renesns

Frequency Generator \& Integrated Buffers for PENTIUM/Pro ${ }^{\text {TM }}$

General Description

The ICS9248-39 generates all clocks required for high speed RISC or CISC microprocessor systems such as Intel PentiumPro or Cyrix. Eight different reference frequency multiplying factors are externally selectable with smooth frequency transitions.

Features include two CPU, six PCI and thirteen SDRAM clocks. Two reference outputs are available equal to the crystal frequency. Plus the IOAPIC output powered by VDDL1. One 48 MHz for USB, and one 24 MHz clock for Super IO. Spread Spectrum built in at $\pm 0.5 \%$ or $\pm 0.25 \%$ modulation to reduce the EMI. Serial programming $I^{2} \mathrm{C}$ interface allows changing functions, stop clock programing and Frequency selection. Additionally, the device meets the Pentium power-up stabilization, which requires that CPU and PCI clocks be stable within 2 ms after power-up. It is not recommended to use I/O dual function pin for the slots (ISA, PIC, CPU, DIMM). The add on card might have a pull up or pull down.

High drive PCICLK and SDRAM outputs typically provide greater than $1 \mathrm{~V} /$ ns slew rate into 30 pF loads. CPUCLK outputs typically provide better than $1 \mathrm{~V} /$ ns slew rate into 20 pF loads while maintaining $50 \pm 5 \%$ duty cycle. The REF and 24 and 48 MHz clock outputs typically provide better than $0.5 \mathrm{~V} /$ ns slew rates into 20 pF .

Block Diagram

0277G-08/04/04

Features

- 3.3 V outputs: SDRAM, PCI, REF, 48/24MHz
- 2.5 V outputs: CPU, IOAPIC
- 20 ohm CPU clock output impedance
- 20 ohm PCI clock output impedance
- Skew from CPU (earlier) to PCI clock - 1.5 to 4 ns , center 2.6 ns.
- No external load cap for $\mathrm{C}_{\mathrm{L}}=18 \mathrm{pF}$ crystals
- ± 175 ps CPU clock skew
- 250ps (cycle to cycle) CPU jitter
- Smooth frequency switch, with selections from 66.8 to 150 MHz CPU.
- $\mathrm{I}^{2} \mathrm{C}$ interface for programming
- 3ms power up clock stable time
- Clock duty cycle 45-55\%.
- 48 pin 300 mil SSOP package
- 3.3 V operation, 5 V tolerant inputs (with series R)
- $<5 n s$ propagation delay SDRAM from Buffer Input

Pin Configuration

48-Pin SSOP

* Internal Pull-up Resistor of 240K to VDD
** Internal Pull-down resistor of 240K to GND

Power Groups

```
VDD1 = REF (0:1), X1, X2
VDD2 = PCICLK_F, PCICLK(0:4)
VDD3 = SDRAM (0:12), supply for PLL core
VDD4 = 24MHz,48MHz
VDDL1 = IOAPIC
VDDL2 = CPUCLK 1, CPUCLK_F
VDD1 = REF (0:1), X1, X2
VDD2 \(=\) PCICLK_F, PCICLK(0:4)
VDD3 \(=\) SDRAM (0:12), supply for PLL core
VDD4 = 24MHz, 48MHz
VDDL1 = IOAPIC
VDDL2 = CPUCLK 1, CPUCLK_F
```


Renesns

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1	VDD1	PWR	Ref (0:2), XTAL power supply, nominal 3.3V
2	REF0	OUT	14.318 Mhz reference clock. This REF output is the STRONGER buffer for ISA BUS loads
	PCI_STOP\# ${ }^{1}$	IN	Halts PCICLK(0:4) clocks at logic 0 level, when input low (In mobile mode, $\mathrm{MODE}=0$)
$\begin{gathered} \hline 3,9,16,22, \\ 33,39,45 \end{gathered}$	GND	PWR	Ground
4	X1	IN	Crystal input, has internal load cap (36pF) and feedback resistor from X2
5	X2	OUT	Crystal output, nominally 14.318 MHz . Has internal load cap (36pF)
6,14	VDD2	PWR	Supply for PCICLK_F and PCICLK (0:4), nominal 3.3V
7	PCICLK_F	OUT	Free running PCI clock not affected by PCI_STOP\# for power management.
	MODE ${ }^{1,2}$	IN	Pin 2 function select pin, $1=$ Desktop Mode, $0=$ Mobile Mode. Latched Input.
8	FS3	IN	Frequency select pin. Latched Input. Internal Pull-down to GND
	PCICLK0	OUT	PCI clock outputs. Syncheronous to CPU clocks with 1-48ns skew (CPU early)
10, 11, 12, 13	PCICLK (1:4)	OUT	PCI clock outputs. Syncheronous to CPU clocks with 1-48ns skew (CPU early)
15	BUFFER IN	IN	Input to Fanout Buffers for SDRAM outputs.
$\begin{gathered} 17,18,20,21, \\ 28,29,31,32, \\ 34,35,37,38 \\ \hline \end{gathered}$	SDRAM (11:0)	OUT	SDRAM clock outputs, Fanout Buffer outputs from BUFFER IN pin (controlled by chipset).
19,30,36	VDD3	PWR	Supply for SDRAM (0:12) and CPU PLL Core, nominal 3.3V.
23	SDATA	IN	Data input for ${ }^{2} \mathrm{C}$ serial input, 5 V tolerant input
24	SCLK	IN	Clock input of ${ }^{2} \mathrm{C}$ input, 5 V tolerant input
25	24 MHz	OUT	24 MHz output clock
	FS1 ${ }^{1,2}$	IN	Frequency select pin. Latched Input.
26	48 MHz	OUT	48 MHz output clock
	FS0 ${ }^{1,2}$	IN	Frequency select pin. Latched Input
27	VDD4	PWR	Power for 24 \& 48MHz output buffers and fixed PLL core.
40	SDRAM_F	OUT	Free running SDRAM clock output. Not affected by CPU_STOP\#
41	CPU_STOP\#	IN	This asynchronous input halts CPUCLK1, IOAPIC \& SDRAM ($0: 11$) at logic " 0 " level when driven low.
42	VDDL2	PWR	Supply for CPU clocks, either 2.5V or 3.3V nominal
43	CPUCLK1	OUT	CPU clock outputs, powered by VDDL2. Low if CPU STOP\#=Low
44	CPUCLK_F	OUT	Free running CPU clock. Not affected by the CPU_STOP\#
46	REF1	OUT	14.318 MHz reference clock.
	FS2 ${ }^{1,2}$	IN	Frequency select pin. Latched Input
47	IOAPIC	OUT	IOAPIC clock output. 14.318 MHz Powered by VDDL1.
48	VDDL1	PWR	Supply for IOAPIC, either 2.5 or 3.3V nominal

Notes:

[^0]
Renesns

Mode Pin - Power Management Input Control

MODE, Pin 7 (Latched Input)	Pin 2
0	PCI_STOP\#
(Input)	

Functionality

$V_{D D} 1,2,3=3.3 \mathrm{~V} \pm 5 \%, \mathrm{~V}_{\mathrm{DLL}} 1,2=2.5 \mathrm{~V} \pm 5 \%$ or $3.3 \pm 5 \%, \mathrm{TA}=0$ to $70^{\circ} \mathrm{C}$ Crystal (X1, X2) $=14.31818 \mathrm{MHz}$

FS3	FS2	FS1	FS0	CPU (MHz)	PCICLK (MHz)
1	1	1	1	133	$33.3(\mathrm{CPU} / 4)$
1	1	1	0	124	$31(\mathrm{CPU} / 4)$
1	1	0	1	150	$37.5(\mathrm{CPU} / 4)$
1	1	0	0	140	$35(\mathrm{CPU} / 4)$
1	0	1	1	105	$35(\mathrm{CPU} 3)$
1	0	1	0	110	$36.67(\mathrm{CPU} / 3)$
1	0	0	1	115	$38.33(\mathrm{CPU} / 3)$
1	0	0	0	120	$40.00(\mathrm{CPU} / 3)$
0	1	1	1	100.3	$33.43(\mathrm{CPU} / 3)$
0	1	1	0	133	$44.33(\mathrm{CPU} / 3)$
0	1	0	1	112	$37.33(\mathrm{CPU} / 3)$
0	1	0	0	103	$34.33(\mathrm{CPU} / 2)$
0	0	1	1	66.8	$33.40(\mathrm{CPU} / 2)$
0	0	1	0	83.3	$41.65(\mathrm{CPU} / 2)$
0	0	0	1	75	$37.5(\mathrm{CPU} / 2)$
0	0	0	0	124	$41.33(\mathrm{CPU} / 3)$

Renesns

Serial Configuration Command Bitmap

Byte0: Functionality and Frequency Select Register (default = 0)

Bit	Description			PWD
Bit 7	$0- \pm 0.25 \%$ Spread Spectrum Modulation 1- $\pm 0.5 \%$ Spread Spectrum Modulation			0
	Bit2 Bit6 Bit5 Bit4	CPU clock	PCI	Note1
$\begin{aligned} & \text { Bit 2, } \\ & \text { Bit 6:4 } \end{aligned}$	$\begin{aligned} & 0111 \\ & 0110 \\ & \hline \end{aligned}$	$\begin{gathered} 100.3 \\ 133 \\ \hline \end{gathered}$	$\begin{aligned} & 33.43(\mathrm{CPU} / 3) \\ & 44.33(\mathrm{CPU} / 3) \\ & \hline \end{aligned}$	
	$\begin{aligned} & 0101 \\ & 0100 \end{aligned}$	$\begin{aligned} & \hline 112 \\ & 103 \end{aligned}$	$\begin{aligned} & \hline 37.33 \text { (CPU/3) } \\ & 34.3 \text { (CPU/3) } \end{aligned}$	
	$\begin{aligned} & 0011 \\ & 0010 \end{aligned}$	$\begin{aligned} & 66.8 \\ & 83.3 \end{aligned}$	$\begin{aligned} & 33.4 \text { (CPU/2) } \\ & 41.65(\mathrm{CPU} / 2) \end{aligned}$	
	$\begin{aligned} & 0001 \\ & 0000 \end{aligned}$	$\begin{gathered} 75 \\ 124 \end{gathered}$	$\begin{aligned} & 37.5 \text { (CPU/2) } \\ & 41.33 \text { (CPU/3) } \end{aligned}$	
	$\begin{aligned} & \hline 1111 \\ & 1110 \\ & \hline \end{aligned}$	$\begin{array}{r} 133 \\ 124 \\ \hline \end{array}$	$\begin{aligned} & \hline 33.25(\mathrm{CPU} / 4) \\ & 31.00(\mathrm{CPU} / 4) \\ & \hline \end{aligned}$	
	$\begin{aligned} & \hline 1101 \\ & 1100 \\ & \hline \end{aligned}$	$\begin{aligned} & 150 \\ & 140 \\ & \hline \end{aligned}$	$\begin{aligned} & 37.50(\mathrm{CPU} / 4) \\ & 35.00(\mathrm{CPU} / 4) \\ & \hline \end{aligned}$	
	$\begin{aligned} & 1011 \\ & 1010 \\ & \hline \end{aligned}$	$\begin{aligned} & 105 \\ & 110 \\ & \hline \end{aligned}$	$\begin{aligned} & 35.00(\mathrm{CPU} / 3) \\ & 36.67(\mathrm{CPU} / 3) \\ & \hline \end{aligned}$	
	$\begin{aligned} & \hline 1001 \\ & 1000 \end{aligned}$	$\begin{aligned} & \hline 115 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 38.33(\mathrm{CPU} / 3) \\ & 40.00(\mathrm{CPU} / 3) \end{aligned}$	
Bit 3	0 - Frequency is sel Inputs 1 - Frequency is sel	ed by hardw ed by Bit 6:4	select, Latched ove)	0
Bit 1	0 - Normal 1 - Spread Spectrum	Enabled (Cen	Spread)	0
Bit 0	0 - Running 1- Tristate all output			0

Note 1. Default at Power-up will be for latched logic inputs to define frequency. Bits $4,5,6$ are default to 000, and if bit 3 is written to a 1 to use Bits $6: 4$, then these should be defined to desired frequency at same write cycle.

Note: PWD = Power-Up Default

Renesns

Byte 1: CPU, Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin \#	PWD	Description
Bit 7	-	X	Latched FS2\#
Bit 6	-	1	(Reserved)
Bit 5	-	1	(Reserved)
Bit 4	-	1	(Reserved)
Bit 3	40	1	SDRAM12 (Act/Inact)
Bit 2	-	1	(Reserved)
Bit 1	43	1	CPUCLK1 (Act/Inact)
Bit 0	44	1	CPUCLK_F (Act/Inact)

Byte 2: PCI Active/Inactive Register (1 = enable, $0=$ disable)

Bit	Pin \#	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	7	1	PCICLK_F (Act/Inact)
Bit 5	-	1	(Reserved)
Bit 4	13	1	PCICLK4 (Act/Inact)
Bit 3	12	1	PCICLK3 (Act/Inact)
Bit 2	11	1	PCICLK2 (Act/Inact)
Bit 1	10	1	PCICLK1 (Act/Inact)
Bit 0	8	1	PCICLK0 (Act/Inact)

Byte 3: SDRAM Active/Inactive Register ($1=$ enable, $0=$ disable)

Bit	Pin \#	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	-	X	Latched FS0\#
Bit 5	26	1	48 MHz (Act/Inact)
Bit 4	25	1	24 MHz (Act/Inact)
Bit 3	-	1	(Reserved)
Bit 2	$21,20,18,17$	1	SDRAM (8:11) (Active/Inactive)
Bit 1	$32,31,29,28$	1	SDRAM (4:7) (Active/Inactive)
Bit 0	$38,37,35,34$	1	SDRAM (0:3) (Active/Inactive)

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.
2. Latched Frequency Selects (FS\#) will be inverted logic load of the input frequency select pin conditions.

Renesns

Byte 4: Reserved Active/Inactive Register (1 = enable, 0 = disable)

Bit	Pin \#	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	-	1	(Reserved)
Bit 5	-	1	(Reserved)
Bit 4	-	1	(Reserved)
Bit 3	-	X	Latched FS1\#
Bit 2	-	1	(Reserved)
Bit 1	-	X	Latched FS3\#
Bit 0	-	1	(Reserved)

Byte 5: Peripheral Active/Inactive Register (1 = enable, $0=$ disable)

Bit	Pin \#	PWD	Description
Bit 7	-	1	(Reserved)
Bit 6	-	1	(Reserved)
Bit 5	-	1	(Reserved)
Bit 4	47	1	IOAPIC0 (Act/Inact)
Bit 3	-	1	(Reserved)
Bit 2	-	1	(Reserved)
Bit 1	46	1	REF1 (Act/Inact)
Bit 0	2	1	REF0 (Act/Inact)

Notes:

1. Inactive means outputs are held LOW and are disabled from switching.
2. Latched Frequency Selects (FS\#) will be inverted logic load of the input frequency select pin conditions.

Renesns

Absolute Maximum Ratings

Supply Voltage	5.5 V
Logic Inputs	GND -0.5 V to VDD +0.5 V
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Case Temperature	$115^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDL}}=3.3 \mathrm{~V}+/-5 \%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{H}		2		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		$\mathrm{V}_{\text {SS }}-0.3$		0.8	V
Input High Current	I_{IH}	$\mathrm{V}_{1 N}=\mathrm{V}_{\text {D }}$		0.1	5	mA
Input Low Current	$\mathrm{I}_{\text {IL1 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$; Inputs with no pull-up resistors	-5	2.0		mA
Input Low Current	$\mathrm{I}_{1 L 2}$	$\mathrm{V}_{1 \mathrm{IN}}=0 \mathrm{~V}$; Inputs with pull-up resistors	-200	-100		mA
Operating Supply Current	$\mathrm{I}_{\text {DD3.30P66 }}$	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$; Select @ 66MHz		146	180	mA
	$\mathrm{I}_{\text {DD3.30P100 }}$	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$; Select @ 100MHz		174		
Input frequency	F_{i}	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$;	12	14.318	16	MHz
Input Capacitance ${ }^{1}$	$\mathrm{Cl}_{\text {IN }}$	Logic Inputs			5	pF
	$\mathrm{C}_{\mathrm{INX}}$	X1 \& X2 pins	27	36	45	pF
CIk Stabilization ${ }^{1}$	$\mathrm{T}_{\text {STAB }}$	From $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ to 1\% target Freq.			3	ms

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C}$; Supply Voltage $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DDL}}=2.5 \mathrm{~V}+/-5 \%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating						
Supply Current	$\mathrm{I}_{\text {DD2.5OP66 }}$	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} ;$ Select @ 66.8 MHz		4	72	mA
	$\mathrm{I}_{\text {DD2.50P100 }}$	$\mathrm{C}_{\mathrm{L}}=0 \mathrm{pF} ;$ Select @ 100 MHz		6	100	
Skew1	$\mathrm{I}_{\text {CPUPPCI }}$	$\mathrm{V}_{\mathrm{T}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{TL}}=1.25 \mathrm{~V}$	1.5	2.5	4	ns

[^1]
Renesns

Electrical Characteristics - CPUCLK

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DDL}}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 2 \mathrm{~B}}$	$\mathrm{I}_{\mathrm{OH}}=-12.0 \mathrm{~mA}$	2	2.23		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 2 \mathrm{~B}}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.32	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 2 \mathrm{~B}}$	$\mathrm{~V}_{\mathrm{OH}}=1.7 \mathrm{~V}$		-32	-19	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 2 \mathrm{~B}}$	$\mathrm{~V}_{\mathrm{OL}}=0.7 \mathrm{~V}$	19	25		mA
Rise Time	$\mathrm{t}_{\mathrm{r} 2 \mathrm{~B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		1.48	1.6	ns
Fall Time	$\mathrm{t}_{\mathrm{f} 2 \mathrm{~B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}$				
Dut $=0.4 \mathrm{~V}$		1.25	1.6	ns		
Skew	$\mathrm{d}_{\mathrm{t} 2 \mathrm{~B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	45	45	55	$\%$
Jitter, Cycle-to-cycle	$\mathrm{t}_{\mathrm{jcyc}-\mathrm{cyc} 2 \mathrm{~B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$		125	175
Jitter, One Sigma	$\mathrm{t}_{\mathrm{j} 1 \mathrm{~s} 2 \mathrm{~B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	ps			
Jitter, Absolute	$\mathrm{t}_{\mathrm{jabs2B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	225	250	ps	

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DLL}}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{I}_{\mathrm{OH}}=-11 \mathrm{~mA}$	2.4	3.05		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 1}$	$\mathrm{I}_{\mathrm{OL}}=9.4 \mathrm{~mA}$		0.17	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 1}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-52	-22	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 1}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	25	40		mA
Rise Time 1	$\mathrm{t}_{\mathrm{r} 1}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		2	2	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 1}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.65	2	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	49	55	$\%$
Skew 1	$\mathrm{t}_{\mathrm{sk} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		240	500	ps
Jitter, Cycle-to-cycle	$\mathrm{t}_{\mathrm{jcyc}-\mathrm{cyc} 2 \mathrm{~B}}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		210	250	ps
Jitter, One Sigma 1	$\mathrm{t}_{\mathrm{j} 1 \mathrm{~s} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		18	150	ps
Jitter, Absolute 1	$\mathrm{t}_{\mathrm{jabs} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	-500	90	500	ps

[^2]
Renesns

Electrical Characteristics - SDRAM

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DDL}}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{I}_{\mathrm{OH}}=-28 \mathrm{~mA}$	2.4	2.9		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 3}$	$\mathrm{I}_{\mathrm{OL}}=23 \mathrm{~mA}$		0.4	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 3}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-77	-54	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 3}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	41	41		mA
Rise Time	$\mathrm{T}_{\mathrm{r} 3}{ }^{1}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		1.5	2	ns
Fall Time	$\mathrm{T}_{\mathrm{f} 3}{ }^{1}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.8	2	ns
Duty Cycle	$\mathrm{D}_{\mathrm{t} 3}{ }^{1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	49.5	55	$\%$
Skew ${ }^{1}$	$\mathrm{~T}_{\mathrm{sk} 1}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		190	500	ps
Propagation Delay	Tprop	$\mathrm{VT}=1.5 \mathrm{~V}$		3	5	ns

${ }^{1}$ Guarenteed by design, not 100% tested in production.

Electrical Characteristics - IOAPIC

$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DDL}}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 4 \mathrm{~B}}$	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2	2.12		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL4B}}$	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.32	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 4 \mathrm{~B}}$	$\mathrm{~V}_{\mathrm{OH}}=1.7 \mathrm{~V}$		-23	-19	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL4B}}$	$\mathrm{~V}_{\mathrm{OL}}=0.7 \mathrm{~V}$	19	25		mA
Rise Time 1	$\mathrm{~T}_{\mathrm{r} 4 \mathrm{~B}}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		1.45	2	ns
Fall Time 1	$\mathrm{~T}_{\mathrm{f4B}}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.3	2	ns
Duty Cycle 1	$\mathrm{D}_{\mathrm{t4B}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	45	51	55	$\%$
Jitter, One Sigma 1	$\mathrm{~T}_{\mathrm{j} 1 \mathrm{~s} 4 \mathrm{~B}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$		0.2	0.5	ns
Jitter, Absolute 1	$\mathrm{~T}_{\mathrm{jabs4B}}$	$\mathrm{~V}_{\mathrm{T}}=1.25 \mathrm{~V}$	-1	0.5	1	ns

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Renesns

Electrical Characteristics - 24MHz, 48MHz, REF(0:1)
$\mathrm{T}_{\mathrm{A}}=0-70^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}+/-5 \%, \mathrm{~V}_{\mathrm{DDL}}=2.5 \mathrm{~V}+/-5 \% ; \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	$\mathrm{V}_{\mathrm{OH} 5}$	$\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	2.4	2.73		V
Output Low Voltage	$\mathrm{V}_{\mathrm{OL} 5}$	$\mathrm{I}_{\mathrm{OL}}=9 \mathrm{~mA}$		0.23	0.4	V
Output High Current	$\mathrm{I}_{\mathrm{OH} 5}$	$\mathrm{~V}_{\mathrm{OH}}=2.0 \mathrm{~V}$		-32	-22	mA
Output Low Current	$\mathrm{I}_{\mathrm{OL} 5}$	$\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}$	16	28		mA
Rise Time 1	$\mathrm{t}_{\mathrm{r} 5}$	$\mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		1.8	4	ns
Fall Time 1	$\mathrm{t}_{\mathrm{f} 5}$	$\mathrm{~V}_{\mathrm{OH}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		1.8	4	ns
Duty Cycle 1	$\mathrm{~d}_{\mathrm{t} 5}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	45	51	55	$\%$
Jitter, One Sigma 1	$\mathrm{t}_{\mathrm{j} 1 \mathrm{~s} 5}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$		0.2	0.5	ns
Jitter, Absolute 1	$\mathrm{t}_{\mathrm{jabs} 5}$	$\mathrm{~V}_{\mathrm{T}}=1.5 \mathrm{~V}$	-1	0.5	1	ns

${ }^{1}$ Guaranteed by design, not 100% tested in production.

Renesns

General $I^{2} C$ serial interface information

The information in this section assumes familiarity with $I^{2} C$ programming. For more information, contact ICS for an $I^{2} \mathrm{C}$ programming application note.

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D2 ${ }_{(\mathrm{H})}$
- ICS clock will acknowledge
- Controller (host) sends a dummy command code
- ICS clock will acknowledge
- Controller (host) sends a dummy byte count
- ICS clock will acknowledge
- Controller (host) starts sending first byte (Byte 0) through byte 5
- ICS clock will acknowledge each byte one at a time.
- Controller (host) sends a Stop bit

How to Write:	
Controller (Host)	ICS (Slave/Receiver)
Start Bit	
Address D2 (H)	
Dummy Command Code	ACK
Dummy Byte Count	ACK
Byte 0	ACK
Byte 1	ACK
Byte 2	
Byte 3	ACK
Byte 4	ACK
Byte 5	ACK
	ACK
Stop Bit	ACK

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the read address D3 ${ }_{(\mathrm{H})}$
- ICS clock will acknowledge
- ICS clock will send the byte count
- Controller (host) acknowledges
- ICS clock sends first byte (Byte 0) through byte 5
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a stop bit

How to Read:	
Controller (Host)	ICS (Slave/Receiver)
Start Bit	
Address $_{\text {D3 }_{(H)}}$	
	ACK
ACK	Byte Count
	Byte 0
ACK	Byte 1
	Byte 2
ACK	Byte 3
ACK	
ACK	Byte 4
	Byte 5
ACK	
ACK	
Stop Bit	

Notes:

1. The ICS clock generator is a slave/receiver, $I^{2} C$ component. It can read back the data stored in the latches for verification. Read-Back will support Intel PIIX4 "Block-Read" protocol.
2. The data transfer rate supported by this clock generator is 100 K bits $/ \mathrm{sec}$ or less (standard mode)
3. The input is operating at 3.3 V logic levels.
4. The data byte format is 8 bit bytes.
5. To simplify the clock generator $l^{2} \mathrm{C}$ interface, the protocol is set to use only "Block-Writes" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued.
6. At power-on, all registers are set to a default condition, as shown.

0277G-08/04/04

Renesns

CPU_STOP\# Timing Diagram

CPU_STOP\# is an asychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. CPU_STOP\# is synchronized by the ICS9248-39. The minimum that the CPU clock is enabled (CPU_STOP\# high pulse) is 100 CPU clocks. All other clocks will continue to run while the CPU clocks are disabled. The CPU clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPU clock on latency is less than 4 CPU clocks and CPU clock off latency is less than 4 CPU clocks.

Notes:

1. All timing is referenced to the internal CPU clock.
2. CPU_STOP\# is an asynchronous input and metastable conditions may exist. This signal is synchronized to the CPU clocks inside the ICS9248-39.
3. IOAPIC output is Stopped Glitch Free by CPUSTOP\# going low.
4. SDRAM-F output is controlled by Buffer in signal, not affected by the ICS9248-39 CPU_STOP\# signal. SDRAM (0:11) are controlled as shown.
5. All other clocks continue to run undisturbed.

Renesns

PCI_STOP\# Timing Diagram

PCI_STOP\# is an asynchronous input to the ICS9248-39. It is used to turn off the PCICLK (0:4) clocks for low power operation. PCI_STOP\# is synchronized by the ICS9248-39 internally. The minimum that the PCICLK (0:4) clocks are enabled (PCI_STOP\# high pulse) is at least 10 PCICLK ($0: 4$) clocks. PCICLK ($0: 4$) clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK ($0: 4$) clock on latency cycles are only one rising PCICLK clock off latency is one PCICLK clock.

Notes:

1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248 device.)
2. PCI_STOP\# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized inside the ICS9248.
3. All other clocks continue to run undisturbed.
4. CPU_STOP\# is shown in a high (true) state.

Renesns

Shared Pin Operation Input/Output Pins

The I/O pins designated by (input/output) on the ICS924839 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5 -bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads.

To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period.

Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor.

Fig. 1

Renesns

General Layout Precautions:

1) Use a ground plane on the top layer of the PCB in all areas not used by traces.
2) Make all power traces and vias as wide as possible to lower inductance.

Notes:
1 All clock outputs should have series terminating resistor. Not shown in all places to improve readibility of diagram
2 Optional EMI capacitor should be used on all CPU, SDRAM, and PCI outputs.
3 Optional crystal load capacitors are recommended.

CapacitorValues:

C1, C2 : Crystal load values determined by user
C3:100pF ceramic
All unmarked capacitors are $0.01 \mu \mathrm{~F}$ ceramic

Renesns

SYMBOL	COMMON DIMENSIONS			VARIATIONS	D			N
	MIN.	NOM.	MAX.		MIN.	NOM.	MAX.	
A	. 095	. 102	. 110	AC	. 620	. 625	. 630	48
A1	. 008	. 012	. 016	"For current dimensional specifications, see JEDEC 95."				
A2	. 087	. 090	. 094					
B	. 008	-	. 0135					
C	. 005	-	. 0085					
D	See Variations							
E	. 291	. 295	. 299					
e	0.025 BSC							
H	. 395	-	. 420					
h	. 010	. 013	. 016					
L	. 020	-	. 040					
N	See Variations							
\propto	0°	-	8°					

48 Pin 300 mil SSOP Package

Ordering Information

ICS9248yF-39LF-T

Example:

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: 1: Internal Pull-up Resistor of 240 K to 3.3 V on indicated inputs
 2: Bidirectional input/output pins, input logic levels are latched at internal power-on-reset. Use 10Kohm resistor to program logic Hi to VDD or GND for logic low.
 0277G-08/04/04

[^1]: ${ }^{1}$ Guaranteed by design, not 100% tested in production.

[^2]: ${ }^{1}$ Guaranteed by design, not 100% tested in production.

