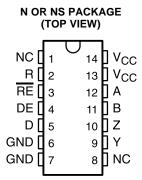


## DIFFERENTIAL DRIVER AND RECEIVER PAIR

Check for Samples: SN75ALS181


#### **FEATURES**

- Meets TIA/EIA-422-B, TIA/EIA-485-A, and CCITT Recommendations V.11 and X.27
- Low Supply-Current Requirements...
  30 mA Max
- Driver Output Capacity...±60 mA
- Thermal Shutdown Protection
- Driver Common-Mode Output Voltage Range of –7 V to 12 V
- Receiver Input Impedance...12 kΩ Min
- Receiver Input Sensitivity...±200 mV
- Receiver Input Hysteresis...60 mV Typ
- Receiver Common-Mode Input Voltage Range of ±12 V
- Operates From Single 5-V Supply
- Glitch-Free Power-Up and Power-Down Protection

#### DESCRIPTION

The SN75ALS181 is a differential driver and receiver pair designed for bidirectional data communication on multipoint bus transmission lines. The design provides for balanced transmission lines and meets TIA/EIA-422-B and TIA/EIA-485-A, and CCITT recommendations V.10, V.11, X.26, and X.27.

The SN75ALS181 combines a 3-state differential line driver and a differential-input line receiver that operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be connected together externally to function as a direction control. The driver differential outputs and the receiver differential inputs are connected to separate pins for greater flexibility and are designed to offer minimum loading to the bus when the driver is disabled or  $V_{\rm CC} = 0$ . These ports feature wide positive and negative common-mode voltage changes, making the device suitable for party-line applications.



N.C. - No internal connection

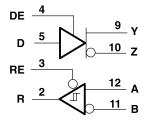


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



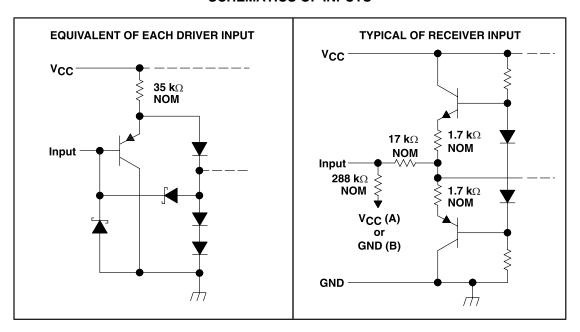
#### **FUNCTION TABLES**

#### **Each Driver**

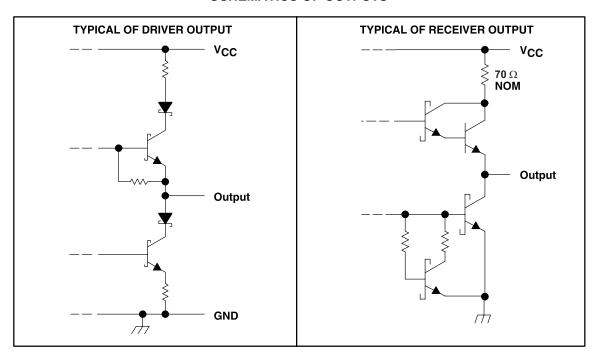

| INPUTS | ENABLE | OUTPUTS |   |  |  |
|--------|--------|---------|---|--|--|
| D      | DE     | Y       | Z |  |  |
| Н      | Н      | Н       | L |  |  |
| L      | Н      | L       | Н |  |  |
| X      | L      | Z       | Z |  |  |

## Each Receiver(1)

| DIFFERENTIAL<br>A-B                                     | ENABLE<br>RE | OUTPUT<br>R |
|---------------------------------------------------------|--------------|-------------|
| V <sub>ID</sub> ≥ 0.2 V                                 | L            | Н           |
| $-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$ | L            | ?           |
| V <sub>ID</sub> ≤ -0.2 V                                | L            | L           |
| X                                                       | Н            | Z           |


(1) H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

## **LOGIC DIAGRAM (POSITIVE LOGIC)**






#### **SCHEMATICS OF INPUTS**



### **SCHEMATICS OF OUTPUTS**





## **ABSOLUTE MAXIMUM RATINGS**(1)

over operating free-air temperature range (unless otherwise noted)

|                  |                                                              |                          | MIN | MAX | UNIT   |  |  |
|------------------|--------------------------------------------------------------|--------------------------|-----|-----|--------|--|--|
| $V_{CC}$         | Supply voltage range (2)                                     | Supply voltage range (2) |     |     |        |  |  |
|                  | Input voltage range                                          | D, DE, and RE inputs     |     | 7   | V      |  |  |
|                  | Output voltage range                                         | Driver                   | -9  | 14  | V      |  |  |
|                  | Input voltage range                                          | Receiver                 | -14 | 14  | V      |  |  |
|                  | Receiver differential input voltage range (3)                |                          | -14 | 14  | V      |  |  |
| 0                | Declare the world in a decree (4)(5)                         | N package                |     | 80  | 90 444 |  |  |
| $\theta_{JA}$    | Package thermal impedance (4)(5)                             | NS package               |     | 76  | °C/W   |  |  |
|                  | Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds |                          |     | 260 | °C     |  |  |
| T <sub>stg</sub> | Storage temperature range                                    |                          | -65 | 150 | °C     |  |  |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential input voltage, are with respect to network ground terminal.

(3) Differential input voltage is measured at the noninverting terminal with respect to the inverting terminal.

(5) The package thermal impedance is calculated in accordance with JESD 51-7.

#### RECOMMENDED OPERATING CONDITIONS

|                 |                                          |               | MIN  | NOM | MAX  | UNIT |
|-----------------|------------------------------------------|---------------|------|-----|------|------|
| V <sub>CC</sub> | Supply voltage                           |               | 4.75 | 5   | 5.25 | V    |
| $V_{OC}$        | Common-mode output voltage (1)           | Driver        | -7   |     | 12   | V    |
| V <sub>IC</sub> | Common-mode input voltage <sup>(1)</sup> | Receiver      | -12  |     | 12   | V    |
| V <sub>IH</sub> | High-level input voltage                 | D, DE, and RE | 2    |     |      | V    |
| V <sub>IL</sub> | Low-level input voltage                  | D, DE, and RE |      |     | 0.8  | V    |
| $V_{ID}$        | Differential input voltage               |               |      |     | ±12  | V    |
|                 | High lavel autout avenue                 | Driver        |      |     | -60  | mA   |
| IOH             | High-level output current                | Receiver      |      |     | -400 | μΑ   |
|                 | Law Investment comment                   | Driver        |      |     | 60   | ^    |
| I <sub>OL</sub> | Low-level output current                 | Receiver      |      |     | 8    | mA   |
| T <sub>A</sub>  | Operating free-air temperature           |               | 0    |     | 70   | °C   |

(1) The algebraic convention, where the less positive (more negative) limit is designated as minimum, is used in this table for common-mode output voltage level only.

Product Folder Links: SN75ALS181

<sup>(4)</sup> Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.



#### **Driver Section**

#### **ELECTRICAL CHARACTERISTICS**

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                   | PARAMETER                                             | TEST CO                                              | MIN              | TYP <sup>(1)</sup>   | MAX  | UNIT |    |
|-------------------|-------------------------------------------------------|------------------------------------------------------|------------------|----------------------|------|------|----|
| V <sub>IK</sub>   | Input clamp voltage                                   | I <sub>I</sub> = -18 mA                              |                  |                      | -1.5 | V    |    |
| Vo                | Output voltage                                        | I <sub>O</sub> = 0                                   |                  | 0                    |      | 6    | V  |
| $ V_{OD1} $       | Differential output voltage                           | I <sub>O</sub> = 0                                   |                  | 1.5                  |      | 6    | V  |
|                   |                                                       | V <sub>CC</sub> = 5 V ,                              |                  | 1/2 V <sub>OD1</sub> |      |      |    |
| $ V_{OD2} $       | Differential output voltage                           | $R_L = 100 \Omega$                                   | See Figure 1     | 2                    |      |      | V  |
|                   |                                                       | $R_L = 54 \Omega$                                    |                  | 1.5                  | 2.3  | 5    |    |
| V <sub>OD3</sub>  | Differential output voltage                           | $V_{\text{test}} = -7 \text{ V to } 12 \text{ V},$   | See Figure 2     | 1.5                  |      | 5    | V  |
| $\Delta  V_{OD} $ | Change in magnitude of differential output voltage    | $R_L = 54 \Omega \text{ or } 100 \Omega,$            | See Figure 1     |                      |      | ±0.2 | V  |
| V                 | Common mode output voltage                            | $R_1 = 54 \Omega \text{ or } 100 \Omega,$ See Figure | Soo Figure 1     |                      |      | 3    | V  |
| V <sub>oc</sub>   | Common mode output voltage                            | KL = 54 12 01 100 12,                                | See Figure 1     |                      |      | -1   | V  |
| Δ V <sub>OC</sub> | Change in magnitude of common-mode output voltage (2) | $R_L = 54 \Omega \text{ or } 100 \Omega,$            | See Figure 1     |                      |      | ±0.2 | V  |
| $I_{OZ}$          | High-impedance-state output current                   | $V_O = -7 \text{ V to } 12 \text{ V}^{(3)}$          |                  |                      |      | ±100 | μΑ |
| I <sub>IH</sub>   | High-level input current                              | $V_{IH} = 2.4 \text{ V}$                             |                  |                      |      | 20   | μΑ |
| I <sub>IL</sub>   | Low-level input current                               | $V_{IL} = 0.4 V$                                     |                  |                      |      | -100 | μΑ |
|                   |                                                       | $V_O = -7 V$                                         |                  |                      | -250 |      |    |
|                   | Chart aircuit autaut aurrent                          | $V_O = V_{CC}$                                       |                  |                      | 250  | mA   |    |
| los               | Short circuit output current                          | V <sub>O</sub> = 12 V                                |                  |                      | 250  | 250  |    |
|                   |                                                       | V <sub>O</sub> = 0 V                                 |                  |                      | -150 |      |    |
| 1                 | Supply current (total package)                        | No load                                              | Outputs enabled  |                      | 21   | 30   | mΛ |
| I <sub>CC</sub>   | Supply current (total package)                        | INU IUau                                             | Outputs disabled |                      | 14   | 21   | mA |

#### **SWITCHING CHARACTERISTICS**

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                    | PARAMETER                                    | 7                    | TEST CONDITIO          | NS           | MIN | TYP <sup>(1)</sup> | MAX | UNIT |
|--------------------|----------------------------------------------|----------------------|------------------------|--------------|-----|--------------------|-----|------|
| t <sub>dD</sub>    | Differential output delay time, tdDH or tdDL | $R_L = 54 \Omega$ ,  | $C_L = 50 \text{ pF},$ | See Figure 3 | 9   | 13                 | 20  | ns   |
| t <sub>sk(p)</sub> | Pulse skew ( tdDH - tdDL )                   | $R_L = 54 \Omega$ ,  | $C_L = 50 \text{ pF},$ | See Figure 3 |     | 1                  | 8   | ns   |
| t <sub>t</sub>     | Differential output transition time          | $R_L = 54 \Omega$ ,  | $C_L = 50 \text{ pF},$ | See Figure 3 | 3   | 10                 | 16  | ns   |
| t <sub>PZH</sub>   | Output enable time to high level             | $R_L = 110 \Omega$ , | See Figure 4           |              |     | 36                 | 53  | ns   |
| t <sub>PZL</sub>   | Output enable time to low level              | $R_L = 110 \Omega$ , | See Figure 5           |              |     | 39                 | 56  | ns   |
| t <sub>PHZ</sub>   | Output disable time from high level          | $R_L = 110 \Omega$ , | See Figure 4           |              |     | 20                 | 31  | ns   |
| t <sub>PLZ</sub>   | Output disable time from low level           | $R_L = 110 \Omega$ , | See Figure 5           |              |     | 9                  | 20  | ns   |

(1) All typical values are at  $V_{CC} = 5 \text{ V}$  and  $TA = 25^{\circ}\text{C}$ .

Product Folder Links: SN75ALS181

 <sup>(1)</sup> All typical values are at V<sub>CC</sub> = 5 V and TA = 25°C.
 (2) Δ|V<sub>OD</sub>| and Δ|V<sub>OC</sub>| are the changes in magnitude of V<sub>OD</sub> and V<sub>OC</sub>, respectively, that occur when the input is changed from a high level to a low level.

<sup>(3)</sup> This applies for both power on and power off. Refer to TIA/EIA-485-A for exact conditions



#### **Receiver Section**

### **ELECTRICAL CHARACTERISTICS**

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                 | PARAMETER                                             | Ti                            | EST CONDITIONS                       | MIN  | TYP <sup>(1)</sup> | MAX  | UNIT     |
|-----------------|-------------------------------------------------------|-------------------------------|--------------------------------------|------|--------------------|------|----------|
| V <sub>T+</sub> | Positive-going threshold voltage, differential input  | V <sub>O</sub> = 2.7 V,       | $I_{O} = -0.4 \text{ mA}$            |      |                    | 0.2  | <b>V</b> |
| V <sub>T-</sub> | Negative-going threshold voltage, differential input  | V <sub>O</sub> = 0.5 V,       | I <sub>O</sub> = 8 mA                | -0.2 |                    |      | V        |
| $V_{hys}$       | Input hysteresis (V <sub>T+</sub> – V <sub>T-</sub> ) |                               |                                      |      | 60                 |      | mV       |
| $V_{IK}$        | Input clamp voltage, RE                               | $I_{I} = -18 \text{ mA}$      |                                      |      |                    | -1.5 | V        |
| $V_{OH}$        | High-level output voltage                             | $V_{ID} = 200 \text{ mV},$    | $I_{OH} = -400 \mu A$ , See Figure 6 | 2.7  |                    |      | V        |
| $V_{OL}$        | Low-level output voltage                              | $V_{ID} = 200 \text{ mV},$    | I <sub>OL</sub> = 8 mA, See Figure 6 |      |                    | 0.45 | V        |
| $I_{OZ}$        | High-impedance-state output current                   | $V_0 = 0.4 \text{ V to } 2.4$ | V                                    |      |                    | ±20  | μΑ       |
|                 | Line input current                                    | Other input at 0              | V <sub>I</sub> = 12 V                |      |                    | 1    | A        |
| I <sub>I</sub>  | Line input current                                    | V <sup>(2)</sup> ,            | V₁ = −7 V                            |      |                    | -0.8 | mA       |
| I <sub>IH</sub> | High-level input current, RE                          | V <sub>IH</sub> = 2.7 V       |                                      |      |                    | 20   | μΑ       |
| I <sub>IL</sub> | Low-level input current, RE                           | $V_{IL} = -7 V$               |                                      |      |                    | -100 | μΑ       |
| $R_{I}$         | Input resistance                                      |                               |                                      | 12   |                    |      | kΩ       |
| Ios             | Short circuit output current                          | $V_{ID} = 200 \text{ mV},$    | V <sub>O</sub> = 0 V                 | -15  |                    | -85  | mA       |
|                 | Supply current (total package)                        | No lood                       | Outputs enabled                      |      | 21                 | 30   | m^       |
| Icc             |                                                       | No load                       | Outputs disabled                     |      | 14                 | 21   | mA       |

### **SWITCHING CHARACTERISTICS**

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

|                    | PARAMETER                                         | TEST CONDITIONS                             | MIN | TYP <sup>(1)</sup> | MAX | UNIT |
|--------------------|---------------------------------------------------|---------------------------------------------|-----|--------------------|-----|------|
| t <sub>PHL</sub>   | Differential output delay time, tdDH or tdDL      | $V_{ID} = -1.5 \text{ V to } 1.5 \text{ V}$ | 10  | 16                 | 25  | ns   |
| t <sub>PLH</sub>   | Propagation delay time, low- to high-level output | $V_{ID} = -1.5 \text{ V to } 1.5 \text{ V}$ | 10  | 16                 | 25  | ns   |
| t <sub>sk(p)</sub> | Pulse skew ( tdDH – tdDL )                        | $V_{ID} = -1.5 \text{ V to } 1.5 \text{ V}$ |     | 1                  | 8   | ns   |
| t <sub>PZH</sub>   | Output enable time to high level                  |                                             |     | 7                  | 15  | ns   |
| t <sub>PZL</sub>   | Output enable time to low level                   |                                             |     | 9                  | 19  | ns   |
| t <sub>PHZ</sub>   | Output disable time from high level               |                                             |     | 18                 | 27  | ns   |
| t <sub>PLZ</sub>   | Output disable time from low level                |                                             |     | 10                 | 15  | ns   |

(1) All typical values are at  $V_{CC} = 5 \text{ V}$  and  $TA = 25^{\circ}\text{C}$ .

 <sup>(1)</sup> All typical values are at V<sub>CC</sub> = 5 V and TA = 25°C.
 (2) This applies for both power on and power off. Refer to TIA/EIA-485-A for exact conditions



#### PARAMETER MEASUREMENT INFORMATION

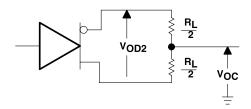



Figure 1. Driver Test Circuit, V<sub>OD</sub> and V<sub>OC</sub>



Figure 2. Driver Circuit, V<sub>OD3</sub>

- A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle,  $t_r \leq$  6 ns,  $t_f \leq$  6 ns,  $Z_O =$  50  $\Omega$
- B. C<sub>1</sub> includes probe and jig capacitance.

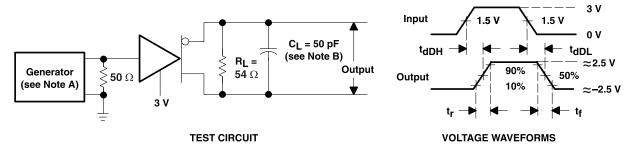



Figure 3. Driver Differential-Output Delay and Transition Times

- A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle,  $t_r \leq$  6 ns,  $t_f \leq$  6 ns,  $Z_O = 50~\Omega$
- B. C<sub>L</sub> includes probe and jig capacitance.

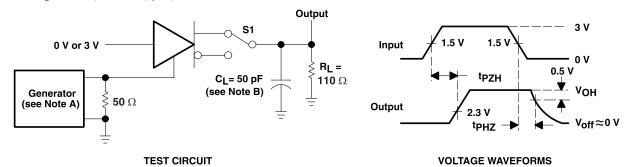
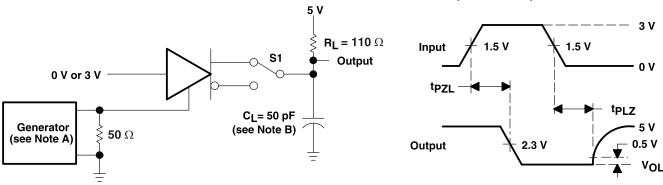




Figure 4. Driver Enable and Disable Times

- A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle,  $t_r \leq$  6 ns,  $t_f \leq$  6 ns,  $Z_O = 50~\Omega$
- B. C<sub>L</sub> includes probe and jig capacitance.



## PARAMETER MEASUREMENT INFORMATION (continued)



TEST CIRCUIT VOLTAGE WAVEFORMS

Figure 5. Driver Enable and Disable Times

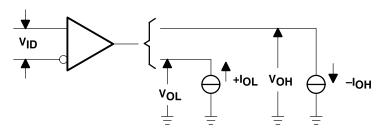



Figure 6. Receiver,  $V_{\text{OH}}$  and  $V_{\text{OL}}$ 

- A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle,  $t_r \leq$  6 ns,  $t_f \leq$  7 ns,  $t_f \leq$  8 ns,  $t_f \leq$  8 ns,  $t_f \leq$  8 ns,  $t_f \leq$  9 ns
- B. C<sub>L</sub> includes probe and jig capacitance.

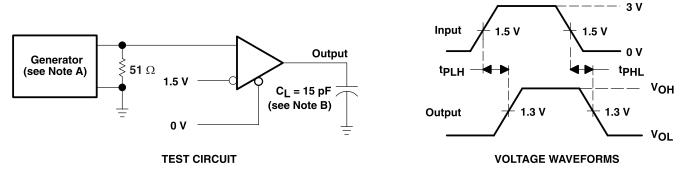



Figure 7. Receiver Propagation-Delay Times

- A. The input pulse is supplied by a generator having the following characteristics: PRR  $\leq$  1 MHz, 50% duty cycle,  $t_r \leq$  6 ns,  $t_f \leq$  6 ns,  $Z_O = 50 \Omega$
- B. C<sub>L</sub> includes probe and jig capacitance.



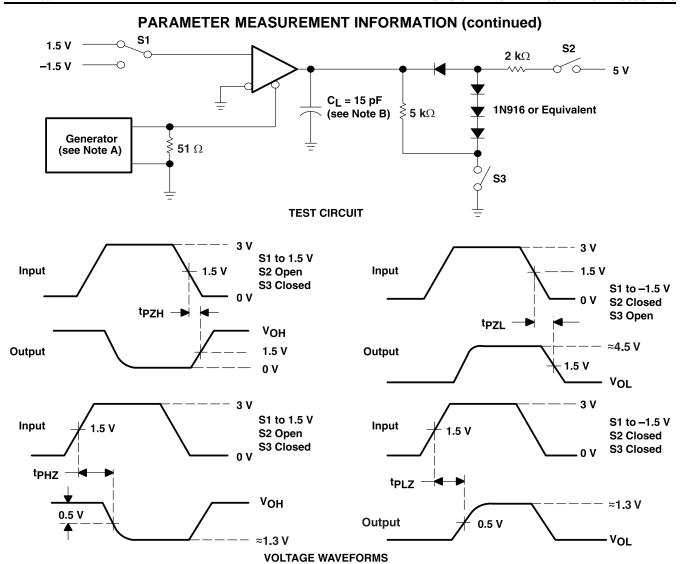



Figure 8. Receiver Output Enable and Disable Times

Copyright © 1992–2013, Texas Instruments Incorporated

### SLLS152D - DECEMBER 1992 - REVISED AUGUST 2013



## **REVISION HISTORY**

| CI | hanges from Revision C (May 2010) to Revision D                 | Page |
|----|-----------------------------------------------------------------|------|
| •  | Removed Ordering Information table.                             | 2    |
| •  | Fixed graphical error in schematic.                             | 3    |
| •  | Fixed typographical error in MAX value for Δ V <sub>OD</sub>  . | 5    |
| •  | Fixed typographical error in UNITS for Δ V <sub>OC</sub>  .     | 5    |

www.ti.com 13-Aug-2021

#### **PACKAGING INFORMATION**

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------|
|                  |        |              |                    |      |                |              | (6)                           |                    |              |                         |         |
| SN75ALS181N      | ACTIVE | PDIP         | N                  | 14   | 25             | RoHS & Green | NIPDAU                        | N / A for Pkg Type | 0 to 70      | SN75ALS181N             | Samples |
| SN75ALS181NSR    | ACTIVE | SO           | NS                 | 14   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | 0 to 70      | 75ALS181                | Samples |
| SN75ALS181NSRG4  | ACTIVE | SO           | NS                 | 14   | 2000           | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | 0 to 70      | 75ALS181                | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

**Green:** TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

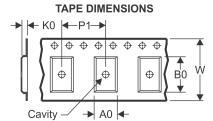
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.



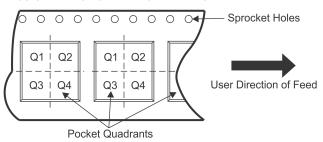
## **PACKAGE OPTION ADDENDUM**

www.ti.com 13-Aug-2021


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## PACKAGE MATERIALS INFORMATION

www.ti.com 30-Dec-2020

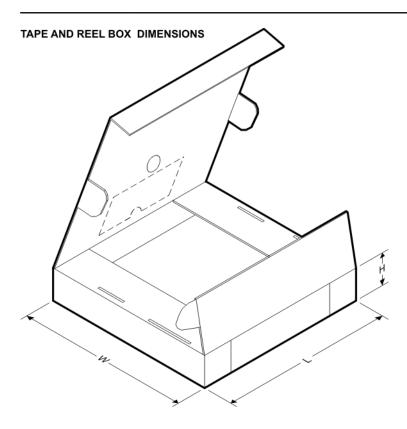

## TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




#### \*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| SN75ALS181NSR | SO              | NS                 | 14 | 2000 | 330.0                    | 16.4                     | 8.2        | 10.5       | 2.5        | 12.0       | 16.0      | Q1               |

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 30-Dec-2020



#### \*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN75ALS181NSR | SO           | NS              | 14   | 2000 | 367.0       | 367.0      | 38.0        |

## N (R-PDIP-T\*\*)

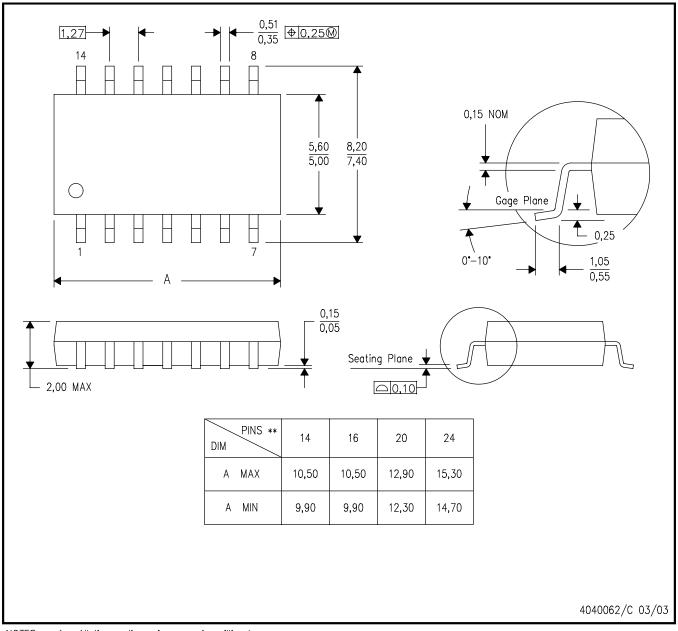
## PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.




## **MECHANICAL DATA**

## NS (R-PDSO-G\*\*)

# 14-PINS SHOWN

### PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



### IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated