are Guaranteed	12	12	12	12	12	Bits			
Integral Nonlinearity	±1/2	±1/2	±1/4	±1/2	±1/2	LSB typ			
Integral Nonlinearity		±1	± 1/2		±1	LSB max			
Differential Nonlinearity		±1	±1		±1	LSB max			
Bipolar Zero Error	±5	±5	±5	±5	±5	LSB max			
Positive Full-Scale Error ⁴	±5	±5	±5	±5	±5	LSB max			
Negative Full-Scale Error ⁴	±5	±5	±5	±5	±5	LSB max			
ANALOG INPUT	†	 		-	 				
Input Voltage Range	±3	±3	±3	±3	±3	Volts			
Input Current	±500	±500	±500	±500	±500	μA max			
REFERENCE OUTPUT	1						· · · · · · · · · · · · · · · · · · ·		
REF OUT @ +25°C	2.99	2.99	2.99	2.99	2.99	V min			
REF COT (E 125 C	3.01	3.01	3.01	3.01	3.01	V max			
REF OUT Tempco	±60	±60	±35	±60	±35	ppm/°C max			
Reference Load Sensitivity (ΔREF OUT/ΔI)	±1	±1	±1	±1	±1	mV max	Reference Load Current Change (0-500 µA)		
10000000 2011 0011011111111111111111111		1				1117 11100	Reference Load Should Not Be Changed		
							During Conversion.		
LOGIC INPUTS									
Input High Voltage, VINH	2.4	2.4	2.4	2.4	2.4	V min	$V_{DD} = 5 V \pm 5\%$		
Input Low Voltage, VINI	0.8	0.8	0.8	0.8	0.8	V max	$V_{DD} = 5 V \pm 5\%$ $V_{DD} = 5 V \pm 5\%$		
Input Current, Inv	±10	±10	±10	±10	±10	μA max	$\begin{vmatrix} V_{DD} - J V - J N \\ V_{DN} = 0 \text{ V to } V_{DD} \end{vmatrix}$		
Input Current (12/8/CLK Input Only)	±10	±10	±10	±10	±10	μA max	$V_{IN} = V_{SS}$ to V_{DD}		
Input Capacitance, C _{IN} ⁵	10	10	10	10	10	pF max	VIN - VSS to VDD		
LOGIC OUTPUTS					 				
Output High Voltage, V _{OH}	4.0	4.0	4.0	4.0	4.0	V min	I _{SOURCE} = 40 μA		
Output Low Voltage, Vol	0.4	0.4	0.4	0.4	0.4	V max	I _{SINK} = 1.6 mA		
DB11-DB0	•••	***	***	"	•••	, 111112	1SINK - 1.0 III.		
Floating-State Leakage Current	±10	±10	±10	±10	±10	μA max			
Floating-State Output Capacitance ⁵	15	15	15	15	15	pF max			
CONVERSION TIME									
External Clock ($f_{CLK} = 2.5 \text{ MHz}$)	8	8	8	8	8	μs max			
Internal Clock	7/9	7/9	7/9	7/9	7/9	μs min/μs max			
POWER REQUIREMENTS	-								
V_{DD}	+5	+5	+5	+5	+5	V nom	±5% for Specified Performance		
$V_{ss.}$	-5	-5	-5	-5	-5	V nom	±5% for Specified Performance		
I _{DD}	13	13	13	13	13	mA max	Typically 8 mA		
I_{ss}	6	6	6	6	6	mA max	Typically 4 mA		
Power Dissipation	95	95	95	95	95	mW max	Typically 60 mW		

NOTES

Temperature ranges are as follows: J, K, L Versions; 0 to +70°C: A, B, C Versions; -25°C to +85°C: S, T Versions; -55°C to +125°C. AD7870A has only J Version. $^{2}V_{IN} (pk-pk) = \pm 3 V.$

³SNR calculation includes distortion and noise components.

⁴Measured with respect to internal reference and includes bipolar offset error.

⁵Sample tested @ +25°C to ensure compliance.

Specifications subject to change without notice.

AD7870/AD7870A/AD7875/AD7876

DC ACCURACY Resolution Resolution for Which No Missing Codes Are Guaranteed 12 12 12 13 13 13 13 13	_		D7875/AD			·	
Resolution	Parameter	K, B ¹	L, C ¹	T ^t	Units	Test Conditions/Comments	
Minimum Resolution for Which No Missing Codes Are Guaranteed 12 12 12 15 15 15 15 15	DC ACCURACY						
No Missing Codes Are Guaranteed 12	Resolution	12	12	12	Bits		
Integral Nonlinearity @ +25°C	Minimum Resolution for Which						
T _{min} to T _{max} (AD7875 Only)	No Missing Codes Are Guaranteed	12	12	12	Bits		
T _{min} to T _{max} (AD7876 Only)		_		_			
Differential Nonlinearity			_				
Unipolar Offset Error (AD7875 Only) ±5 ±5 ±5 £5 £5 £5 £5 £5							
Bipolar Zero Error (AD7876 Only)	•	1 -	1	1 1			
Full-Scale Error at ±25°C2		1	1	1 '			
Full-Scale TC			_	1		1	
Track/Hold Acquisition Time		1 -		1 -	1		
DYNAMIC PERFORMANCE (AD7875 ONLY) Signal-to-Noise Rato* (SNR) (@ + 25°C) 70 71 69 dB min Typically 71.5 dB for 0 < V _{IN} < 50 kHz 70 71 69 dB min dB min Typically 71.5 dB for 0 < V _{IN} < 50 kHz 70 71 69 dB min Typically 71.5 dB for 0 < V _{IN} < 50 kHz 70 71 70 70 71 70 71 70 70		1		1	1	Typical TC is ±20 ppm/°C	
Signal-to-Noise Ratio* (SNR)		2	²	²	μs max		
(a) + 25°C 70							
Total Harmonic Distortion (THD)							
1 max		1				$V_{IN} = 10 \text{ kHz Sine Wave, } f_{SAMPLE} = 100 \text{ kH}$	
Peak Harmonic or Spurious Noise			1	1 '		Typically 71.5 dB for $0 < V_{IN} < 50 \text{ kHz}$	
Peak Harmonic or Spurious Noise -80 -80 -78 dB max Vin 10 kHz, Intermodulation Distortion (IMD)	Total Harmonic Distortion (THD)	-80	-80	-78	dB max	$V_{IN} = 10 \text{ kHz Sine Wave, } f_{SAMPLE} = 100 \text{ kHz}$	
Intermodulation Distortion (IMD) Second Order Terms -80 -80 -78 dB max fa = 9 kHz, fb = 9.5 kHz, f _{SAMPLE} = 50 k ADALOG INPUT AD7875 Input Voltage Range AD7875 Input Voltage Range AD7875 Input Voltage Range -500 500 500 500 400 400 4.0 4.0 4.0 AD815 Input Voltage, V _{IN} = 0.5 kHz, f _{SAMPLE} = 50 k AD7876 Input Voltage Range -78 dB max fa = 9 kHz, fb = 9.5 kHz, f _{SAMPLE} = 50 k AD876 Input Voltage Range -78 dB max fa = 9 kHz, fb = 9.5 kHz, f _{SAMPLE} = 50 k AD876 Input Voltage Range -78 40 to +5 Volts 40 to +5	Desk Hammele or Committee Nation	00				Typically $-86 \text{ dB for } 0 < V_{IN} < 50 \text{ kHz}$	
Intermodulation Distortion (IMD) Second Order Terms	reak Harmonic or Spurious Noise	-80	-80	-78	dB max		
Second Order Terms	Intermedulation Distortion (IMD)					Typically $-86 \text{ dB for } 0 < V_{IN} < 50 \text{ kHz}$	
Third Order Terms			00	70	α _L	6 0111 6 05111 6	
ANALOG INPUT AD7875 Input Voltage Range AD7876 Input Current REFERENCE OUTPUT REF OUT @ +25°C 2.99 2.99 2.99 2.99 2.99 2.99 2.99 2.			1	1	1	$1a = 9 \text{ kHz}, 1b = 9.5 \text{ kHz}, t_{SAMPLE} = 50 \text{ kHz}$	
AD7875 Input Voltage Range AD7876 Input Voltage Range AD7876 Input Current 500 500 500 500 500 500 500 500 500 50		60	-80	-78	ub max	$13 = 9 \text{ kHz}$, $10 = 9.5 \text{ kHz}$, $1_{\text{SAMPLE}} = 50 \text{ kHz}$	
AD7875 Input Current AD7876 Input Voltage Range AD7876 Input Current EFFERENCE OUTPUT REF OUT @ +25°C 2.99 2.99 2.99 2.99 V min V max Ppm/°C max Ppm/°C max Reference Load Sensitivity (ΔREF OUT/ΔI) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1							
AD7876 Input Voltage Range AD7876 Input Current ± 10 ± 10 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ± 600 ■ Δ Nax V min V max Typical Tempco is ± 20 ppm/°C Reference Load Should Not Be Changed During Conversion. LOGIC INPUTS Input High Voltage, V _{INH} Input Low Voltage, V _{INL} Input Current, I _{IN} Input Current, I _{IN} Input Current (12/8/CLK Input Only) Input Capacitance, C _{IN} ⁵ 10 10 10 10 10 10 10 10 10 10 10 10 10							
AD7876 Input Current ### EFERENCE OUTPUT REF OUT @ +25°C ### 25°C ### Supply Suppl							
REFERENCE OUTPUT REF OUT @ +25°C 2.99 2.99 2.99 y min y max Typical Tempco is ±20 ppm/°C Typical Tempco is ±20 ppm/°C Typical Tempco is ±20 ppm/°C Reference Load Should Not Be Changed During Conversion. Typical Tempco is ±20 ppm/°C Reference Load Should Not Be Changed During Conversion. Reference Load Should Not Be Changed During Conversion. Not ppm/°C Reference Load Should Not Be Changed During Conversion. Not ppm/°C							
REF OUT @ +25°C 2.99 2.99 2.99 V min V max Typical Tempco is ±20 ppm/°C Reference Load Sensitivity (ΔREF OUT/ΔI) Typical Tempco is ±20 ppm/°C Reference Load Should Not Be Changed During Conversion. LOGIC INPUTS Input High Voltage, V _{INL} 0.8 0.8 0.8 V min V max V min V v max V v v v v v v v v v v v v v v v v v v v		±600	±600	±600	μA max		
Section Sec							
REF OUT Tempco Reference Load Sensitivity (Δ REF OUT/ Δ I) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	REF OUT @ +25℃						
Reference Load Sensitivity (ΔREF OUT/ΔI)				3.01	V max		
LOGIC INPUTS Input High Voltage, V _{INH} 2.4 2.4 2.4 V min V _{DD} = 5 V ± 5% V max V _{IN} = 0 V to V _{DD} 5 V to V _{DD} 7 V		1		I	ppm/°C max	Typical Tempco is ±20 ppm/°C	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reference Load Sensitivity (ΔREF OUT/ΔI)	- l	-1	-1	mV max	Reference Load Current Change (0-500 μA)	
						Reference Load Should Not Be Changed	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						During Conversion.	
Input Low Voltage, V _{INL} 0.8							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.4	2.4	2.4	V min	$V_{DD} = 5 V \pm 5\%$	
Input Current, I_{IN} Input Current, I_{IN} Input Current ($12/8$ /CLK Input Only) Input Capacitance, C_{IN}^5 LOGIC OUTPUTS Output High Voltage, V_{OH} Output Low Voltage, V_{OL} DB11–DB0 Floating-State Leakage Current Floating-State Output Capacitance ⁵ External Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 8 Internal Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0.8	0.8	0.8	V max		
Input Current (12/8/CLK Input Only) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		±10	±10	±10	μA max		
Input Capacitance, C _{IN} 10 10 10 pF max		±10	±10	±10	μA max		
Output High Voltage, V_{OH} 0.4 0.4 0.4 0.4 V min V_{DH} 1 $I_{SOURCE} = 40 \ \mu A$ 0.4 $I_{SINK} = 1.6 \ mA$ Output Low Voltage, V_{OL} 0.4 0.4 0.4 V max 1 $I_{SINK} = 1.6 \ mA$ Floating-State Leakage Current Floating-State Output Capacitance 15 15 15 pF max CONVERSION TIME External Clock ($f_{CLK} = 2.5 \ MHz$) 8 8 8 8 μ_S max μ_S min/ μ_S max μ_S min/ μ_S max	Input Capacitance, C _{IN} ⁵	10	10	10	pF max	35 55	
Output Low Voltage, V_{OL} 0.4 0.4 V max $I_{SINK} = 1.6 \text{ mA}$ DB11-DB0 Floating-State Leakage Current Floating-State Output Capacitance ⁵ 15 15 15 pF max CONVERSION TIME External Clock $(f_{CLK} = 2.5 \text{ MHz})$ 8 8 8 8 μ s max μ s min/ μ s max Internal Clock	LOGIC OUTPUTS						
Output Low Voltage, V_{OL} 0.4 0.4 V max $I_{SINK} = 1.6 \text{ mA}$ DB11-DB0 Floating-State Leakage Current Floating-State Output Capacitance ⁵ 15 15 15 pF max CONVERSION TIME External Clock $(f_{CLK} = 2.5 \text{ MHz})$ 8 8 8 8 μ s max μ s min/ μ s max Internal Clock	Output High Voltage, VOH	4.0	4.0	4.0	V min	I = 40 a A	
DB11-DB0							
Floating-State Output Capacitance	DB11-DB0					ISINK - 1.0 mm	
Floating-State Output Capacitance ⁵ I5 I5 pF max CONVERSION TIME External Clock (f _{CLK} = 2.5 MHz) Internal Clock 7/9 7/9 7/9 Fmax pF max µs max µs min/µs max	Floating-State Leakage Current	10	10	10	μA max		
CONVERSION TIME External Clock (f _{CLK} = 2.5 MHz) Internal Clock 7/9 7/9 7/9 7/9 8 8 8 8 µs max µs min/µs max	Floating-State Output Capacitance ⁵	15	15	15			
External Clock ($f_{CLK} = 2.5 \text{ MHz}$) 8 8 8 8 μ s max Internal Clock 7/9 7/9 7/9 μ s min/ μ s max	CONVERSION TIME				- '		
Internal Clock 7/9 7/9 7/9 µs min/µs max		8	R	8	ue may		
ms mitty max							
POWER REQUIREMENTS As per AD7870/AD7870A	POWED DECLIDEMENTS		1		he min he nigh		

NOTES

Temperature ranges are as follows: AD7875: K, L Versions, 0 to +70°C; B, C Versions, -40°C to +85°C; T Version, -55°C to +125°C. AD7876: B, C Versions, -50°C to +125°C. sions, -40°C to +85°C; T Version, -55°C to +125°C.

²Includes internal reference error and is calculated after unipolar offset error (AD7875) or bipolar zero error (AD7876) has been adjusted out.

Full-scale error refers to both positive and negative full-scale error for the AD7876.

³Dynamic performance parameters are not tested on the AD7876 but these are typically the same as for the AD7875.

⁴SNR calculation includes distortion and noise components. ⁵Sample tested @ +25°C to ensure compliance.

Specifications subject to change without notice.

AD7870/AD7870A/AD7875/AD7876

TIMING CHARACTERISTICS $^{1, 2}$ ($v_{DD} = +5 \text{ V} \pm 5\%$, $v_{SS} = -5 \text{ V} \pm 5\%$, AGND = DGND = 0 V. See Figures 9, 10, 11 and 12.)

Parameter	Limit at T _{min} , T _{max} (J, K, L, A, B, C Versions)	Limit at T _{min} , T _{max} (S, T Versions)	Units	Conditions/Comments
t ₁	50	50	ns min	CONVST Pulse Width
t ₂	0	0	ns min	CS to RD Setup Time (Mode 1)
t ₃	60	75	ns min	RD Pulse Width
t ₄	0	0	ns min	CS to RD Hold Time (Mode 1)
	70	70	ns max	RD to INT Delay
t ₅ t ₆ ³ t ₇ ⁴	57	70	ns max	Data Access Time after RD
t ₇ +	5	5	ns min	Bus Relinquish Time after RD
,	50	50	ns max	•
t ₈	0	0	ns min	HBEN to RD Setup Time
t ₉	0	0	ns min	HBEN to RD Hold Time
t ₁₀	100	100	ns min	SSTRB to SCLK Falling Edge Setup Time
LII	370	370	ns min	SCLK Cycle Time
t ₁₂ ⁶	135	150	ns max	SCLK to Valid Data Delay. C ₁ = 35 pF
t ₁₃	20	20	ns min	SCLK Rising Edge to SSTRB
••	100	100	ns max	
t ₁₄	10	10	ns min	Bus Relinquish Time after SCLK
• •	100	100	ns max	
t ₁₅	60	60	ns min	CS to RD Setup Time (Mode 2)
t ₁₆	120	120	ns max	CS to BUSY Propagation Delay
t ₁₇	200	200	ns min	Data Setup Time Prior to BUSY
t ₁₈	0	0	ns min	CS to RD Hold Time (Mode 2)
t ₁₉	0	0	ns min	HBEN to CS Setup Time
t ₂₀	0	0	ns min	HBEN to CS Hold Time

NOTES

ABSOLUTE MAXIMUM RATINGS*

V_{SS} to AGND +0.3 V to -7 V
AGND to DGND -0.3 V to V_{DD} +0.3 V
V_{IN} to AGND
REF OUT to AGND
Digital Inputs to DGND -0.3 V to $V_{DD} + 0.3 \text{ V}$
Digital Outputs to DGND0.3 V to V _{DD} +0.3 V
Operating Temperature Range
Commercial (J, K, L Versions - AD7870) 0 to +70°C
Commercial (K, L Versions - AD7875) 0 to +70°C
Industrial (A, B, C Versions – AD7870)25°C to +85°C
Industrial (B, C Versions - AD7875/AD7876)
Extended (S, T Versions)55°C to +125°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10 sec) +300°C
Power Dissipation (Any Package) to +75°C 450 mW
Derates above +75°C by

Figure 1. Load Circuits for Access Time

Figure 2. Load Circuits for Output Float Delay

CAUTION .

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are inserted.

¹Timing specifications in **bold print** are 100% production tested. All other times are sample tested at $+25^{\circ}$ C to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of 5 V) and timed from a voltage level of 1.6 V.

Serial timing is measured with a 4.7 kΩ pull-up resistor on SDATA and SSTRB and a 2 kΩ pull-up on SCLK. The capacitance on all three outputs is 35 pF.

³t6 is measured with the load circuits of Figure 1 and defined as the time required for an output to cross 0.8 V or 2.4 V.

⁴t, is defined as the time required for the data lines to change 0.5 V when loaded with the circuits of Figure 2. SCLK mark/space ratio (measured from a voltage level of 1.6 V) is 40/60 to 60/40.

 $^{^6}$ SDATA will drive higher capacitive loads but this will add to t_{12} since it increases the external RC time constant (4.7 k $\Omega \| C_L$) and hence the time to reach 2.4 V. Specifications subject to change without notice.

^{*}Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AD7870 ORDERING GUIDE

Model ^{1, 2}	Temperature Range	V _{IN} Voltage Range (V)	SNR (dBs)	Integral Nonlinearity (LSB)	Package Option ³
AD7870AJN	0 to +70°C	±3	70 min	± 1/2 typ	N-24
AD7870JN	0 to +70°C	±3	70 min	±1/2 typ	N-24
AD7870KN	0 to +70℃	±3	70 min	±1 max	N-24
AD7870LN	0 to +70℃	±3	72 min	±1/2 max	N-24
AD7870JP	0 to +70°C	±3	70 min	±1/2 typ	P-28A
AD7870KP	0 to +70°C	±3	70 min	±1 max	P-28A
AD7870LP	0 to +70℃	±3	72 min	± 1/2 max	P-28A
AD7870AQ	−25°C to +85°C	±3	70 min	±1/2 typ	Q-24
AD7870BQ	-25°C to +85°C	±3	70 min	±1 max	Q-24
AD7870CQ	-25°C to +85°C	±3	72 min	±1/2 max	Q-24
AD7870SQ4	-55°C to +125°C	±3	69 min	±1/2 typ	Q-24
AD7870TQ⁴	−55°C to +125°C	±3	69 min	±1 max	Q-24

NOTES

AD7875 ORDERING GUIDE

Model ¹	Temperature Range	V _{IN} Voltage Range (V)	SNR (dBs)	Integral Nonlinearity (LSB)	Package Option ²
AD7875KN	0 to +70°C	0 to +5	70 min	±1 max	N-24
AD7875LN	0 to +70°C	0 to +5	72 min	± 1/2 max	N-24
AD7875KR	0 to +70°C	0 to +5	70 min	±1 max	R-24
AD7875KP	0 to +70°C	0 to +5	70 min	±1 max	P-28A
AD7875LP	0 to +70°C	0 to +5	72 min	±1/2 max	P-28A
AD7875BQ	-40°C to +85°C	0 to +5	70 min	±1 max	Q-24
AD7875CQ	-40°C to +85°C	0 to +5	72 min	±1/2 max	Q-24
AD7875TQ ³	-55°C to +125°C	0 to +5	69 min	±1 max	Q-24

NOTES

AD7876 ORDERING GUIDE

Model ¹	Temperature Range	V _{IN} Voltage Range (V)	Integral Nonlinearity (LSB)	Package Option ²	
AD7876BN	-40°C to +85°C	±10	±1 max	N-24	
AD7876CN	-40°C to +85°C	± 10.	±1/2 max	N-24	
AD7876BR	-40°C to +85°C	±10	±1 max	R-24	
AD7876CR	-40°C to +85°C	±10	± 1/2 max	R-24	
AD7876BQ	-40°C to +85°C	±10	±1 max	O-24	
AD7876CQ	-40°C to +85°C	±10	±1/2 max	Q-24	
AD7876TQ ³	-55℃ to +125℃	±10	±1 max	Q-24	

NOTES

¹To order MIL-STD-883, Class B, processed parts, add /883B to part number. Contact local sales office for military data sheet.

²Contact local sales office for LCCC (Leadless Ceramic Chip Carrier) availability.

³N = Narrow Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip. For outline information see Package Information section.

⁴Available to /883B processing only.

¹To order MIL-STD-883, Class B, processed parts, add /883B to part number. Contact local sales office for military data sheet.

²N = Narrow Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC); Q = Cerdip; R = Small Outline IC (SOIC).

For outline information see Package Information section.

³Available to /883B processing only.

¹To order MIL-STD-883, Class B, processed parts, add /883B to part number. Contact local sales office for military data sheet.

²N = Narrow Plastic DIP; Q = Cerdip; R = Small Outline IC (SOIC). For outline

information see Package Information section.

³Available to /883B processing only.

AD7870/AD7870A/AD7875/AD7876

PIN FUNCTION DESCRIPTION

DIP Pin No.	Pin Mnemonic	Function
1	RD	Read. Active low logic input. This input is used in conjunction with $\overline{\text{CS}}$ low to enable the data outputs.
2	BUSY/INT	Busy/Interrupt, Active low logic output indicating converter status. See timing diagrams.
3	CLK	Clock input. An external TTL-compatible clock may be applied to this input pin. Alternatively, tying this pin to V_{SS} enables the internal laser-trimmed clock oscillator.
4	DB11/HBEN	Data Bit 11 (MSB)/High Byte Enable. The function of this pin is dependent on the state of the 12/8/CLK input (see below). When 12-bit parallel data is selected, this pin provides the DB11 output. When byte data is selected, this pin becomes the HBEN logic input. HBEN is used for 8-bit bus interfacing. When HBEN is low, DB7/LOW to DB0/DB8 become DB7 to DB0. With HBEN high, DB7/LOW to DB0/DB8 are used for the upper byte of data (see Table I).
5	DB10/SSTRB	Data Bit 10/Serial Strobe. When 12-bit parallel data is selected, this pin provides the DB10 output. \overline{SSTRB} is an active low open-drain output that provides a strobe or framing pulse for serial data. An external 4.7 k Ω pull-up resistor is required on \overline{SSTRB} .
6	DB9/SCLK	Data Bit 9/Serial Clock. When 12-bit parallel data is selected, this pin provides the DB9 output. SCLK is the gated serial clock output derived from the internal or external ADC clock. If the $12/8$ /CLK input is at -5 V, then SCLK runs continuously. If $12/8$ /CLK is at 0 V, then SCLK is gated off after serial transmission is complete. SCLK is an open-drain output and requires an external 2 k Ω pull-up resistor.
7	DB8/SDATA	Data Bit 8/Serial Data. When 12-bit parallel data is selected, this pin provides the DB8 output. SDATA is an opendrain serial data output which is used with SCLK and \overline{SSTRB} for serial data transfer. Serial data is valid on the falling edge of SCLK while \overline{SSTRB} is low. An external 4.7 k Ω pull-up resistor is required on SDATA.
8-11	DB7/LOW- DB4/LOW	Three-state data outputs which are controlled by \overline{CS} and \overline{RD} . Their function depends on the $12/\overline{8}/CLK$ and HBEN inputs. With $12/\overline{8}/CLK$ high, they are always DB7-DB4. With $12/\overline{8}/CLK$ low or -5 V, their function is controlled by HBEN (see Table I).
12	DGND	Digital Ground. Ground reference for digital circuitry.
13-16	DB3/DB11- DB0/DB8	Three-state data outputs which are controlled by \overline{CS} and \overline{RD} . Their function depends on the $12/8/CLK$ and HBEN inputs. With/12/8/CLK high, they are always DB3-DB0. With $12/8/CLK$ low or -5 V, their function is controlled by HBEN (see Table I).
17	V_{DD}	Positive Supply, +5 V ±5%.
18	AGND	Analog Ground. Ground reference for track/hold, reference and DAC.
19	REF OUT	Voltage Reference Output. The internal 3 V reference is provided at this pin. The external load capability is 500 μ A.
20	V_{IN}	Analog Input. The analog input range is ± 3 V for the AD7870, ± 10 V for the AD7876 and 0 to ± 5 V for the AD7875.
21	V_{ss}	Negative Supply, $-5 \text{ V} \pm 5\%$.
22	12/8/CLK	Three Function Input. Defines the data format and serial clock format. With this pin at +5 V, the output data format is 12-bit parallel only. With this pin at 0 V, either byte or serial data is available and SCLK is not continuous. With this pin at -5 V, byte or serial data is again available but SCLK is now continuous.
23	CONVST	Convert Start. A low to high transition on this input puts the track/hold into its hold mode and starts conversion. This input is asynchronous to the CLK input.
24	CS	Chip Select. Active low logic input. The device is selected when this input is active. With \overline{CONVST} tied low, a new conversion is initiated when \overline{CS} goes low.

HBEN	DB7/LOW	DB6/LOW	DB5/LOW	DB4/LOW	DB3/DB11	DB2/DB10	DB1/DB9	DB0/DB8
HIGH	LOW	LOW	LOW	LOW	DB11 (MSB)	DB10	DB9	DB8
LOW	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0 (LSB)

Table I. Output Data for Byte Interfacing

