

DDR I/DDR II Phase Lock Loop Zero Delay Buffer

ICS9P935

Description

DDR I/DDR II Zero Delay Clock Buffer

Output Features

- Low skew, low jitter PLL clock driver
- Max frequency supported = 400MHz (DDRII 800)
- I²C for functional and output control
- Feedback pins for input to output synchronization
- Spread Spectrum tolerant inputs
- Programmable skew through SMBus
- Frequency defect control thorugh SMBus
- Individual output control programmable through SMBus

Key Specifications

- CYCLE CYCLE jitter: <100ps
- OUTPUT OUTPUT skew: <100ps
- DUTY CYCLE: 48% 52%
- 28-pin SSOP package
- Available in RoHS compliant packaging
- Operates @ 2.5V or 1.8V

Funtional Block Diagram

Pin Configuration

28-SSOP/TSSOP

Pin Description

Pin#	Pin Name	Туре	Pin Description
1	DDRC0	OUT	"Complementary" Clock of differential pair output.
2	DDRT0	OUT	"True" Clock of differential pair output.
3	VDD2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V
4	DDRT1	OUT	"True" Clock of differential pair output.
5	DDRC1	OUT	"Complementary" Clock of differential pair output.
6	GND	PWR	Ground pin.
7	VDDA2.5/1.8	PWR	Output power supply, nominal 2.5V or 1.8V
8	GND	PWR	Ground pin.
9	CLK_INT	IN	"True" reference clock input.
10	CLK_INC	IN	"Complementary" reference clock input.
11	VDD2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V
12	DDRT2	OUT	"True" Clock of differential pair output.
13	DDRC2	OUT	"Complementary" Clock of differential pair output.
14	GND	PWR	Ground pin.
15	DDRC3	OUT	"Complementary" Clock of differential pair output.
16	DDRT3	OUT	"True" Clock of differential pair output.
17	FB_OUT	OUT	Feedback output, dedicated for external feedback.
18	EB IN	IN	Single-ended feedback input, provides feedback signal to internal PLL to eliminate
10			phase error with the input clock.
19	SCLK	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
20	SDATA	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
21	VDD2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V
22	DDRT4	OUT	"True" Clock of differential pair output.
23	DDRC4	OUT	"Complementary" Clock of differential pair output.
24	GND	PWR	Ground pin.
25	VDD2.5/1.8	PWR	Power supply, nominal 2.5V or 1.8V
26	DDRT5	OUT	"True" Clock of differential pair output.
27	DDRC5	OUT	"Complementary" Clock of differential pair output.
28	GND	PWR	Ground pin.

Absolute Max

Supply Voltage	-0.5V to 2.7V
Logic Inputs	GND –0.5 V to V_{DD} +0.5 V $$
Ambient Operating Temperature	0°C to +70°C
Case Temperature	115°C
Storage Temperature	–65°C to +150°C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

		,				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_1 = V_{DD}$ or GND			±250	μA
Input Low Current	I _{IL}	$V_{I} = V_{DD}$ or GND			±10	μA
Output Disabled Low Current	I _{ODL}	OE = L, V _{ODL} = 100mV	100			μA
Operating Supply	I _{DD1.8}	C _L = 0pf @ 100MHz			300	mA
Current	I _{DDLD}	$C_{L} = 0 p f$			500	μA
Input Clamp Voltage	V _{IK}	$V_{DDQ} = 1.8V \text{ lin} = -18\text{mA}$			-1.2	V
High-level output	V	I _{OH} = -100μA	V _{DD} -0.2			V
voltage	V OH	I _{OH} = -9mA	1.1			V
	V _{OL}	I _{OL} =100μA			0.1	V
Low-level output voltage		I _{OL} =9mA			0.6	V
Input Capacitance ¹	CIN	$V_1 = GND \text{ or } V_{DD}$	2		3	pF
Output Capacitance ¹	C _{OUT}	$V_{OUT} = GND \text{ or } V_{DD}$	2		3	pF

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD, VDD = 1.8 V +/- 0.1V (unless otherwise stated)

Recommended Operating Condition (see note1)

 $T_A = 0 - 70^{\circ}C$; Supply Voltage AVDD, VDD = 1.8 V +/- 0.1V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DDQ}, A_{VDD}		1.7	1.8	1.9	V
Low level input voltage	V _{IL}	CLK_INT, CLK_INC, FB_IN			$0.35 \times V_{DD}$	V
High level input voltage	V _{IH}	CLK_INT, CLK_INC, FB_IN	0.65 x V _{DD}			V
DC input signal voltage (note 2)	V _{IN}		-0.3		V _{DD} + 0.3	V
DC input signal voltage swing	V _{IN-Diff}	CLK_INT, CLK_INC	GND - 0.3	1.5	V _{DD} + 0.3	V
Differential input signal voltage	V	DC - CLK_INT, CLK_INC, FB_IN	0.3		V _{DD} + 0.4	V
(note 3)	VID	AC - CLK_INT, CLK_INC, FB_IN	0.6		V _{DD} + 0.4	V
Output differential cross-voltage (note 4)	V _{ox}		V _{DD} / 2 - 0.1		$V_{DD}/2 + 0.1$	V
Input differential cross-voltage (note 4)	V _{IX}		V _{DD} /2 - 0.15	V _{DD} /2	V _{DD} / 2 + 0.15	V
High level output current	I _{он}				-9	mA
Low level output current	I _{OL}				9	mA
High Impedance Output Current	I _{OZ}	V_{DD} =1.9V, V_{OUT} = V_{DD} or GND			±10	mA
Operating free-air temperature	T _A		0		70	°C

Notes:

1. Unused inputs must be held high or low to prevent them from floating.

2. DC input signal voltage specifies the allowable DC execution of differential input.

 Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for switching, where VTR is the true input level and VCP is the complementary input level.

4. Differential cross-point voltage is expected to track variations of V_{DD} and is the voltage at which the differential signal must be crossing.

Timing Requirements

 $T_A = 0 - 70^{\circ}C$ Supply Voltage AVDD, VDD = 1.8 V +/- 0.1V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency	freq _{op}	1.8V <u>±</u> 0.1V @ 25°C	125	500	MHz
Application Frequency Range	freq _{App}	1.8V±0.1V @ 25°C	160	400	MHz
Input clock duty cycle	d _{tin}		40	60	%
CLK stabilization	T _{STAB}			15	μs

Switching Characteristics¹

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Output enable time	t _{en}	OE to any output			8	ns
Output disable time	t _{dis}	OE to any output			8	ns
Period jitter	t _{jit (per)}		-40		40	ps
Half-period jitter	t _{jit(hper)}		-75		75	ps
Input clow rate		Input Clock	1	2.5	4	v/ns
Input siew rate	SLr1(i)	Output Enable (OE), (OS)	0.5			v/ns
Output clock slew rate	SLr1(o)		1.5	2.5	3	v/ns
Cycle to oycle period iitter	t _{jit(cc+)}		0		40	ps
	t _{jit(cc-)}		0		-40	ps
Dynamic Phase Offset	t _{()dyn}		-50		50	ps
Phase error	t _(phase error) 2		-50	0	50	ps
Output to Output Skew	t _{skew}				40	ps
SSC modulation frequency			30.00		33	kHz
SSC clock input frequency deviation			0.00		-0.50	%

Notes:

1.

Refers to transition on noninverting output in PLL bypass mode. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle= t_{WH}/t_c , were the cycle (t_c) decreases as the frequency goes up. Switching characteristics guaranteed for application frequency range. Static phase offset shifted by design. 2.

З.

4.

Electrical Characteristics - Input/Supply/Common Output Parameters

$T_A = 0$ 70 0, 00pply ve	mage Avod	$v_{\rm DD} = 2.5 v \pm 0.2 v$				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_{I} = V_{DD}$ or GND	5			μA
Input Low Current	I _{IL}	$V_{I} = V_{DD}$ or GND			5	μA
Operating Supply	I _{DD2.5}	C _L = 0pf @ 200MHz		250		mA
Current	I _{DDPD}	$C_L = Opf$			100	μA
Output High Current	I _{ОН}	$V_{DD} = 2.3V, V_{OUT} = 1V$	-18	-32		mA
Output Low Current	I _{OL}	$V_{DD} = 2.3V, V_{OUT} = 1.2V$	26	35		mA
High Impedance Output Current	I _{OZ}	V_{DD} =2.7V, Vout= V_{DD} or GND			±10	mA
Input Clamp Voltage	V _{IK}	$V_{DDQ} = 2.3V \text{ lin} = -18\text{mA}$			-1.2	V
High-level output	M	V _{DD} = min to max, I _{OH} = -1 mA	V _{DDQ} - 0.1			V
voltage	V _{OH}	V _{DDQ} = 2.3V, I _{OH} = -12 mA	1.7			V
	V _{OL}	V _{DD} = min to max I _{OL} =1 mA			0.1	V
		$V_{DDQ} = 2.3V$ $I_{OH} = 12 \text{ mA}$			0.6	V
Input Capacitance ¹	C _{IN}	$V_{I} = GND \text{ or } V_{DD}$		3		pF
Output Capacitance ¹	C _{OUT}	$V_{OUT} = GND \text{ or } V_{DD}$		3		pF

 $T_A = 0 - 70^{\circ}C$; Supply Voltage A_{VDD} , $V_{DD} = 2.5V \pm 0.2V$

Recommended Operating Condition (see note 1)

$T_A = 0 - 70 \text{ C}$, Supply voltage AvDD, vDD = 2.3 v $\pm 7 - 0.2 \text{ v}$ (utiless otherwise stated

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DD}, A_{VDD}		2.3	2.5	2.7	V
Low level input voltage	V _{IL}	DDRT, DDRC		0.4	V _{DD} /2 - 0.18	V
High level input voltage	V _{IH}	DDRT, DDRC	$V_{DD}/2 + 0.18$	2.1		V
DC input signal voltage (note 2)	V _{IN}		-0.3		V _{DD} + 0.3	V
Differential input signal	M	DC - DDRT	0.36		V _{DD} + 0.6	V
voltage (note 3)	VID	AC - DDRT	0.7		V _{DD} + 0.6	V
Output differential cross- voltage (note 4)	V _{ox}		V _{DD} /2 - 0.15		V _{DD} /2 + 0.15	V
Input differential cross- voltage (note 4)	V _{IX}		V _{DD} /2 - 0.2	V _{DD} /2	$V_{DD}/2 + 0.2$	V
High level output current	I _{OH}				-30	mA
Low level output current	I _{OL}				-30	mA
Operating free-air temperature	T _A		0		85	°C

Notes:

1. Unused inputs must be held high or low to prevent them from floating.

2. DC input signal voltage specifies the allowable DC execution of differential input.

3. Differential inputs signal voltages specifies the differential voltage [VTR-VCP] required for switching, where VT is the true input level and VCP is the complementary input level.

4. Differential cross-point voltage is expected to track variations of V_{DD} and is the voltage at which the differential signal must be crossing.

Timing Requirements

 $T_A = 0 - =70^{\circ}C$; Supply Voltage A_{VDD}, $V_{DD} = 2.5 V + - 0.2V$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency	freq _{op}	2.5V <u>±</u> 0.2V @ 25°C	45	600	MHz
Application Frequency Range	freq _{App}	2.5V±0.2V @ 25°C	95	233	MHz
Input clock duty cycle	d _{tin}		40	60	%
CLK stabilization	T _{STAB}			15	μs

Switching Characteristics³

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Low-to high [·] level	+ 1	BLIE IN to any output		35		ne
propagation delay time	PLH			0.0		115
High-to low level propagation	+ 1	BLIE IN to any output		35		ne
delay time	^L PLL			5.5		115
Period jitter	T _{jit (per)}	100MHz to 200MHz	-30		30	ps
Half-period jitter	t(jit_hper)	100MHz to 200MHz	-100		100	ps
Input clock slew rate	t _{sl(i)}		1		4	V/ns
Output clock slew rate	t _{sl(o)}		1		2	V/ns
Cycle to Cycle Jitter ¹	T _{cyc} -T _{cyc}	100MHz to 200MHz	-50		50	ps
Static Phase Offset	t(static phase offset) ⁴		-50	0	50	ps
Output to Output Skew	T _{skew}				40	ps

Notes:

1. Refers to transition on noninverting output in PLL bypass mode.

While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle= t_{WH}/t_c , were the cycle (t_c) 2. decreases as the frequency goes up.

Switching characteristics guaranteed for application frequency range. Static phase offset shifted by design. З.

4.

General I²C serial interface information for the ICS9P935

How to Write:

- Controller (host) sends a start bit.
- Controller (host) sends the write address D4 (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

Ind	ex Block W	/rit	e Operation
Cor	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address D4 _(H)		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	ning Byte N		
			ACK
	\diamond	/te	
0			\diamond
\$			\diamond
			\diamond
Byte	e N + X - 1		
			ACK
P	stoP hit		

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address D4 (H)
- ICS clock will *acknowledge*
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D5 (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Index Block Read Operation				
Con	troller (Host)	IC	S (Slave/Receiver)	
Т	starT bit			
Slave	Address D4 _(H)			
WR	WRite			
			ACK	
Begir	nning Byte = N			
			ACK	
RT	Repeat starT			
Slave	e Address D5 _(H)			
RD	ReaD			
			ACK	
		D	ata Byte Count = X	
	ACK			
			Beginning Byte N	
	ACK			
		/te	\diamond	
	0	B)	\diamond	
	\diamond	×	\diamond	
	0			
			Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

Notes:

- 1. The IDT clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support SMBus block read protocol.**
- 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode)
- 3. The input is operating at 3.3V logic levels.
- 4. The data byte format is 8 bit bytes.
- 5. To simplify the clock generator I²C interface, the protocol is set to use only "**Block-Writes**" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, The data is loaded until a Stop sequence is issued.
- 6. At power-on, all registers are set to a default condition, as shown.

IDT[™]/ICS[™] DDR I/DDR II Phase Lock Loop Zero Delay Buffer

ICS9P935 REV H 12/1/08

I²C Table: Output Control Register

Ву	te 6	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		Freq Detect	Low Frequency Detect PLL OFF Control	RW	OFF	ON	1
Bit 6	-		FB_IN/OUT	FB_OUT Control	RW	Disable	Enable	1
Bit 5	-		DDR_T5/C5	Output Control	RW	Disable	Enable	1
Bit 4	-		DDR_T4/C4	Output Control	RW	Disable	Enable	1
Bit 3	-		DDR_T3/C3	Output Control	RW	Disable	Enable	1
Bit 2	-		DDR_T2/C2	Output Control	RW	Disable	Enable	1
Bit 1			DDR_T1/C1	Output Control	RW	Disable	Enable	1
Bit 0	-		DDR_T0/C0	Output Control	RW	Disable	Enable	1

I²C Table: Group Skew Control Register

Byte 8		Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		DDR Skw3		RW			0
Bit 6	-		DDR Skw2	CLKIN to DDR	RW	See Table 1:	7-Step Skew	0
Bit 5	r		DDR Skw1	Skew Control	RW	Programm	ning Table	0
Bit 4	-		DDR Skw0	RW		0		
Bit 3	-		DDR Skw3		RW			0
Bit 2	-		DDR Skw2	CLKIN to DDR	RW	See Table 2:	7-Step Skew	0
Bit 1	-		DDR Skw1	Skew Control	RW	Programm	ning Table	0
Bit 0	-		DDR Skw0	Ī	RW			0

I²C Table: Revision ID and Vendor ID Register

Byte 10		Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		Revision_ID bit 3		RW	-	-	Х
Bit 6	-		Revision_ID bit 2	Roy ID	RW	-	-	Х
Bit 5	-		Revision_ID bit 1		RW	-	-	Х
Bit 4	-		Revision_ID bit 0	İ	RW	-	-	Х
Bit 3	-		Vendor_ID bit3		RW	-	-	0
Bit 2	-		Vendor_ID bit2	Vendor ID	RW	-	-	0
Bit 1	-		Vendor_ID bit1		RW	-	-	0
Bit 0	-		Vendor_ID bit0		RW	-	-	1

I²C Table: Byte Count Register

Byte 15		Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-		BC7		RW			0
Bit 6	-		BC6		RW			0
Bit 5	-		BC5		RW	Writing to this	s register will	0
Bit 4	-		BC4	Byte Count	RW	configure how	v many bytes	0
Bit 3	-		BC3	Programming b(7:0)	RW	will be read b	ack, default is	1
Bit 2	-		BC2		RW	0F = 1	5 bytes	1
Bit 1	-		BC1		RW			1
Bit 0	-		BC0		RW			1

I2C Table: All other I2C Registers are Reserved

Table 1: 7-Steps Skew Programming Table

7 Step	11	10	01	00	LSB
11	600 ps	500 ps	400 ps	300 ps	
10	N/A	N/A	N/A	200 ps	
01	N/A	N/A	N/A	100 ps	
00	N/A	N/A	N/A	0.0 ps	
MSB					1

IDT[™]/ICS[™] DDR I/DDR II Phase Lock Loop Zero Delay Buffer

Table 2: 7-Steps Skew Programming Table

7 Step	11	10	01	00	LSB
11	-600 ps	-500 ps	-400 ps	-300 ps	
10	N/A	N/A	N/A	-200 ps	
01	N/A	N/A	N/A	-100 ps	
00	N/A	N/A	N/A	0.0 ps	
MSB					

ICS9P935 REV H 12/1/08

SYMBOL	In Mil	limeters	In Inches	
OTHEOL	MIN	MAX	MIN	MAX
А		2.00		.079
A1	0.05		.002	
A2	1.65	1.85	.065	.073
b	0.22	0.38	.009	.015
С	0.09	0.25	.0035	.010
D	SEE VA	RIATIONS	SEE VA	RIATIONS
E	7.40	8.20	.291	.323
E1	5.00	5.60	.197	.220
е	0.65	BASIC	0.0256	6 BASIC
L	0.55	0.95	.022	.037
N	SEE VA	RIATIONS	SEE VA	RIATIONS
α	0°	8°	0°	8°

VARIATIONS

N	D	mm.	D (inch)		
IN	MIN	MAX	MIN	MAX	
28	9.90	10.50	.390	.413	

Reference Doc.: JEDEC Publication 95, MO-150

10-0033

200 000.

Ordering Information

	(173 mil)	(25.6 mil)		
	In Milli	meters	In In	ches
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS
	MIN	MAX	MIN	MAX
Α		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.19	0.30	.007	.012
С	0.09	0.20	.0035	.008
D	SEE VAF	RIATIONS	SEE VAF	IATIONS
E	6.40 E	BASIC	0.252	BASIC
E1	4.30	4.50	.169	.177
е	0.65 E	BASIC	0.0256	BASIC
L	0.45	0.75	.018	.030
Ν	SEE VAF	RIATIONS	SEE VAF	IATIONS
α	0°	8°	0°	8°
aaa		0.10		.004

4.40 mm. Body, 0.65 mm. Pitch TSSOP

/--- ···

··---

VARIATIONS

N	D mm.		D (inch)		
IN	MIN	MAX	MIN	MAX	
28	9.60	9.80	.378	.386	

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

IDT[™]/ICS[™] DDR I/DDR II Phase Lock Loop Zero Delay Buffer

Revision History

Rev.	Issue Date	Description	Page #
Α	2/8/2007	Final Release.	-
В	6/4/2007	Fixed various typos.	-
С	6/14/2007	Added TSSOP Ordering Information.	12
		1. Updated Output Features: Max Frequency Supported.	1
D	6/20/2007	2. Updated DDRI/DDRII Max Clock Frequency.	5, 8
		1. Updated Supply Voltage.	
E	8/16/2007	2. Updated Input High/Low Current Max.	3
F	9/5/2007	Updated Electrical Specifications.	3-5
G	11/19/2007	Updated Serial Interface Information.	9
Н	12/1/2008	Updated Pin Description.	2

_

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/