CMOS Voltage Regulator With ON/OFF Switch

500mA

MD52XX is ultra-low power consumption low dropout voltage regulator (LDO) manufactured in CMOS processes. It can deliver up to 500mA of current while consuming only $0.6\mu A$ of quiescent current. It consists of a reference voltage generator, an error amplifier, a current foldback circuit, and a phase compensation circuit plus a driver transistor. The MD52XX is designed specifically for applications where very-low I_Q is a critical parameter. This device maintains low

quiescent current consumption even in dropout mode to further increase the battery life.

■ Features:

• Ultra-low Quiescent Current: 0.6µA

• Highly Accurate: ±2%

• Dropout Voltage: 230mV@Iout=500mA

• Maximum Output Current: 500mA

• Input Voltage Range: 2.2V~7.0V

• Temperature Stability: ±50ppm/°C

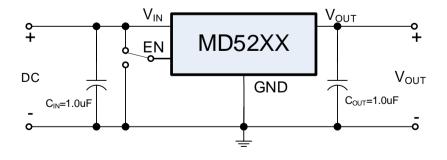
• ON/OFF Logic = Enable High

• Standby Current: 10nA

 C_{OUT} Discharge Circuit when EN Disable is Active

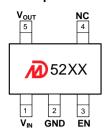
• Protections Circuits: Current Limiter, Short

Circuit, Foldback


• Output Capacitor: Low ESR Ceramic

Capacitor Compatible

■ Applications:


- Smart wearer
- Long-life battery-powered devices
- Portable mobile devices, such as mobile phones, cameras, and so on
- Wireless communication equipment

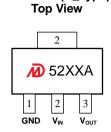
■ Typical Applications:

■ Pin Configuration:

SOT23-5L Top View

SOT23-3L Top View

V_{IN}


3

52XX

1

GND

V_{OUT}

SOT89-3L(A_Type)

DFN1*1-4L Top View

■ Product Selections:

Product Selections:							
Product Name	V _{OUT} (V)	Package	Ordering Name	Marking	Package Information		
MD5225	2.5	SOT23-5L	MD52E25QC3	№ 5225			
MD5228	2.8	SOT23-5L	MD52E28QC3	№ 5228			
MD5230	3.0	SOT23-5L	MD52E30QC3	№ 5230			
MD5233	3.3	SOT23-5L	MD52E33QC3	№ 5233			
MD5236	3.6	SOT23-5L	MD52E36QC3	№ 5236			
MD5240	4.0	SOT23-5L	MD52E40QC3	№ 5240			
MD5250	5.0	SOT23-5L	MD52E50QC3	№ 5250	Tape and Reel,		
MD5225	2.5	SOT23-3L	MD52E25QA3	№ 5225	3000pcs		
MD5228	2.8	SOT23-3L	MD52E28QA3	№ 5228			
MD5230	3.0	SOT23-3L	MD52E30QA3	№ 5230			
MD5233	3.3	SOT23-3L	MD52E33QA3	№ 5233			
MD5236	3.6	SOT23-3L	MD52E36QA3	№ 5236			
MD5240	4.0	SOT23-3L	MD52E40QA3	№ 5240			
MD5250	5.0	SOT23-3L	MD52E50QA3	№ 5250			
MD5225A	2.5	SOT89-3L	MD52A25PA1	№ 5225A			
MD5228A	2.8	SOT89-3L	MD52A28PA1	№ 5228A			
MD5230A	3.0	SOT89-3L	MD52A30PA1	№ 5230A	T I D I		
MD5233A	3.3	SOT89-3L	MD52A33PA1	№ 5233A	Tape and Reel, 1000pcs		
MD5236A	3.6	SOT89-3L	MD52A36PA1	₩5236A	Τουορος		
MD5240A	4.0	SOT89-3L	MD52A40PA1	№ 5240A			
MD5250A	5.0	SOT89-3L	MD52A50PA1	№ 5250A			
MD5225	2.5	DFN1*1-4L	MD52E25WB6	5225			
MD5228	2.8	DFN1*1-4L	MD52E28WB6	5228	Tape and Reel,		
MD5230	3.0	DFN1*1-4L	MD52E30WB6	5230	10000pcs		
MD5233	3.3	DFN1*1-4L	MD52E33WB6	5233	7		

MD5236	3.6	DFN1*1-4L	MD52E36WB6	5236	Tana and Daal
MD5240	4.0	DFN1*1-4L	MD52E40WB6	5240	Tape and Reel, 10000pcs
MD5250	5.0	DFN1*1-4L	MD52E50WB6	5250	10000pc3

Notes: 1* Customer can request to customize the output voltage ranged from 1.2V to 5V if desired voltage is not found in the selections.

■ Absolute Maximum Ratings:

(Unless otherwise indicated: T_a=25°C)

PARAMETER	SYMBOL	RATINGS		UNITS	
Input Voltage	V_{IN}	-0.3 ~ 8		V	
Output Voltage	V_{OUT}	Vss-0.3 ~ VIN+0.3V			
	P _D	SOT23-5	250		
Dower Dissipation		SOT23-3	250	mW	
Power Dissipation		SOT89-3	1000	THVV	
		DFN1*1-4L	200		
	R _{0JB} ⁽¹⁾	SOT23-5	180		
Thormal Desistance		SOT23-3	200	°C /\^/	
Thermal Resistance		SOT89-3	100	°C/W	
		DFN1*1-4L	160		
Operating Ambient Temperature	T _{opr}	-40 ~ +85		°C	
Storage Temperature	T_{stg}	-40 ~ +125			
ESD Protection	ESD HBM	6000		V	

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

■ Notes on Use:

Input Capacitor (C_{IN}): 1.0 μ F above Output Capacitor (C_{OUT}):1.0 μ F above

^{2*} Customer can request customization of package choice.

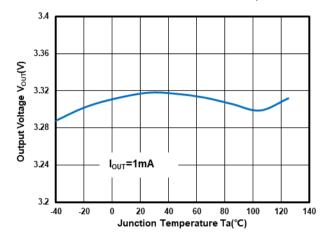
^{3*} Please pay attention to the MARKING of the product package type.

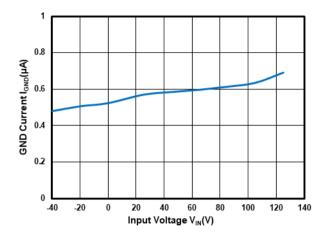
⁽¹⁾ Mounted on JEDEC standard 4layer (2s2p) PCB test board

■ Electrical Characteristics:

MD52XX Series

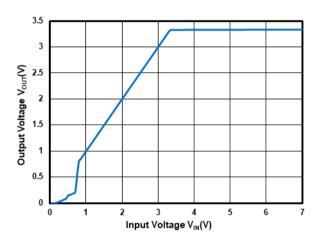
(Unless otherwise indicated: $T_a=25^{\circ}C$)

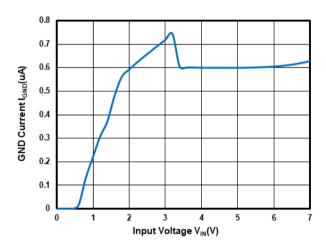

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage ^{*1}	Vout(s)	$V_{IN}=V_{OUT(S)}+2.0V$ $I_{OUT}=10$ mA, $V_{OUT(S)}<2.0V$	V _{OUT(S)} -0.03		V _{OUT(S)} +0.03	V
		$V_{IN}=V_{OUT(S)}+1.0V$ $I_{OUT}=10mA$, $V_{OUT(S)}\ge 2.0V$	V _{OUT(S)} ×0.98	V _{OUT(S)}	V _{OUT(S)} ×1.02	
Dropout Voltage*2	V _{DROP}	$V_{EN}=V_{IN}, V_{OUT}<3V$ $I_{OUT}=500mA$		240		mV
		V _{EN} =V _{IN} , V _{OUT} ≥3V I _{OUT} =500mA		230		IIIV
Line Regulation	$\frac{\Delta V_{OUT}}{\Delta V_{IN} \bullet V_{OUT(s)}}$	$V_{OUT(S)}$ +0.5 V ≤ V_{IN} = V_{EN} ≤ $7V$ I_{OUT} =10 m A		0.05	0.1	%/V
Load Regulation	ΔV_{OUT2}	$V_{IN}=V_{EN}=V_{OUT(S)}+1.0V$ $1mA \le I_{OUT} \le 500mA$		50	90	mV
Temperature Stability	$\frac{\Delta V_{OUT}}{\Delta T_a \bullet V_{OUT(s)}}$	$V_{\text{IN}}=V_{\text{EN}}=V_{\text{OUT(S)}}+1.0V$ $I_{\text{OUT}}=1\text{mA}$ $-40\text{°C}\leq T_a\leq 125\text{°C}$		±50		ppm/ ℃
GND Current	I _{GND}	no load		0.6	0.9	μΑ
(V _{EN} =V _{IN})		I _{OUT} =500mA		210		μA
Shutdown Current (V _{EN} =0)	I _{SHUT}	V _{IN} =7.0V, V _{EN} =0		0.01	0.1	μA
Input Voltage	V _{IN}		2.2		7	V
Maximum Output Current	I _{OUTMAX}		450	500		mA
Current Limit*2	I _{LIM}	$V_{IN}=V_{EN}=V_{OUT(S)}+1.0V$ $V_{OUT}=0.95 \times V_{OUT(S)}$		750		mA
Short Circuit Current	I _{SHORT}	$V_{IN}=V_{EN}=V_{OUT(S)}+1.0V$ $V_{OUT}=0V$		50		mA
C _{OUT} Auto Discharge	R _{DCHG}	$V_{EN}\!\!=\!\!0,V_{OUT}\!\!=\!\!V_{OUT(S)}$	280	450	640	Ω
Power Supply Rejection Ratio	PSRR	f=10Hz, I _{OUT} =10mA		64		
		f=100Hz, I _{OUT} =10mA		51		dB
EN 'H' Level	V _{ENH}	f=1kHz, I _{OUT} =10mA 	1.0	34	7.0	
Voltage EN 'L' Level Voltage	V _{ENL}		0		0.38	V
EN 'H' Level Current	I _{ENH}	V _{IN} =7.0V, V _{EN} =V _{IN}	-0.1		0.1	_
EN 'L' Level Current	I _{ENL}	V _{IN} =7.0V, V _{EN} =0	-0.1		0.1	μA


Notes:

- 1. $V_{OUT(S)}$: Output voltage when V_{IN} = V_{OUT} +1V, I_{OUT} =1 mA.
- 2. $V_{DROP}=V_{IN1}$ $(V_{OUT(S)} \times 0.98)$ where V_{IN1} is the input voltage when $V_{OUT}=V_{OUT(S)} \times 0.98$.
- 3. I_{LIM} : Output current when $V_{IN}=V_{OUT(S)}+1V$ and $V_{OUT}=0.95*V_{OUT(S)}$.

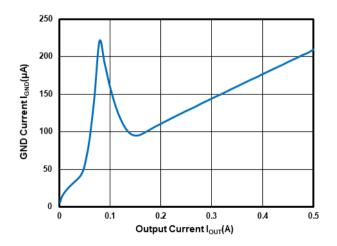
■ Typical Performance Characteristics:


Test Conditions: $V_{IN}=V_{OUT}+1.0V$, $C_{IN}=1.0\mu F$, $C_{OUT}=1.0\mu F$, $T_a=25^{\circ}C$, unless otherwise indicated.



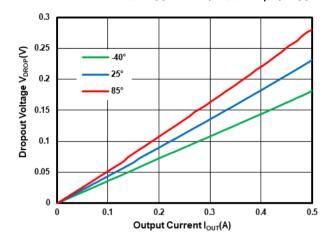
Output Voltage vs. Temperature at V_{OUT}=3.3V

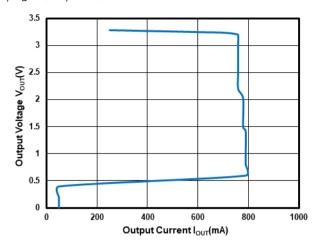

GND Current vs. Temperature at V_{OUT}=3.3V



Output Voltage vs. Input Voltage at V_{OUT}=3.3V

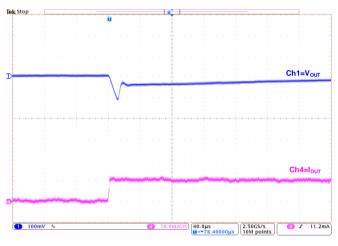
GND Current vs. Input Voltage at V_{OUT}=3.3V

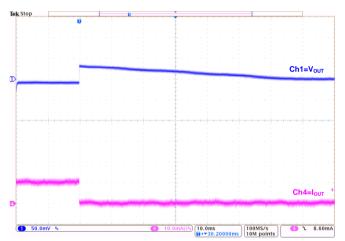



Output Voltage vs Output Current at Vout=3.3V

GND Current vs Output Current at Vout=3.3V

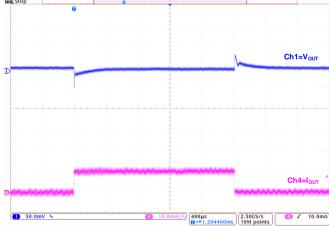
■ Typical Performance Characteristics (Continued):

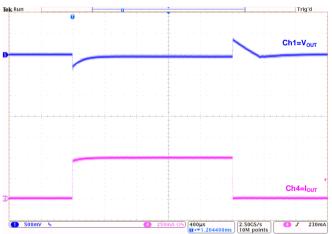

Test Conditions: $V_{IN}=V_{OUT}+1.0V$, $C_{IN}=1.0\mu F$, $C_{OUT}=1.0\mu F$, $T_a=25^{\circ}C$, unless otherwise indicated.



Dropout Voltage vs. Output Current at Vout=3.3V

Output Current Fold-back at Vout=3.3V

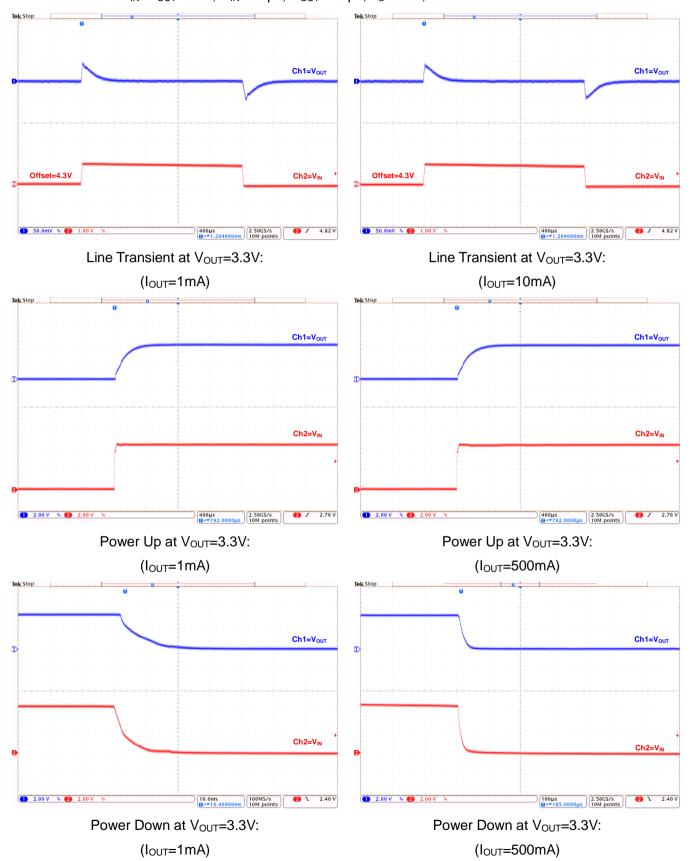




Load Transient at V_{OUT}=3.3V:

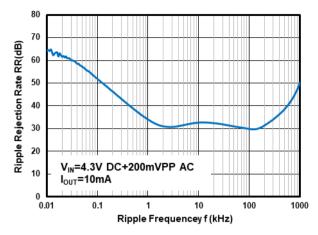
(I_{OUT}=0mA~10mA)

Load Transient at V_{OUT}=3.3V: (I_{OUT}=10mA~0mA)



Load Transient at V_{OUT}=3.3V: (I_{OUT}=1mA~10mA~1mA)

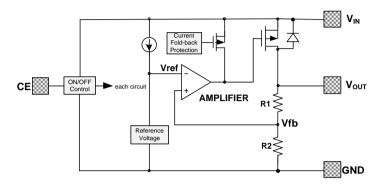
Load Transient at V_{OUT}=3.3V: (I_{OUT}=1mA~500mA~1mA)


■ Typical Performance Characteristics (Continued):

Test Conditions: $V_{IN}=V_{OUT}+1.0V$, $C_{IN}=1.0\mu F$, $C_{OUT}=1.0\mu F$, $T_a=25^{\circ}C$, unless otherwise indicated.

■ Typical Performance Characteristics (Continued):

Test Conditions: $V_{IN}=V_{OUT}+1.0V$, $C_{IN}=1.0\mu F$, $C_{OUT}=1.0\mu F$, $T_a=25^{\circ}C$, unless otherwise indicated.



Power Supply Rejection Ratio at Vout=3.3V

■ Operational Explanation:

1. Output voltage control

The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The amplifier output then drives the P-channel MOSFET connected to the V_{OUT} pin. The output voltage at the V_{OUT} pin is regulated by this negative feedback system. The current limit circuit and short protect circuit operate in relation to output current level. Further, the IC's internal circuitry can be in operation or shutdown modes controlled by the EN pin's signal.

2. Pass transistor

The pass transistor with low turn-on resistance used in MD52XX is a P-channel MOSFET. If the potential on V_{OUT} pin is higher than VIN, it is possible that IC will be destroyed due to reverse current which is caused by parasitic diodes between V_{IN} and V_{OUT} . Therefore, the V_{OUT} pin potential exceeds V_{IN} +0.3V is not allowed.

3. Current foldback and short circuit protection

The MD52XX series includes a combination of a fixed current limiter circuit and a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. The short circuit current is about 65mA (typical value). This design can prevent the chip be damaged due to over temperature, moreover, the heat dissipation is limited by the package type.

Special attention should be paid to that the product of the dropout voltage on the chip and the output current must be smaller than the heat dissipation.

4. C_{OUT} Auto-Discharge Function

The MD52XX series can quickly discharge the electric charge at the output capacitor (C_{OUT}), when a low signal is set to the EN pin, which puts the whole IC into OFF state. The discharge function is achieved by an internal switch located between the V_{OUT} pin and the GND pin. In this state, the application is protected from a glitch operation caused by the electric charge at the output capacitor (C_{OUT}).

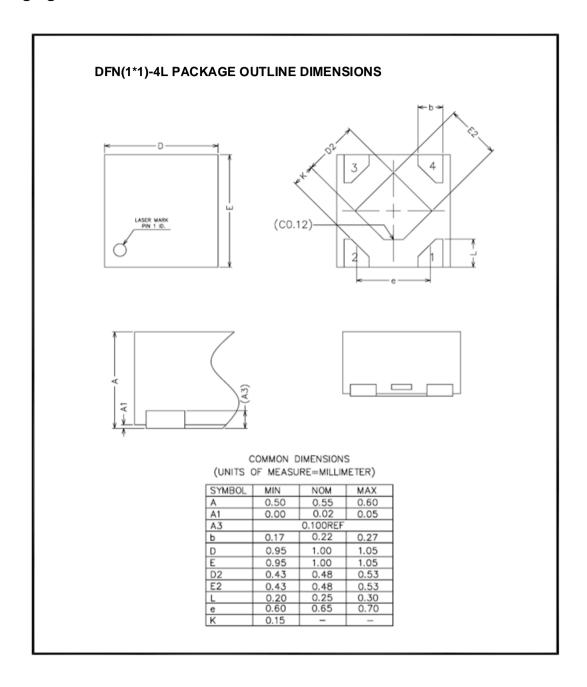
Moreover, discharge time of the output capacitor (C_{OUT}) is set by the C_{OUT} auto-discharge resistance (R_{DCHG}) and the output capacitor (C_{OUT}). By setting time constant of a C_{OUT} auto-discharge resistance value (R_{DCHG}) and an output capacitor value (C_{OUT}) as $\tau(\tau = C_{OUT} \times R_{DCHG})$, the output voltage after discharge via the internal switch is calculated by the following formulas.

$$V = V_{OUT(S)} \times e^{-t/\tau} \text{ or } t = \tau \ln(V_{OUT(S)} / V)$$

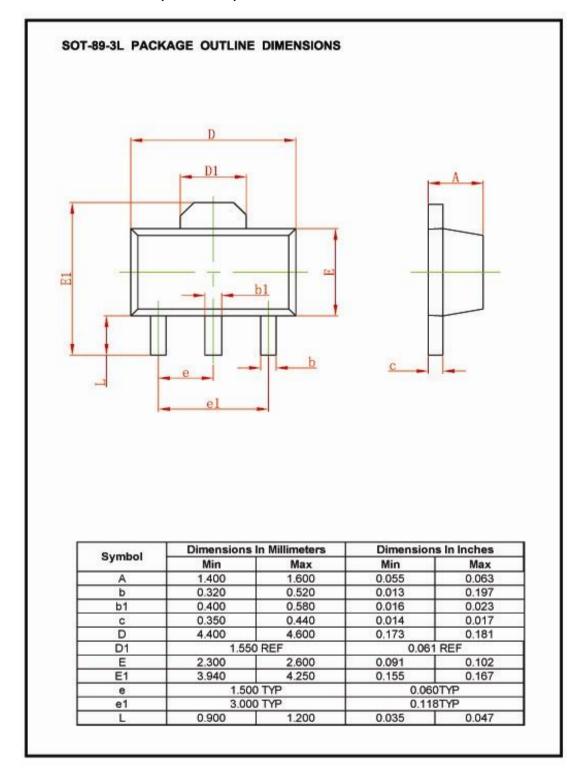
V: Output voltage after discharge

V_{OUT(S)}: Output voltage

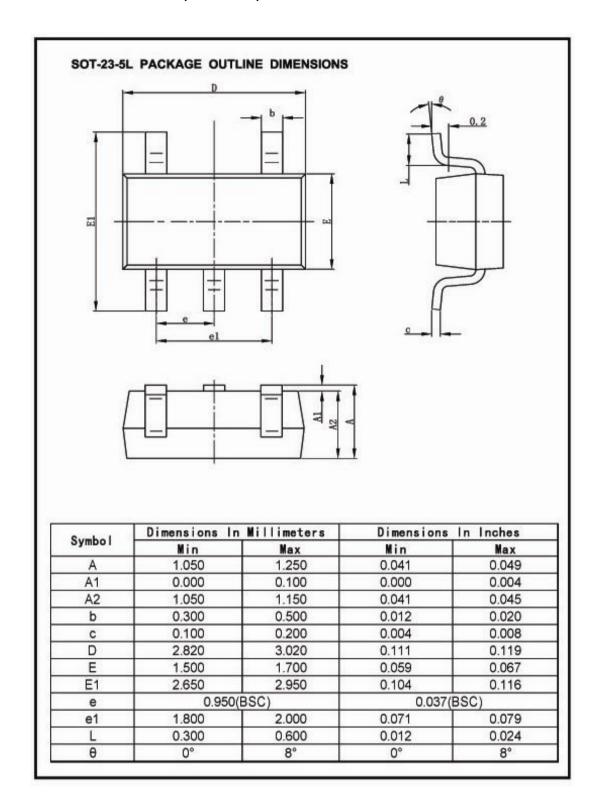
t: Discharge time

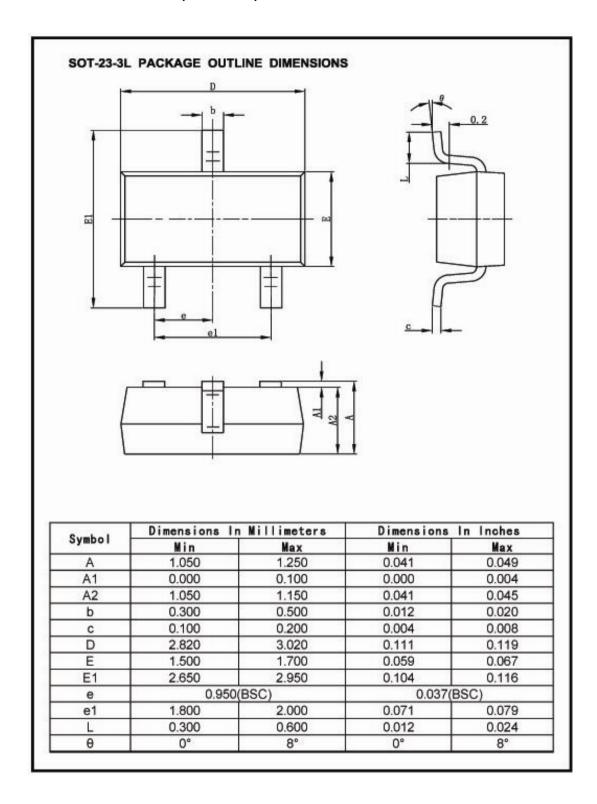

$$\tau : C_{\mathsf{OUT}} x \ R_{\mathsf{DCHG}}$$

Please also note R_{DCHG} is depended on V_{IN} and When V_{IN} is high, R_{DCHG} is low.


■ Notes:

- 1. The input and output capacitors should be placed as close as possible to the IC.
- 2. If the impedance of the power supply is high, which is caused by forgetting installing input capacitor or installing too small value capacitor, the oscillation may occur.
- 3. Pay attention to the operation conditions of input and output voltage and load current, such that the power consumption in the IC should not exceed the allowable power consumption of the package even though the chip has short circuit protection.
- 4. IC has a built-in anti-static protection (ESD) circuit, but please do not add excessive stress to the IC.


■ Packaging Information:


■ PACKAGING INFORMATION(Continued):

■ PACKAGING INFORMATION(Continued):

■ PACKAGING INFORMATION(Continued):

For the newest datasheet, please see the website:

Version V1.1: 20200927