AW DCC6C Series

Approved by: 刘惠光

Checked by: 李相同

Issued by: 贺丹斌

SPECIFICATION

SJK P/N: AW433920DCC6CA75UE

深圳市晶科鑫实业有限公司

SHENZHEN CRYSTAL TECHNOLOGY INDUSTRIAL CO., LTD.

Add: 12F, Bldg. 3C, TianAn Cloud Park Phase 1, Bantian, Longgang, Shenzhen 518129, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499 E-mail: <u>sjk@q-crystal.com</u> HTTP://<u>www.q-crystal.com</u>

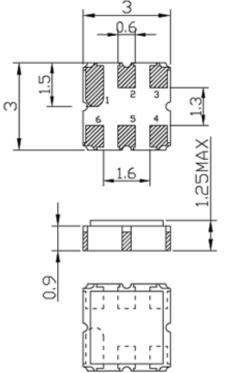
The SJK433.920 is a true one- port , surface- acoustic- wave(SAW) resonator in a low- profile DCC6C case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 433.920MHz.

Performance

1-1.Maximum Rating

Rating		Value	Unit
RF Power Dissipation	Ps	10	dBm
DC voltage between any two pins	V _{DC}	10	V
Operating temperature range	TA	-40 ~ +85	°C
Storage temperature range	$T_{\rm stg}$	-55 ~ +125	°C

1-2. Electronic Characteristics

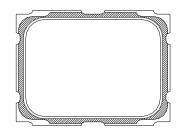

Test Temperature: $25^{\circ}C \pm 2^{\circ}C$ /Terminating source impedance: 50Ω /Terminating load impedance: 50Ω

Characteristic		Sym	Minimum	Typical	Maximum	Unit
0 / F	Absolute Frequency	f _C		433.920		MHz
Center Frequency	Tolerance from 433.920 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.4	2.0	dB
Quality Factor	Unloaded Q	QU		12451		
	50Ω Loaded Q	QL		1984		
Temperature Stability	Turnover Temperature	To	25	40	55	°C
	Turnover Frequency	f _o		f _c		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A		≤10		ppm/yr
DC Insulation Resistance between the Two Pins			1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		14.5	25.5	Ω
	Motional Inductance	L _M		65.5	95.5	μH
	Motional Capacitance	См		2.05		fF
	Pin 1 to Pin 2 Static Capacitance	Co	2.55	2.95	3.35	pF

Add: 12F, Bldg. 3C, TianAn Cloud Park Phase 1, Bantian, Longgang, Shenzhen 518129, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499 E-mail: <u>sjk@q-crystal.com</u> HTTP://<u>www.q-crystal.com</u>

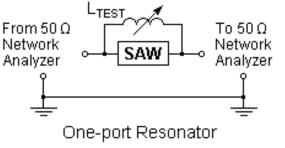
AW DCC6C Series

Package Dimension (DCC6C)

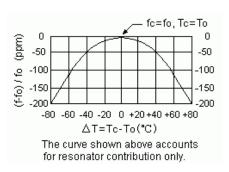


Pin Configuration

SJK


2₄ ³	Input₽	¢
5↩	Output₽	¢
1,3,4,6↩	Ground₽	¢

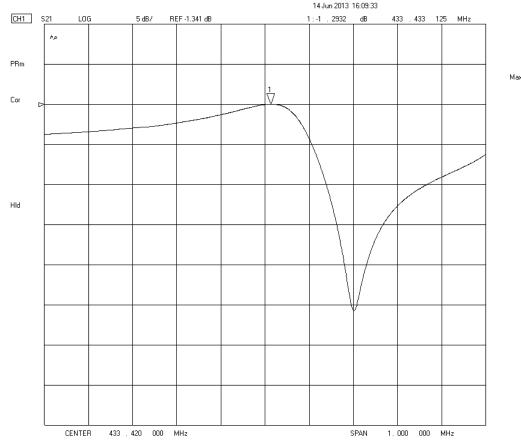
Marking


R	SAW Resonator
433.92	Part number

Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonabte with the static capacitance, C_0 at f_C .

Temperature Characteristics



Add: 12F, Bldg. 3C, TianAn Cloud Park Phase 1, Bantian, Longgang, Shenzhen 518129, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499 E-mail: sjk@g-crystal.com HTTP://www.g-crystal.com

AW DCC6C Series

Typical Frequency Response

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling! **NOTES:**

1. The center frequency, f_{C} , is measured at the minimum IL point with the resonator in the 50 Ω test system.

2. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.

3. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_c , may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.

5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between the two terminals. The measurement includes case parasitic capacitance.

6. Derived mathematically from one or more of the following directly measured parameters: f_C , I_L , 3 dB bandwidth, f_C versus T_C , and C_0 .

7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.

8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.

9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.

10. For questions on technology, prices and delivery please contact our sales offices .

Add: 12F, Bldg. 3C, TianAn Cloud Park Phase 1, Bantian, Longgang, Shenzhen 518129, China Tel: (86) 755 88352809 88352810 Fax: (86) 755 88353718 88352499 E-mail: <u>sjk@q-crystal.com</u> HTTP://<u>www.q-crystal.com</u>