The 3844,3845 series are high performance fixed frequency current mode controllers．They are specifically designed for Off－Line and dc－dc converter applications offering the designer a cost－effective solution with minimal external components．These integrated circuits feature an oscillator，a temperature compensated reference，high gain error amplifier，current sensing comparator，and a high current totem pole output ideally suited for driving a power MOSFET．

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis，cycle－by－cycle current limiting，a latch for single pulse metering，and a flip－flop which blanks the output off every other oscillator cycle，allowing output deadtimes to be programmed from 50% to 70% ．

The 3844／2844 has UVLO thresholds of 16 V （on）and 10 V （off），ideally suited for off－line converters．The 3845／2845 is tailored for lower voltage applications having UVLO thresholds of 8.5 V （on）and 7.6 V （off）．

Features

－Trimmed Oscillator for Precise Frequency Control
－Oscillator Frequency Guaranteed at 250 kHz
－Current Mode Operation to 500 kHz Output Switching Frequency
－Output Deadtime Adjustable from 50\％to 70\％
－Automatic Feed Forward Compensation
－Latching PWM for Cycle－By－Cycle Current Limiting
－Internally Trimmed Reference with Undervoltage Lockout
－High Current Totem Pole Output
－Undervoltage Lockout with Hysteresis
－Low Startup and Operating Current
－These Devices are Pb －Free and are RoHS Compliant
－NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements；AEC－Q100
Qualified and PPAP Capable

Figure 1．括号中的管脚编号用于D后缀SOI C－14封装。SOI C－14封装本司暂无生产

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Bias and Driver Voltages（Zero Series Impedance，see also Total Device spec）（Note 1）	$\mathrm{V}_{\mathrm{Cc}}, \mathrm{V}_{\mathrm{C}}$	36	V
Total Power Supply and Zener Current	$\left(\mathrm{ICC}+\mathrm{I}_{\mathrm{z}}\right.$ ）	30	mA
Output Current，Source or Sink（Note 2）	Io	1.0	A
Output Energy（Capacitive Load per Cycle）	W	5.0	$\mu \mathrm{J}$
Current Sense and Voltage Feedback Inputs	$\mathrm{V}_{\text {in }}$	-0.3 to＋ 5.5	V
Error Amp Output Sink Current	Io	10	mA
Power Dissipation and Thermal Characteristics D1 Suffix，Plastic Package，SOIC－8 Case 751 Maximum Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air N Suffix，Plastic Package，Case 626 Maximum Power Dissipation＠ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Thermal Resistance，Junction－to－Air	P_{D} $\mathrm{R}_{\text {өJA }}$ P_{D} $\mathrm{R}_{\text {日JA }}$	$\begin{aligned} & 702 \\ & 178 \\ & \\ & 1.25 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ \mathrm{~W} \\ \mathrm{~W} / \mathrm{W} \end{gathered}$
Operating Junction Temperature	T_{J}	＋150	${ }^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Operating Ambient Temperature } & 3844,3845 \\ & 2844,2845\end{array}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} \hline 0 \text { to }+70 \\ -25 \text { to }+85 \end{gathered}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device．Maximum Ratings are stress ratings only．Functional operation above the Recommended Operating Conditions is not implied．Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability．
1．The voltage is clamped by a zener diode（see page 9 Under Voltage Lockout section）．Therefore this voltage may be exceeded as long as the total power supply and zener current is not exceeded．
2．Maximum package power dissipation limits must be observed．
3．This device series contains ESD protection and exceeds the following tests：Human Body Model 4000 V per JEDEC Standard JESD22－A114B，Machine Model Method 200 V per JEDEC Standard JESD22－A115－A
4．This device contains latch－up protection and exceeds 100 mA per JEDEC Standard JESD78
ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$［Note 5］， $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$ ．For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，for min／max values T_{A} is the operating ambient temperature range that applies［Note 6］，unless otherwise noted．）

Characteristic	Symbol	2844／3844			3844／3845			Unit
		Min	Typ	Max	Min	Typ	Max	
REFERENCE SECTION								
Reference Output Voltage（ $\mathrm{I}_{0}=1.0 \mathrm{~mA}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$ ）	$\mathrm{V}_{\text {ref }}$	4.95	5.0	5.05	4.9	5.0	5.1	V
Line Regulation（ $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ to 25 V ）	Regline	－	2.0	20	－	2.0	20	mV
Load Regulation（ $\mathrm{l}_{\mathrm{O}}=1.0 \mathrm{~mA}$ to 20 mA ）	Regload	－	3.0	25	－	3.0	25	mV
Temperature Stability	Ts	－	0.2	－	－	0.2	－	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation over Line，Load，\＆Temperature	$\mathrm{V}_{\text {ref }}$	4.9	－	5.1	4.82	－	5.18	V
Output Noise Voltage（ $\mathrm{f}=10 \mathrm{~Hz}$ to $10 \mathrm{kHz}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$ ）	V_{n}	－	50	－	－	50	－	$\mu \mathrm{V}$
Long Term Stability（ $\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$ for 1000 Hours）	S	－	5.0	－	－	5.0	－	mV
Output Short Circuit Current	Isc	－30	－85	－180	－30	－85	－180	mA

OSCILLATOR SECTION

	fosc	$\begin{gathered} \hline 49 \\ 48 \\ 225 \end{gathered}$	$\begin{gathered} 52 \\ - \\ 250 \end{gathered}$	$\begin{gathered} \hline 55 \\ 56 \\ 275 \end{gathered}$	$\begin{gathered} \hline 49 \\ 48 \\ 225 \end{gathered}$	$\begin{gathered} 52 \\ - \\ 250 \end{gathered}$	$\begin{gathered} 55 \\ 56 \\ 275 \end{gathered}$	kHz
Frequency Change with Voltage（ $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ to 25 V ）	$\Delta \mathrm{f}_{\text {Osc }} / \Delta \mathrm{V}$	－	0.2	1.0	－	0.2	1.0	\％
Frequency Change w／Temperature（ $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}$ ）	$\Delta \mathrm{f}_{\mathrm{OSc}} / \Delta \mathrm{T}$	－	1.0	－	－	0.5	－	\％
Oscillator Voltage Swing（Peak－to－Peak）	$\mathrm{V}_{\text {OSC }}$	－	1.6	－	－	1.6	－	V

[^0]ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}\right.$［Note 7 ］， $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$ ．For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，for min／max values T_{A} is the operating ambient temperature range that applies［Note 8］，unless otherwise noted．）

Characteristic	Symbol	2844／3844			3844／3845			Unit
		Min	Typ	Max	Min	Typ	Max	
OSCILLATOR SECTION								
Discharge Current $\left(\mathrm{V}_{\mathrm{OSC}}\right.$ $=2.0 \mathrm{~V})$ T_{A} $=\mathrm{T}_{\text {low }}$ to $\mathrm{T}_{\text {high }}(2844 / 2845 / 3844 / 3845)$	Idischg	$\begin{aligned} & 7.8 \\ & 7.5 \end{aligned}$	8.3	$\begin{aligned} & \hline 8.8 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.6 \end{aligned}$	8.3	$\begin{aligned} & \hline 8.8 \\ & 8.8 \end{aligned}$	mA

ERROR AMPLIFIER SECTION

Voltage Feedback Input（ $\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ ）	$V_{F B}$	2.45	2.5	2.55	2.42	2.5	2.58	V
Input Bias Current（ $\mathrm{V}_{\mathrm{FB}}=5.0 \mathrm{~V}$ ）	IB	－	－0．1	－1．0	－	－0．1	－2．0	$\mu \mathrm{A}$
Open Loop Voltage Gain（ $\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}$ to 4.0 V ）	Avol	65	90	－	65	90	－	dB
Unity Gain Bandwidth（ $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ ）	BW	0.7	1.0	－	0.7	1.0	－	MHz
Power Supply Rejection Ratio（ $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ to 25 V ）	PSRR	60	70	－	60	70	－	dB
$\begin{aligned} & \hline \text { Output Current - } \text { Sink }\left(\mathrm{V}_{\mathrm{O}}=1.1 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.7 \mathrm{~V}\right) \\ & \text { Source }\left(\mathrm{V}_{\mathrm{O}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=2.3 \mathrm{~V}\right) \end{aligned}$	$\begin{gathered} \hline I_{\text {Sink }} \\ I_{\text {Source }} \end{gathered}$	$\begin{gathered} \hline 2.0 \\ -0.5 \end{gathered}$	$\begin{gathered} \hline 12 \\ -1.0 \end{gathered}$		$\begin{gathered} \hline 2.0 \\ -0.5 \end{gathered}$	$\begin{gathered} 12 \\ -1.0 \end{gathered}$	－	mA
```Output Voltage Swing High State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to ground, \(\mathrm{V}_{\mathrm{FB}}=2.3 \mathrm{~V}\) ) Low State ( \(\mathrm{R}_{\mathrm{L}}=15 \mathrm{k}\) to \(\mathrm{V}_{\text {ref }}, \mathrm{V}_{\mathrm{FB}}=2.7 \mathrm{~V}\) ) (2844/2845/3844/3845)```	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$5.0$	$\begin{aligned} & 6.2 \\ & 0.8 \end{aligned}$	$1.1$	5.0	$\begin{aligned} & 6.2 \\ & 0.8 \end{aligned}$	$1.1$	V

CURRENT SENSE SECTION

Current Sense Input Voltage Gain（Notes 9 \＆10）   （2844／2845／3844／3845）	$\mathrm{A}_{\mathrm{V}}$	2.85	3.0	3.15	2.85	3.0	3.15	$\mathrm{~V} / \mathrm{V}$
Maximum Current Sense Input Threshold（Note 9）   $(2844 / 2845 / 3844 / 3845)$	$\mathrm{V}_{\text {th }}$	0.9	1.0	1.1	0.9	1.0	1.1	V
Power Supply Rejection Ratio（V V CC $=12 \mathrm{~V}$ to 25 V）（Note 9）	PSRR	-	70	-	-	70	-	dB
Input Bias Current	$\mathrm{I}_{\text {IB }}$	-	-2.0	-10	-	-2.0	-10	$\mu \mathrm{~A}$
Propagation Delay（Current Sense Input to Output）	TPLH（In／Out）	-	150	300	-	150	300	ns

## OUTPUT SECTION

$\begin{array}{ll} \text { Output Voltage } \\ \text { Low State } & \left(I_{\text {Sink }}=20 \mathrm{~mA}\right) \\ & \left(\mathrm{I}_{\text {Sink }}=200 \mathrm{~mA}, 2844 / 2845 / 3844 / 3845\right. \\ \text { High State } & \left(I_{\text {Source }}=20 \mathrm{~mA}, 2844 / 2845 / 3844 / 3845\right) \\ & \left(\mathrm{I}_{\text {Source }}=200 \mathrm{~mA}\right) \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	$13$ $12$	$\begin{gathered} 0.1 \\ 1.6 \\ 13.5 \\ 13.4 \end{gathered}$	$\begin{gathered} 0.4 \\ 2.2 \\ - \end{gathered}$	$\begin{aligned} & - \\ & - \\ & 13 \\ & 12 \end{aligned}$	$\begin{gathered} 0.1 \\ 1.6 \\ 13.5 \\ 13.4 \end{gathered}$	$\begin{gathered} 0.4 \\ 2.2 \\ - \end{gathered}$	V
Output Voltage with UVLO Activated（ $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ ， $\left.\mathrm{I}_{\text {Sink }}=1.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {OL（UVLO）}}$	－	0.1	1.1	－	0.1	1.1	V
Output Voltage Rise Time（ $\left.\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\mathrm{r}}$	－	50	150	－	50	150	ns
Output Voltage Fall Time（ $\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ ）	$\mathrm{t}_{\mathrm{f}}$	－	50	150	－	50	150	ns

UNDERVOLTAGE LOCKOUT SECTION

Startup Threshold	X844	$\mathrm{V}_{\text {th }}$	15	16	17	14.5	16	17.5	V
	X845		7.8	8.4	9.0	7.8	8.4	9.0	
Minimum Operating Voltage After Turn－On	X844	$\mathrm{V}_{\mathrm{CC}(\min )}$	9.0	10	11	8.5	10	11.5	V
	X845		7.0	7.6	8.2	7.0	7.6	8.2	

7．Adjust $\mathrm{V}_{\mathrm{CC}}$ above the Startup threshold before setting to 15 V ．
8．Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible．
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for $3844 / 3845$
$T_{\text {high }}=+70^{\circ} \mathrm{C}$ for $3844 / 3845$
$=-25^{\circ} \mathrm{C}$ for $2844 / 2845$
$=+85^{\circ} \mathrm{C}$ for $2844 / 2845$
9．This parameter is measured at the latch trip point with $\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$ ．
10．Comparator gain is defined as：$A_{V}=\Delta V$ Output／Compensation
$\Delta \mathrm{V}$ Current Sense Input

WWW．XINLUDA．COM 信路迒

## XD／XL3844 DIP8／SOP8，XD／XL2844 DIP8／SOP8 XD／XL3845 DIP8／SOP8，XD／XL2845 DIP8／SOP8

ELECTRICAL CHARACTERISTICS（ $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$［Note 11］， $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{T}}=3.3 \mathrm{nF}$ ．For typical values $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ ，for min $/ \mathrm{max}$ values $T_{A}$ is the operating ambient temperature range that applies［Note 12］，unless otherwise noted．）

Characteristic	Symbol	2844／2845			3844／3845			Unit
		Min	Typ	Max	Min	Typ	Max	

## PWM SECTION

Duty Cycle   Maximum（2844／2845／3844／3845）   Minimum	$\mathrm{DC}_{(\max )}$	47	48	50	47	48	50	$\%$
$\mathrm{DC}_{(\min )}$	-	-	0	-	-	0		

TOTAL DEVICE

Power Supply Current   Startup（ $\mathrm{V}_{\mathrm{CC}}=6.5 \mathrm{~V}$ for X 845 ，   14 V for X844）   Operating（Note 11）	ICC	－	0.3 12	$\begin{gathered} 0.5 \\ 17 \end{gathered}$	－	0.3 12	0.5 17	mA
Power Supply Zener Voltage（lcc＝ 25 mA ）	$\mathrm{V}_{\mathrm{z}}$	30	36	－	30	36	－	V

11．Adjust $\mathrm{V}_{\mathrm{CC}}$ above the Startup threshold before setting to 15 V ．
12．Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible．
$\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for $3844 / 3845$
$=-25^{\circ} \mathrm{C}$ for $2844 / 2845$
$T_{\text {high }}=+70^{\circ} \mathrm{C}$ for $3844 / 3845$
$=+85^{\circ} \mathrm{C}$ for2844／2845


For $\mathrm{R}_{\mathrm{T}}>5 \mathrm{Kf} \sim \frac{1.72}{\mathrm{R}_{\mathrm{T}} \mathrm{C}_{\mathrm{T}}}$
Figure 2．Timing Resistor versus Oscillator Frequency


Figure 4．Error Amp Small Signal Transient Response


Figure 3．Output Deadtime versus Oscillator Frequency


Figure 5．Error Amp Large Signal Transient Response


Figure 6．Error Amp Open Loop Gain and Phase versus Frequency


Figure 8．Reference Voltage Change versus Source Current


Figure 10．Reference Load Regulation


Figure 7．Current Sense Input Threshold versus Error Amp Output Voltage


Figure 9．Reference Short Circuit Current versus Temperature


Figure 11．Reference Line Regulation

WWW．XINLUDA．COM 信路迒 XD／XL3844 DIP8／SOP8，XD／XL2844 DIP8／SOP8
XD／XL3845 DIP8／SOP8，XD／XL2845 DIP8／SOP8


Figure 12．Output Saturation Voltage versus Load Current


Figure 14．Output Cross Conduction
PIN FUNCTION DESCRIPTION


Figure 13．Output Waveform


Figure 15．Supply Current versus Supply Voltage

| Pin |  | Description |
| :---: | :---: | :---: | :--- |

The 3844,3845 series are high performance， fixed frequency，current mode controllers．They are specifically designed for Off－Line and DC－DC converter applications offering the designer a cost－effective solution with minimal external components．A representative block diagram is shown in Figure 16.

## Oscillator

The oscillator frequency is programmed by the values selected for the timing components $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$ ．Capacitor $\mathrm{C}_{\mathrm{T}}$ is charged from the 5.0 V reference through resistor $\mathrm{R}_{\mathrm{T}}$ to approximately 2.8 V and discharged to 1.2 V by an internal current sink．During the discharge of $\mathrm{C}_{\mathrm{T}}$ ，the oscillator generates an internal blanking pulse that holds the center input of the NOR gate high．This causes the Output to be in a low state，thus producing a controlled amount of output deadtime．An internal flip－flop has been incorporated in the 2844／3844／2845／3845 which blanks the output off every other clockcycle by holding one of the inputs of the NOR gate high．Thisin combination with the $\mathrm{C}_{\mathrm{T}}$ discharge period yields outputdeadtimes programmable from $50 \%$ to $70 \%$ ．Figure 2 shows $\mathrm{T}_{\mathrm{T}}$ versus Oscillator Frequency and Figure 3，OutputDeadtime versus Frequency，both for given values of $\mathrm{C}_{\mathrm{T}}$ ．Note that many values of $\mathrm{R}_{\mathrm{T}}$ and $\mathrm{C}_{\mathrm{T}}$ will give the sameoscillator frequency but only one combination will yield aspecific output deadtime at a given frequency．The oscillatorthresholds are temperature compensated to within $\pm 6 \%$ at 50 kHz ．Also，because of industry trends moving the $3844 / 3845$ into higher and higher frequency applications，the $3844 / 3845$ is guaranteed to within $\pm 10 \%$ at 250 kHz ．

In many noise－sensitive applications it may be desirable to frequency－lock the converter to an external system clock． This can be accomplished by applying a clock signal to the circuit shown in Figure 18．For reliable locking，the free－running oscillator frequency should be set about $10 \%$ less than the clock frequency．A method for multi－unit synchronization is shown in Figure 19．By tailoring the clock waveform，accurate Output duty cycle clamping can be achieved to realize output deadtimes of greater than $70 \%$ ．

## Error Amplifier

A fully compensated Error Amplifier with access to the inverting input and output is provided．It features a typical dc voltage gain of 90 dB ，and a unity gain bandwidth of 1.0 MHz with 57 degrees of phase margin（Figure 6）．The non－inverting input is internally biased at 2.5 V and is not pinned out．The converter output voltage is typically divided down and monitored by the inverting input．The maximum input bias current is $-2.0 \mu \mathrm{~A}$ which can cause an output voltage error that is equal to the product of the input bias current and the equivalent input divider source resistance．

The Error Amp Output（Pin 1）is provided for external loop compensation（Figure 29）．The output voltage is offset by two diode drops（ $\approx 1.4 \mathrm{~V}$ ）and divided by three before it connects to the inverting input of the Current Sense

Comparator．This guarantees that no drive pulses appear at the Output（ Pin 6 ）when Pin 1 is at its lowest state $\left(\mathrm{V}_{\mathrm{OL}}\right)$ ． This occurs when the power supply is operating and the load is removed，or at the beginning of a soft－start interval （Figures 21，22）．The Error Amp minimum feedback resistance is limited by the amplifier＇s source current $(0.5 \mathrm{~mA})$ and the required output voltage $\left(\mathrm{V}_{\mathrm{OH}}\right)$ to reach the comparator＇s 1.0 V clamp level：

$$
\mathrm{R}_{\mathrm{f}(\min )} \approx \frac{3.0(1.0 \mathrm{~V})+1.4 \mathrm{~V}}{0.5 \mathrm{~mA}}=8800 \Omega
$$

## Current Sense Comparator and PWM Latch

The $3844 / 3845$ operate as a current modecontroller， whereby outputswitch conduction is initiated by the oscillator and terminated when the peak inductor current reaches the threshold level established by the Error Amplifier Output／Compensation（Pin 1）．Thus the error signal controls the peak inductor current on a cycle－by－cyclebasis．The Current Sense Comparator PWM Latch configuration used ensures that only a single pulse appears at the Output during any given oscillator cycle．The inductor current is converted to a voltage by inserting the ground－referenced sense resistor $\mathrm{R}_{\mathrm{S}}$ in series with the source of output switch Q1．This voltage is monitored by the Current Sense Input（Pin 3）and compared to a level derived from the Error Amp Output．The peak inductor current under normal operating conditions is controlled by the voltage at Pin 1 where：

$$
\mathrm{I}_{\mathrm{pk}}=\frac{\mathrm{V}_{(\mathrm{Pin} 1)}-1.4 \mathrm{~V}}{3 \mathrm{R}_{\mathrm{S}}}
$$

Abnormal operating conditions occur when the power supply output is overloaded or if output voltage sensing is lost．Under these conditions，the Current Sense Comparator threshold will be internally clamped to 1.0 V ．Therefore the maximum peak switch current is：

$$
\mathrm{I}_{\mathrm{pk}(\max )}=\frac{1.0 \mathrm{~V}}{\mathrm{R}_{\mathrm{S}}}
$$

When designing a high power switching regulator it becomes desirable to reduce the internal clamp voltage in order to keep the power dissipation of $\mathrm{R}_{\mathrm{S}}$ to a reasonable level．A simple method to adjust this voltage is shown in Figure 20．The two external diodes are used to compensate the internal diodes， yielding a constant clamp voltage over temperature．Erratic operation due to noise pickup can result if there is an excessive reduction of the $\mathrm{I}_{\mathrm{pk}(\max )}$ clamp voltage．

A narrow spike on the leading edge of the current waveform can usually be observed and may cause the power supply to exhibit an instability when the output is lightly loaded．This spike is due to the power transformer interwinding capacitance and output rectifier recovery time． The addition of an RC filter on the Current Sense Input with a time constant that approximates the spike duration will usually eliminate the instability（refer to Figure 24）．


Figure 16．括号中的管脚编号用于D后缀SOI C－14封装。SOI C－14封装本司暂无生产


Figure 17．Timing Diagram

## Undervoltage Lockout

Two undervoltage lockout comparators have been incorporated to guarantee that the IC is fully functional before the output stage is enabled．The positive power supply terminal $\left(\mathrm{V}_{\mathrm{CC}}\right)$ and the reference output $\left(\mathrm{V}_{\text {ref }}\right)$ are each monitored by separate comparators．Each has built－in hysteresis to prevent erratic output behavior as their respective thresholds are crossed．The $\mathrm{V}_{\mathrm{CC}}$ comparator upper and lower thresholds are $16 \mathrm{~V} / 10 \mathrm{~V}$ for the $3844 / 2844$ ， and $8.4 \mathrm{~V} / 7.6 \mathrm{~V}$ for the $3845 / 2845$ ．The $\mathrm{V}_{\text {ref }}$ comparator upper and lower thresholds are $3.6 \mathrm{~V} / 3.4 \mathrm{~V}$ ．The large hysteresis and low startup current of the 3844／2844 makes it ideally suited in off－line converter applications where efficient bootstrap startup techniques are required （Figure 30）．The 3845／2845 is intended for lower voltage dc－dc converter applications．A 36 V Zener is connected as a shunt regulator from $\mathrm{V}_{\mathrm{CC}}$ to ground．Its purpose is to protect the IC from excessive voltage that can occur during system startup．The minimum operating voltage for the $3844 / 2844$ is 11 V and 8.2 V for the $3845 / 2845$ ．

## Output

These devices contain a single totem pole output stage that was specifically designed for direct drive of power MOSFETs．It is capable of up to $\pm 1.0$ A peak drive current and has a typical rise and fall time of 50 ns with a 1.0 nF load． Additional internal circuitry has been added to keep the Output in a sinking mode whenever an undervoltage lockout is active．This characteristic eliminates the need for an external pulldown resistor．

The SOIC－14 surface mount package provides separate pins for $\mathrm{V}_{\mathrm{C}}$（output supply）and Power Ground．Proper implementation will significantly reduce the level of switching transient noise imposed on the control circuitry． This becomes particularly useful when reducing the $\mathrm{I}_{\mathrm{pk}(\max )}$ clamp level．The separate $\mathrm{V}_{\mathrm{C}}$ supply input allows the
designer added flexibility in tailoring the drive voltage independent of $\mathrm{V}_{\mathrm{CC}}$ ．A Zener clamp is typically connected to this input when driving power MOSFETs in systems where $\mathrm{V}_{\mathrm{CC}}$ is greater than 20 V ．Figure 23 shows proper power and control ground connections in a current－sensing power MOSFET application．

## Reference

The 5.0 V bandgap reference is trimmed to $\pm 1.0 \%$ tolerance at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ on the 284 X ，and $\pm 2.0 \%$ on the 384 X ．Its primary purpose is to supply charging currentto the oscillator timing capacitor．The reference has short－circuit protection and is capable of providing in excess of 20 mA for powering additional control system circuitry．

## Design Considerations

Do not attempt to construct the converter on wire－wrap or plug－in prototype boards．High frequency circuit layout techniques are imperative to prevent pulse－width jitter．This is usually caused by excessive noise pick－up imposed on the Current Sense or Voltage Feedback inputs．Noise immunity can be improved by lowering circuit impedances at these points．The printed circuit layout should contain a ground plane with low－current signal and high－current switch and output grounds returning on separate paths back to the input filter capacitor．Ceramic bypass capacitors $(0.1 \mu \mathrm{~F})$ connected directly to $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{C}}$ ， and $\mathrm{V}_{\text {ref }}$ may be required depending upon circuit layout． This provides a low impedance path for filtering the high frequency noise．All high current loops should be kept as short as possible using heavy copper runs to minimize radiated EMI．The Error Amp compensation circuitry and the converter output voltage divider should be located close to the IC and as far as possible from the power switch and other noise－generating components．


The diode clamp is required if the Sync amplitude is large enough to cause the bottom side of $\mathrm{C}_{\mathrm{T}}$ to go more than 300 mV below ground．

Figure 18．External Clock Synchronization


Figure 19．External Duty Cycle Clamp and Multi－Unit Synchronization

Www．XINLUDA．COM 信路尬


Figure 20．Adjustable Reduction of Clamp Level


Figure 22．Adjustable Buffered Reduction of Clamp Level with Soft－Start


Figure 21．Soft－Start Circuit


Virtually lossless current sensing can be achieved with the implementation of a SENSEFET ${ }^{T M}$ power switch．For proper operation during over－current conditions，a reduction of the $\mathrm{I}_{\mathrm{pk}(\max )}$ clamp level must be implemented． Refer to Figures 20 and 22.

Figure 23．Current Sensing Power MOSFET

Www．XINLUDA．COM 信路达


The addition of the RC filter will eliminate instability caused by the leading edge spike on the current waveform．

Figure 24．Current Waveform Spike Suppression


Series gate resistor $R_{g}$ will damp any high frequency parasitic oscillations caused by the MOSFET input capacitance and any series wiring inductance in the gate－source circuit．

Figure 25．MOSFET Parasitic Oscillations


The totem pole output can furnish negative base current for enhanced transistor turn－off，with the addition of capacitor $\mathrm{C}_{1}$ ．

Figure 26．Bipolar Transistor Drive


Figure 27．Isolated MOSFET Drive


The MCR101 SCR must be selected for a holding of＜ $0.5 \mathrm{~mA} @ \mathrm{~T}_{\mathrm{A}(\mathrm{min}) \text { ．}}$ ． simple two transistor circuit can be used in place of the SCR as shown．All resistors are 10 k

Figure 28．Latched Shutdown


Error Amp compensation circuit for stabilizing any current mode topology except for boost and flyback converters operating with continuous inductor current．


Error Amp compensation circuit for stabilizing current mode boost and flyback topologies operating with continuous inductor current．

Figure 29．Error Amplifier Compensation

WWW．XINLUDA．COM 信路达


T1－Primary： 45 Turns \＃26 AWG
L1－ $15 \mu \mathrm{H}$ at 5．0 A，Coilcraft $Z 7156$
Secondary $\pm 12$ V： 9 Turns \＃30 AWG（2 Strands）Bifiliar Wound
L2，L3－ $25 \mu$ H at 5．0 A，Coilcraft Z7157
Secondary 5．0 V： 4 Turns（six strands）\＃26 Hexfiliar Wound
Secondary Feedback： 10 Turns \＃30 AWG（2 strands）Bifiliar Wound
Core：Ferroxcube EC35－3C8
Bobbin：Ferroxcube EC35PCB1
Gap：$\approx 0.10$＂for a primary inductance of 1.0 mH

Figure 30． 7 W Off－Line Flyback Regulator

Test		Conditions	Results
Line Regulation：	$\begin{aligned} & 5.0 \mathrm{~V} \\ & \pm 12 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {in }}=95 \mathrm{Vac}$ to 130 Vac	$\begin{aligned} & \Delta=50 \mathrm{mV} \text { or } \pm 0.5 \% \\ & \Delta=24 \mathrm{mV} \text { or } \pm 0.1 \% \end{aligned}$
Load Regulation：	$\begin{aligned} & 5.0 \mathrm{~V} \\ & \pm 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=115 \mathrm{Vac}, I_{\text {out }}=1.0 \mathrm{~A} \text { to } 4.0 \mathrm{~A} \\ & \mathrm{~V}_{\text {in }}=115 \mathrm{Vac}, I_{\text {out }}=100 \mathrm{~mA} \text { to } 300 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \Delta=300 \mathrm{mV} \text { or } \pm 3.0 \% \\ & \Delta=60 \mathrm{mV} \text { or } \pm 0.25 \% \end{aligned}$
Output Ripple：	$\begin{aligned} & 5.0 \mathrm{~V} \\ & \pm 12 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}$	$\begin{aligned} & 40 \mathrm{mV}_{\mathrm{pp}} \\ & 80 \mathrm{mV}_{\mathrm{pp}} \end{aligned}$
Efficiency		$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}$	70\％

All outputs are at nominal load currents unless otherwise noted．

WWW．XINLUDA．COM 信路达


The capacitor＇s equivalent series resistance must limit the Drive Output current to 1．0 A．An additional series resistor may be required when using tantalum or other low ESR capacitors．The converter＇s output can provide excellent line and load regulation by connecting the R2／R1 resistor divider as shown．

Figure 31．Step－Up Charge Pump Converter


The capacitor＇s equivalent series resistance must limit the Drive Output current to 1.0 A ．
An additional series resistor may be required when using tantalum or other low ESR capacitors．
Figure 32．Voltage－Inverting Charge Pump Converter

WWW．XINLUDA．COM 信路达

## DIP－8



NOTES
1．DIMENSIONING AND TOLERANCING PER ASME Y14．5M， 1994. 2．CONTROLLING DIMENSION：INCHES
3．DIMENSIONS A，A1 AND L ARE MEASURED WITH THE PACK－ AGE SEATED IN JEDEC SEATING PLANE GAUGE GS－3．
4．DIMENSIONS D，D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS．MOLD FLASH OR PROTRUSIONS ARE OR PROTRUSIONS．MOLD F
NOT TO EXCEED 0.10 INCH．
5．DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C
6．DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED．
7．DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS，WHERE THE LEADS EXIT THE BODY
8．PACKAGE CONTOUR IS OPTIONAL（ROUNDED OR SQUARE CORNERS）．

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	----	0.210	---	5.33
A1	0.015	----	0.38	---
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP	1.52 TYP		
C	0.008	0.014	0.20	0.36
D	0.355	0.400	9.02	10.16
D1	0.005	----	0.13	---
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	
e	0.100			
eB	----	0.430	2.54	

SOP－8


NOTES
1．DIMENSIONING AND TOLERANCING PER ANSI Y14．5M， 1982.
2．CONTROLLING DIMENSION：MILLIMETER．
3．DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION．
4．MAXIMUM MOLD PROTRUSION 0.15 （0．006） PER SIDE．
5．DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 （0．005）TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION．
．751－01 THRU 751－06 ARE OBSOLETE．NEW STANDARD IS 751－07

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	4.80	5.00	0.189	0.197		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.053	0.069		
D	0.33	0.51	0.013	0.020		
G	1.27		BSC	0.050		BSC
H	0.10	0.25	0.004	0.010		
$\mathbf{J}$	0.19	0.25	0.007	0.010		
$\mathbf{K}$	0.40	1.27	0.016	0.050		
$\mathbf{M}$	0	$\circ$	$8{ }^{\circ}$	0		
	$\circ$	8				
$\mathbf{N}$	0.25	0.50	0.010	0.020		
$\mathbf{S}$	5.80	6.20	0.228	0.244		


[^0]:    5．Adjust $\mathrm{V}_{\mathrm{CC}}$ above the Startup threshold before setting to 15 V ．
    6．Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible． $\mathrm{T}_{\text {low }}=0^{\circ} \mathrm{C}$ for $3844 / 3845 \quad \mathrm{~T}_{\text {high }}=+70^{\circ} \mathrm{C}$ for $3844 / 3845$ $=-25^{\circ} \mathrm{C}$ for $2844 / 2845=+85^{\circ} \mathrm{C}$ for $2844 / 2845$

