

1. Electrical Specification

1-1 Test condition

Varistor voltage In = 1 mA DC Leakage current Vdc = 5.0V DC

Maximum clamping voltage Ic = 1 A

Rated peak single pulse transient current $8 / 20 \mu s$ waveform, +/- each 1 time induce

Capacitance 10/1000 μ s waveform Insulation resistance after reflow soldering f = 1MHz, Vrms = 0.5 V

Soldering paste: Tamura (Japan) RMA-20-21L

Stencil: SUS, 120 μ m thickness

Reflow soldering condition Pad size : 0.5 (Width) x 0.6 (Length)

0.5 (Distance between pads)

Soldering profile : 260 $\pm 5~$ °C , 5 sec.

1-2 Electrical specification

Maximum allowable continuous DC voltage	5.0	V	
trigger voltage / Varistor voltage / breakdown voltage	100-150	V	
Maximum clamping voltage	200	V	Maximum
Rated peak single pulse transient current 1			Maximum
Nonlinearity coefficient	> 12		
Leakage current at continuous DC voltage	< 0.1	μ A	
Response time	< 0.5	ns	
Varistor voltage temperature coefficient	< 0.05	%/℃	
Capacitance measured at 1MHz	0.8	pF	Typical
Capacitance tolerance	-50 to +50	%	
Insulation resistance after reflow soldering on PCB	> 10	$\mathbf{M}\Omega$	
Operating ambient temperature	-55 to +85	${\mathbb C}$	
Storage temperature	-55 to +125	${\mathbb C}$	

Rev: 01.06.2017 1/5 www.leiditech.com

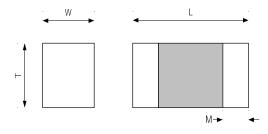
1-3 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement
Pulse current capability	Imax 8/20 <i>μ</i> s	IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d Vn /Vn ≤ 10% no visible damage
Electrostatic discharge capability	ESD C=150 pF, R=330 Ω	IEC 1000-4-2 d Vn /Vn ≤ Each 10 times in positive/negative direction in 10 sec at 8KV contact discharge (Level 4) no visible da	
I reliability Cond		IEC 68-2-14 Condition for 1 cycle Step 1 : Min40 °C, 30 ± 3 min. Step 2 : Max. +125 °C, 30 ± 3 min. Number of cycles: 30 times	d Vn /Vn ≤ 5% no visible damage
	Low temperature	IEC 68-2-1 Place the chip at -40 ± 5 °C for 1000 ± 12 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 5% no visible damage
24hrs. Remove and place for		IEC 68-2-2 Place the chip at 125 ± 5 °C for 1000 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 5% no visible damage
	Heat resistance	$\frac{IEC~68-2-3}{\text{Apply the rated voltage for }1000\pm48\text{hrs at }85\pm3^{\circ}\text{C}.\text{ Remove and place for }24\pm2\text{hrs at room temp. condition, then measure}$	d Vn /Vn ≤ 5% no visible damage
	Humidity resistance	IEC 68-2-30 Place the chip at $40\pm2\%$ and 90 to 95% humidity for 1000 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage
	Pressure cooker test	Place the chip at 2 atm, 120 °C, 85%RH for 60 hrs. Remove and place for 24 ± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage
	Operating life	Apply the rated voltage for 1000 ± 48hrs at 125 ± 3 °C . Remove and place for 24 ± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage

Rev: 01.06.2017 2/5 www.leiditech.com

Mechanical Reliability	Solderability	$\frac{\text{IEC 68-2-58}}{\text{Solder bath method, } 230 \pm 5 ^{\circ}\text{C}, 2\text{s}}$	At least 95% of terminal electrode is covered by new solder	
	Resistance to	IEC 68-2-58	d Vn /Vn ≤ 5%	
soldering heat	Solder bath method, 260 ± 5 °C, 10 ± 0.5 s, 270 ± 5 °C, 3 ± 0.5 s	no visible damage		
	Bending strength	IEC 68-2-21	d Vn /Vn ≤ 5%	
		Warp:2mm, Speed:0.5mm/sec, Duration: 10sec. The measurement shall be made with board in the bent position	no visible damage	
	Adhesive strength	IEC 68-2-22	Strength>10 N	
		Applied force on SMD chip by fracture from PCB	no visible damage	

2. Material Specification


Body ZnO based ceramics

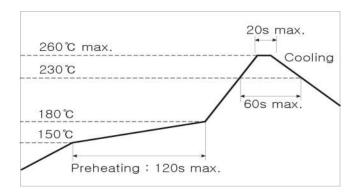
Internal electrode Silver – Palladium

External electrode Silver – Nickel – Tin

Thickness of Ni/Sn plating layer Nickel $> 1 \mu m$, Tin $> 2 \mu m$

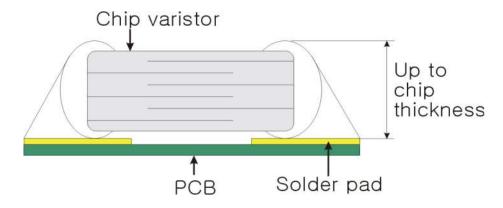
3. Dimension Specification

Size	L(mm)	W(mm)	T(mm)	M(mm)
0201	0.6 ± 0.03	0.3 ± 0.03	≤ 0.3	0.15 ± 0.05
0402	1.0 ± 0.10	0.5 ± 0.10	≤ 0.6	0.20 ± 0.10


4. Soldering Recommendations

4-1 Soldering profile

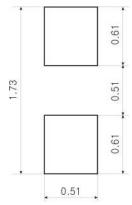
Rev: 01.06.2017 3/5 www.leiditech.com



4-1-1 Pb free solder paste

4-1-2 Repair soldering

- Optimum solder amount when corrections are made using a soldering iron


4-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use non-activated flux (Cl content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

Rev: 01.06.2017 4/5 www.leiditech.com

4-3 Solder pad layout

5. Storage condition

- Storage environment must be at an ambient temperature of 25~35 $\,^\circ\!\mathbb{C}\,$ and an ambient humidity of 40~60 % RH
- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.
 If 6 months of more have elapsed, check solderability before use.-

6. Description about package label

Qunatity: 10,000 pcs

- Quantity of shipping chip varistor

Shanghai Leiditech Electronic Co.,Ltd

Email: sale1@leiditech.com Tel: +86- 021 50828806 Fax: +86- 021 50477059