

TF2181M

High-Side and Low-Side Gate Driver

Features

- Floating high-side driver in bootstrap operation to 600V
- Drives two N-channel MOSFETs or IGBTs in a half bridge configuration
- 1.9A source / 2.3A sink output current capability
- Outputs tolerant to negative transients
- Wide low side gate driver supply voltage: 10V to 20V
- Logic input (HIN and LIN) 3.3V capability
- Schmitt triggered logic inputs with internal pull down
- Undervoltage lockout for high and low side drivers
- Extended temperature range: -40°C to +125°C

Description

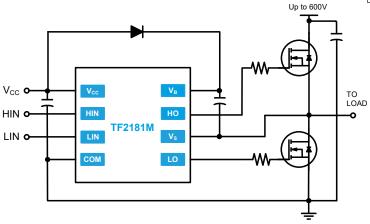
The TF2181M is a high voltage, high speed gate driver capable of driving N-channel MOSFETs and IGBTs in a half bridge configuration. TF Semiconductor's high voltage process enables the TF2181M's high side to switch to 600V in a bootstrap operation.

The TF2181M logic inputs are compatible with standard TTL and CMOS levels (down to 3.3V) to interface easily with controlling devices. The driver outputs feature high pulse current buffers designed for minimum driver cross conduction.

The TF2181M is offered in PDIP-8 and SOIC-8(N) packages and operate over an extended -40 °C to +125 °C temperature range.

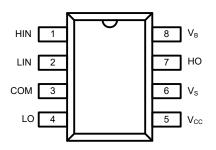
SOIC-8(N)

Applications


- DC-DC Converters
- AC-DC Inverters
- Motor Controls
- Class D Power Amplifiers

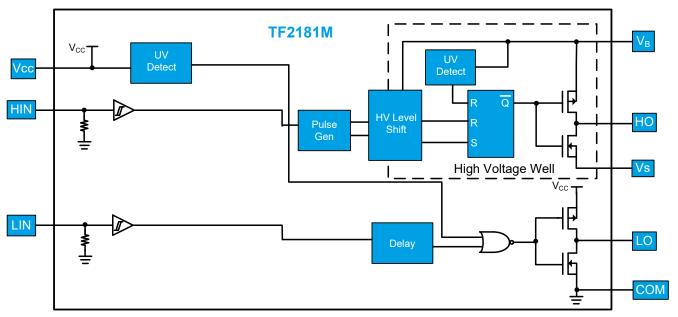
Ordering Information

Year Year Week Week


PART NUMBER	PACKAGE	PACK / Qty	MARK
TF2181M-3AS	PDIP-8	Tube / 50	TF2181M Lot ID
TF2181M-TAU	SOIC-8(N)	Tube / 100	TF2181M
TF2181M-TAH	SOIC-8(N)	T&R / 2500	Lot ID

Typical Application

www.tfsemi.com Rev 1.2


Top View: SOIC-8

TF2181M

Pin Descriptions

PIN NAME	PIN NUMBER	PIN DESCRIPTION
HIN	1	Logic input for high-side gate driver output, in phase with HO.
LIN	2	Logic input for low-side gate driver output, in phase with LO.
COM	3	Low-side and logic return
LO	4	Low-side gate drive output
V _{cc}	5	Low-side and logic fixed supply
V _s	6	High-side floating supply return
НО	7	High-side gate drive output
V _B	8	High-side floating supply

Functional Block Diagram

Absolute Maximum Ratings (NOTE1)

High-Side and Low-Side Gate Driver

V _B - High side floating supply voltage	0.3V to +624V
V _s - High side floating supply offset voltage\	V_B -24V to V_B +0.3V
V _{HO} -High side floating output voltage	V_s -0.3Vto V_B +0.3V
dV _s /dt-Offset supply voltage transient	50 V/ns
V _{cc} - Low-side fixed supply voltage	0.3V to +24V
V ₁₀ - Low-side output voltage	$-0.3V \text{ to V}_{cc} + 0.3V$
V _{IN} - Logic input voltage (HIN and LIN)	$-0.3V$ to $V_{CC}^{CC} + 0.3V$

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

P_D - Package power dissipation at $T_A \le 25$ °C SOIC-8	0.625W
SOIC-8(N) Thermal Resistance (NOTE2) θ_{JA}	0 °C/W
T _J - Junction operating temperature+ T _L - Lead Temperature (soldering, 10 seconds) T _{stg} - Storage temerature55 to	-300°C

NOTE2 Thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Recommended Operating Conditions

Symbol	Parameter	MIN	MAX	Unit
V _B	High side floating supply absolute voltage	V _s + 10	V _s + 20	V
V _s	High side floating supply offset voltage	NOTE3	600	V
V _{HO}	High side floating output voltage	V _s	V _B	V
V _{cc}	Low side fixed supply voltage	10	20	V
V _{LO}	Low side output voltage	0	V _{cc}	V
V _{IN}	Logic input voltage (HIN and LIN)	0	5	V
T _A	Ambient temperature	-40	125	°C

NOTE3 Logic operational for VS of -5V to +600V.

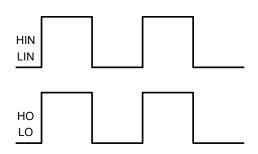
Jun. 2021

DC Electrical Characteristics (NOTE4)

 $V_{\text{BIAS}}(V_{\text{CC}},V_{\text{BS}}) = 15\text{V}, T_{\text{A}} = 25~^{\circ}\text{C}$, unless otherwise specified.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
V _{IH}	Logic "1" input voltage		2.5			
V _{IL}	Logic "0" input voltage	V _{cc} = 10V to 20V			0.8	
V _{OH}	High level output voltage, V _{BIAS} - V _O	$I_O = 0A$			1.4	V
V _{OL}	Low level output voltage, V _o	I _O = 20mA			0.2	
I _{LK}	Offset supply leakage current	VB = VS = 600V			50	
I _{BSQ}	Quiescent V _{BS} supply current	V _{IN} = 0V or 5V	20	60	150	μΑ
I _{ccq}	Quiescent V _{CC} supply current	V _{IN} = 0V or 5V	50	120	240	μА
I _{IN+}	Logic "1" input bias current	V _{IN} = 5V		25	60	
I _{IN-}	Logic "0" input bias current	V _{IN} = 0V			5.0	μΑ
V_{BSUV+}	V _{BS} supply under-voltage positive going threshold		8.0	8.9	9.8	
V_{BSUV}	V _{BS} supply under-voltage negative going threshold		7.4	8.2	9.0	V
V _{CCUV+}	V _{CC} supply under-voltage positive going threshold		8.0	8.9	9.8	
V _{CCUV} -	V _{CC} supply under-voltage negative going threshold		7.4	8.2	9.0	
I _{O+}	Output high short circuit pulsed current	$V_O = 0V$, PW $\leq 10 \mu s$	1.4	1.9		
I ₀₋	Output low short circuit pulsed current	$V_0 = 15V, PW \le 10 \mu s$	1.7	2.3		A

NOTE4 The V_{IM} , V_{TH} , and I_{IM} parameters are applicable to the two logic input pins: LIN and HIN. The V_0 and I_0 parameters are applicable to the respective output pins: HO and LO.


NOTE5 For optimal operation, it is highly recommended that the input pulse (to HIN and LIN) should have an amplitude of 2.5V minimum with a pulse width of 360ns minimum.

AC Electrical Characteristics $V_{BIAS}(V_{CC}, V_{BS}) = 15V, C_L = 1000 pF, and T_A = 25 \, ^{\circ}C$, unless otherwise specified.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit
t _{on}	Turn-on propogation delay	$V_s = 0V$		180	270	
t _{off}	Turn-off propogation delay	V _s = 0V or 600V		220	330	
t _{DM}	Delay matching, HS & LS turn-on/off				35	
t _r	Turn-on rise time	.,		40	60	ns
t _f	Turn-off fall time	$V_s = 0V$		20	35	

Jun. 2021 5

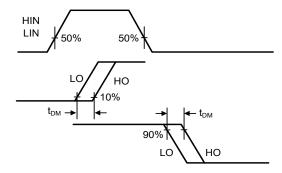


Figure 1. Input / Output Timing Diagram

Figure 2. Delay Matching Waveform Definitions

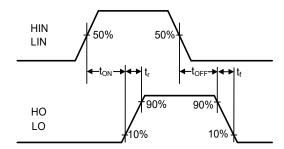
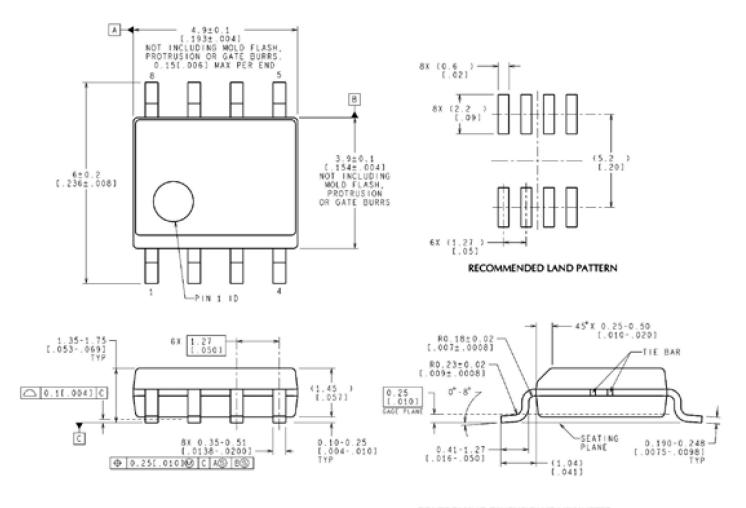


Figure 3. Switching Time Waveform Definitions

Application Information

High-Side and Low-Side Gate Driver




Figure 4. Primary side of Full Bridge converter using TF2181M

- RRG1, RRG2, RRG3, and RRG4 values are typically between 0Ω and 10Ω , exact value decided by MOSFET junction capacitance and drive current of gate driver; 10Ω is used in this example.
- It is **highly recommended** that the input pulse (to HIN and LIN) should have an amplitude of 2. 5V minimum (for VDD=15V) with a minimum pulse width of 360ns.
- **RG1**, RG2, RG3, and RG4 values are typically between 20Ω and 100Ω, exact value decided by MOSFET junction capacitance and drive current of gate driver; 50Ω is used in this example.
- RB1 and RB2 value is typically between 3Ω and 20Ω , exact value depending on bootstrap capacitor value and amount of current limiting required for bootstrap capacitor charging; 10Ω is used in this example. Also DB1 and DB2 should be an ultra fast diode of 1A rating minimum and voltage rating greater than system operating voltage.

Package Dimensions (SOIC-8 N)

Please contact support@tfsemi.com for package availability.

NOTES: UNLESS OTHERWISE SPECIFIED

1. REFERENCE JEDEC REGISTRATION MS-012, VARIATION AA.

CONTROLLING DIMENSION IS MILLIMETER
VALUES IN [] ARE INCHES
DIMENSIONS IN [] FOR REFERENCE ONLY

Jun. 2021

Rev.	Change	Owner	Date
1.0	First release, final datasheet	Keith Spaulding	8/5/2020
1.1	Changed IO- min.	Keith Spaulding	10/15/2020
1.2	Application notes update	Raj Selvaraj	06/22/2021

Important Notice

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2021 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited , reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfsemi.com or visit www.tfsemi.com.