

Description

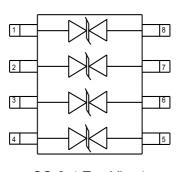
The SMDAxxC series of TVS arrays are designed to provide bidirectional protection for sensitive electronics from damage or latch-up due to ESD, lightning and other voltage-induced transient events. Each device will protect four data or I/O lines. They are available with operating voltages of 5V, 12V, 15V and 24V.

TVS diodes are solid-state devices designed specifically for transient suppression. They offer desirable characteristics for board level protection including fast response time, low operating and clamping voltage and no device degradation. The low profile SO-8 package allows the user to protect up to four independent lines with one package. The SMDAxxC series is suitable protection for sensitive semiconductors components such as microprocessors, ASICs, transceivers, transducers, and CMOS memory.

The SMDAxxC series devices may be used to meet the ESD immunity requirements of IEC 61000-4-2, level 4 for air and contact discharge.

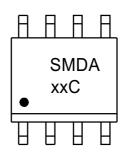
Mechanical Characteristics

- ◆ JEDEC SO-8 package
- ♦ Molding compound flammability rating: UL 94V-0
- ♦ Marking: Part number
- ◆ Packaging: Tube or Tape and Reel per EIA 481


Features

- ◆ Transient protection for data lines to IEC 61000-4-2(ESD) ±15KV(air), ±8KV(contact) IEC 61000-4-4(EFT) 40A(5/50ns) IEC 61000-4-5(Lightning)12A(8/20µs)
- Bidirectional protection
- Small SO-8 package
- ◆ Protects four I/O lines
- ♦ Working voltages: 5V, 12V, 15V and 24V
- ◆ Low leakage current
- Low operating and clamping voltages
- Solid-state silicon avalanche technology

Applications


- Data and I/O lines
- Microprocessor based equipment
- Notebooks, Desktops, and Servers
- Instrumentation
- ◆ LAN/WAN equipment
- Peripherals
- Serial and Parallel Ports

Dimensions and Pin Configuration

SO-8 (Top View)

Marking Information

xx represents the voltage Dot denotes Pin1

Ordering Information

Part Number	Marking	Packaging	Reel Size
SMDAxxC	SMDAxxC	2500/Tape & Reel	13 inch

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Parameter	Symbol	Value	Unit
Peak Pulse Power(8/20µs)	Ppk	300	W
Esd Voltage (HBM per IEC 61000-4-2)	Vesd	>25	KV
Lead Soldering Temperature	TL	260(10 sec.)	°C
Operating Temperature Range	TJ	−55 to +125	°C
Storage Temperature Range	Tstg	−55 to +150	°C

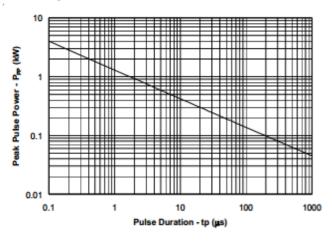
Electrical Characteristics (T_A=25°C unless otherwise specified)

SMDA05C (Marking Code:SMDA05C)							
Parameter	Symbol	Min	Тур	Max	Unit	Test Condition	
Reverse Working Voltage	VRWM			5	V		
Reverse Breakdown Voltage	VBR	6			V	IT = 1mA	
Reverse Leakage Current	I _R			20	μΑ	VRWM = 5V,T=25°C	
Clamping Voltage	Vc			9.8	V	IPP = 1A (8 x 20µs pulse)	
Clamping Voltage	Vc			11	V	IPP = 5A (8 x 20µs pulse)	
Maximum Peak Pulse Current	IPP			17	А	tp=8/20µs	
Junction Capacitance	Сл			350	pF	VR = 0V, f = 1MHz	

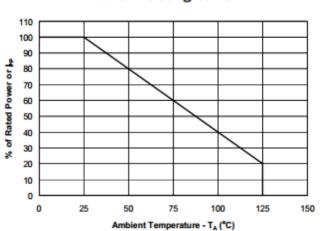
Rev. 1 May, 2018 2 www.first-electronic.com

SMDA12C (Marking Code:SMDA12C)								
Parameter	Symbol	Min	Тур	Max	Unit	Test Condition		
Reverse Working Voltage	VRWM			12	V			
Reverse Breakdown Voltage	VBR	13.3			V	IT = 1mA		
Reverse Leakage Current	I _R			1	μA	VRWM = 12V,T=25°C		
Clamping Voltage	Vc			19	V	IPP = 1A (8 x 20µs pulse)		
Clamping Voltage	Vc			24	V	IPP = 5A (8 x 20µs pulse)		
Maximum Peak Pulse Current	IPP			12	А	tp=8/20µs		
Junction Capacitance	Cı			120	рF	VR = 0V, f = 1MHz		

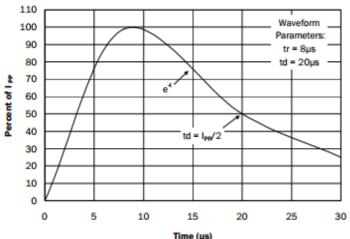
SMDA15C (Marking Code:SMDA15C)								
Parameter	Symbol	Min	Тур	Max	Unit	Test Condition		
Reverse Working Voltage	VRWM			15	V			
Reverse Breakdown Voltage	VBR	16.7			V	IT = 1mA		
Reverse Leakage Current	I _R			1	μA	Vrwм = 15V,T=25°С		
Clamping Voltage	Vc			24	V	IPP = 1A (8 x 20µs pulse)		
Clamping Voltage	Vc			30	V	IPP = 5A (8 x 20µs pulse)		
Maximum Peak Pulse Current	IPP			10	Α	tp=8/20µs		
Junction Capacitance	Сı			75	рF	VR = 0V, f = 1MHz		

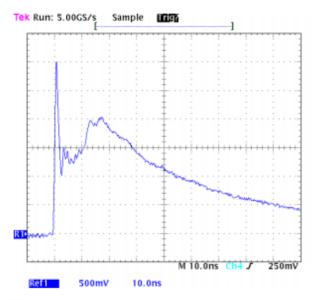


SMDA24C (Marking Code:SMDA24C)							
Parameter	Symbol	Min	Тур	Max	Unit	Test Condition	
Reverse Working Voltage	VRWM			24	V		
Reverse Breakdown Voltage	VBR	26.7			V	IT = 1mA	
Reverse Leakage Current	I _R			1	μΑ	VRWM = 24V,T=25°C	
Clamping Voltage	Vc			43	V	IPP = 1A (8 x 20µs pulse)	
Clamping Voltage	Vc			55	V	IPP = 5A (8 x 20μs pulse)	
Maximum Peak Pulse Current	IPP			5	А	tp=8/20µs	
Junction Capacitance	CJ			50	pF	VR = 0V, f = 1MHz	



Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time

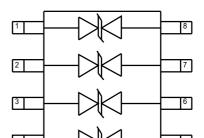

Power Derating Curve

Pulse Waveform

Time (µs) ESD Pulse Waveform (IEC 61000-4-2)

IEC 61000-4-2 Discharge Parameters

Level	First Peak Current	Peak Current at 30 ns	Peak Current at 60 ns	Test Voltage (Contact Discharge)	Test Voltage (Air Discharge)
	(A)	(A)	(A)	(kV)	(kV)
1	7.5	4	8	2	2
2	15	8	4	4	4
3	22.5	12	6	6	8
4	30	16	8	8	15



Applications Information

Device Connection for Protection of Four Data Lines

The SMDAxxC series of devices are designed to protect up to four data lines. The devices are connected as follows:

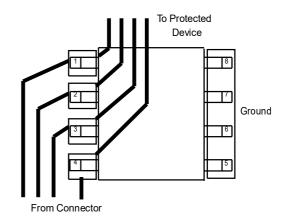
◆ The SMDAxxC are bidirectional devices and are designed for use on lines where the normal operating voltage is above and below ground. Pins 1, 2, 3 and 4 are connected to the protected lines. Pins 5, 6, 7 and 8 are connected to ground. Since the device is electrically symmetrical, these connections may be reversed. The ground connections should be made directly to the ground plane for best results. The path length is kept as short as possible to reduce the effects of parasitic inductance in the board traces.

Circuit Diagram

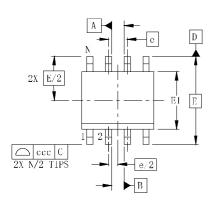
I/O Line Protection

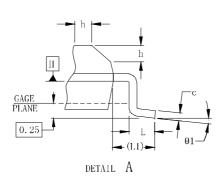
Circuit Board Layout Recommendations for Suppression of ESD.

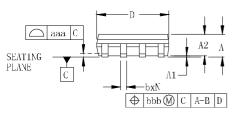
Good circuit board layout is critical for the suppression of ESD induces transients. The following guidelines are recommended:

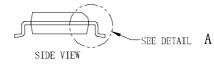

- Place the TVS near the input terminals or connectors to restrict transient coupling.
- Minimize the path length between the TVS and the protected line.
- Minimize all conductive loops including power and ground loops.
- ◆ THE ESD transient return path to ground should be kept as short as possible.
- Never run critical signals near board edges.
- Use ground planes whenever possible.

Typical Connection

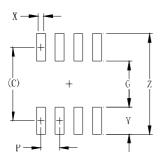

Matte Tin Lead Finish


Matte tin has become the industry standard lead-free replacement for SnPb lead finishes. A matte tin finish is composed of 100% tin solder with large grains. Since the solder volume on the leads is small compared to the solder paste volume that is placed on the land pattern of the PCB, the reflow profile will be determined by the requirements of the solder paste. Therefore, these devices are compatible with both lead-free and SnPb assembly techniques. In addition, unlike other lead-free compositions, matte tin dose not have any added alloys that cause degradation of the solder joint.





SO-8 Package Outline Drawing



	DIMENSIONS							
SY	М	ILLIMETE	RS		INCHES			
M	MIN	NOM	MAX	MIN	NOM	MAX		
Α	1.35		1.75	0.053		0.069		
A1	0.10		0.25	0.004		0.010		
A2	1.25		1.65	0.049		0.065		
b	0.31		0.51	0.012		0.020		
С	0.17		0.25	0.007		0.010		
D	4.80	4.90	5.00	0.189	0.193	0.197		
E1	3.80	3.90	4.00	0.150	0.154	0.157		
Е		6.00 BS	<u> </u>	().236 BS(<u> </u>		
е		1.27 BS)	0.050 BSC				
h	0.25		0.50	0.010		0.020		
L	0.40	0.72	1.04	0.016	0.028	0.041		
L1		(1.04)			(0.041)			
N		8			8			
θ1	0°	8°		0°		8°		
aaa		0.10		0.004				
bbb		0.25			0.010			
CCC		0.20			0.008	·		

Suggested Land Pattern

CVM	DIMENSIONS					
SYM	MILLIMETERS	INCHES				
С	(5.20)	0.205				
G	3.00	0.118				
Р	1.27	0.050				
X	0.60	0.024				
Υ	2.20	0.087				
Z	7.40	0.291				

Contact Information

Changzhou D-first Electronics CO.,Ltd.

www.first-electronic.com

Email: yf@first-electronic.cn

Phone: +86 (0519) 8817 1671

Rev. 1_May,2018 7 www.first-electronic.com