

1. Electrical Specification

1-1 Test condition

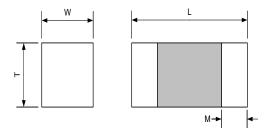
Varistor voltage	In = 1 mA DC
Leakage current	Vdc = 5.5 V DC
Maximum clamping voltage	Ic = 1 A
Rated peak single pulse transient current	$8/20\mu s$ waveform, +/- each 1 time induce
Capacitance	10/1000 μs waveform
Insulation resistance after reflow soldering	f = 1MHz, Vrms = 0.5 V
	Soldering paste : Tamura (Japan) RMA-20-21L
	Stencil: SUS, 120 µm thickness
Reflow soldering condition	Pad size : 0.8 (Width) x 0.9 (Length)
	0.8 (Distance between pads)
	Soldering profile : 260 ± 5 °C, 5 sec.

1-2 Electrical specification

Maximum allowable continuous DC voltage	5.5	V	
trigger voltage / Varistor voltage / breakdown voltage	12	V	
Maximum clamping voltage	25	V	Maximum
Rated peak single pulse transient current	1	А	Maximum
Nonlinearity coefficient	> 12		
Leakage current at continuous DC voltage	< 0.1	μA	
Response time	< 0.5	ns	
Varistor voltage temperature coefficient	< 0.05	%/°C	
Capacitance measured at 1MHz	5	pF	Typical
Capacitance tolerance	-50 to +80	%	
Insulation resistance after reflow soldering on PCB	> 10	MΩ	
Operating ambient temperature	-55 to +125	°C	
Storage temperature	-55 to +125	°C	

1-3 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement
Pulse current capability	lmax 8/20 μs	<u>IEC 1051-1, Test 4.5.</u> 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d│Vn│/Vn≤ 10% no visible damage
Electrostatic discharge capability	ESD C=150 pF, R=330Ω	<u>IEC 1000-4-2</u> Each 10 times in positive/negative direction in 10 sec at 8KV contact discharge (Level 4)	d│Vn│/Vn≤ 10% no visible damage
Environmenta I reliability	Thermal shock	IEC 68-2-14 Condition for 1 cycle Step 1 : Min. –40°C, 30±3 min. Step 2 : Max. +125°C, 30±3 min. Number of cycles: 30 times	d│Vn│/Vn≤ 5% no visible damage
	Low temperature	<u>IEC 68-2-1</u> Place the chip at -40±5°C for 1000± 12hrs. Remove and place for 24±2hrs at room temp. condition, then measure	d│Vn│/Vn≤ 5% no visible damage
	High temperature	<u>IEC 68-2-2</u> Place the chip at 125±5°C for 1000± 24hrs. Remove and place for 24±2hrs at room temp. condition, then measure	d│Vn│/Vn≤ 5% no visible damage
	Heat resistance	<u>IEC 68-2-3</u> Apply the rated voltage for 1000±48hrs at 85±3°C. Remove and place for 24±2hrs at room temp. condition, then measure	d│Vn│/Vn≤ 5% no visible damage
	Humidity resistance	IEC 68-2-30 Place the chip at 40±2°C and 90 to 95% humidity for 1000±24hrs. Remove and place for 24±2hrs at room temp. condition, then measure	d│Vn│/Vn≤ 10% no visible damage
	Pressure cooker test	Place the chip at 2 atm, 120°C, 85%RH for 60 hrs. Remove and place for 24± 2hrs at room temp. condition, then measure	d│Vn│/Vn≤ 10% no visible damage

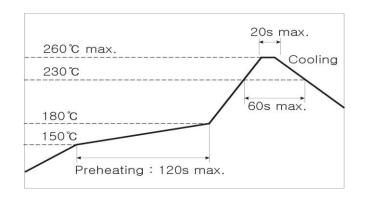

ESDA05

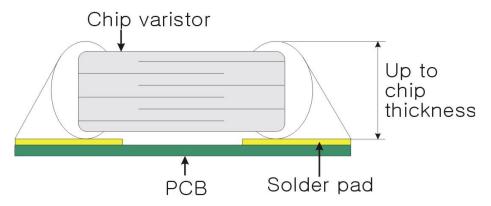
	Operating life	Apply the rated voltage for 1000±48hrs at 125±3°C. Remove and place for 24±2hrs at room temp. condition, then measure	d│Vn│/Vn≤ 10% no visible damage
Mechanical Reliability	Solderability	IEC 68-2-58 Solder bath method, 230±5°C, 2s	At least 95% of terminal electrode is covered by new solder
	Resistance to soldering heat	<u>IEC 68-2-58</u> Solder bath method, 260±5℃, 10±0.5s, 270±5℃, 3±0.5s	d│Vn│/Vn≤ 5% no visible damage
	Bending strength	<u>IEC 68-2-21</u> Warp:2mm, Speed:0.5mm/sec, Duration: 10sec. The measurement shall be made with board in the bent position	d│Vn│/Vn≤ 5% no visible damage
	Adhesive strength	IEC 68-2-22 Applied force on SMD chip by fracture from PCB	Strength>10 N no visible damage

2. Material Specification

Body	ZnO based ceramics
Internal electrode	Silver – Palladium
External electrode	Silver – Nickel – Tin
Thickness of Ni/Sn plating layer	Nickel > 1 µm, Tin > 2 µm

3. Dimension Specification

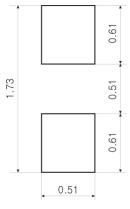

Size	L(mm)	W(mm)	T(mm)	M(mm)
0402	1.0±0.10	0.5±0.10	≤ 0.6	0.20±0.10
0603	1.6±0.15	0.8±0.15	≤ 0.9	0.35±0.10


4. Soldering Recommendations

- 4-1 Soldering profile
- 4-1-1 Pb free solder paste

4-1-2 Repair soldering

- Allowable time and temperature for making correction with a soldering iron
 : 350 ± 10 °C, 3 sec.
- Optimum solder amount when corrections are made using a soldering iron



4-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

4-3 Solder pad layout

5. Storage condition

- Storage environment must be at an ambient temperature of 25~35 °C and an ambient humidity of 40~60 % RH
- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.

If 6 months of more have elapsed, check solderability before use.-

Shanghai Leiditech Electronic Co.,Ltd Email: sale1@leiditech.com Tel : +86- 021 50828806 Fax : +86- 021 50477059