

LESD8L3.3CT5G

Transient Voltage Suppressors

ESD Protection Diodes with Ultra-Low Capacitance

The ESD8L is designed to protect voltage sensitive components that require ultra-low capacitance from ESD and transient voltage events. Excellent clamping capability, low capacitance, low leakage, and fast response time, make these parts ideal for ESD protection on designs where board space is at a premium. Because of its low capacitance, it is suited for use in high frequency designs such as USB 2.0 high speed and antenna line applications.

Specification Features:

- Ultra Low Capacitance 0.5 pF
- Low Clamping Voltage
- Small Body Outline Dimensions:
 0.039" x 0.024" (1.00 mm x 0.60 mm)
- Low Body Height: 0.016" (0.4 mm)
- Stand-off Voltage: 3.3 V
- Low Leakage
- Response Time is Typically < 1.0 ns
- IEC61000-4-2 Level 4 ESD Protection
- This is a Pb-Free Device

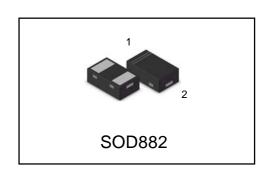
Mechanical Characteristics:

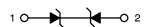
CASE: Void-free, transfer-molded, thermosetting plastic

Epoxy Meets UL 94 V-0 **LEAD FINISH:** NiPdAu

QUALIFIED MAX REFLOW TEMPERATURE: 260°C

Device Meets MSL 1 Requirements


MAXIMUM RATINGS


Rating	Symbol	Value	Unit
IEC 61000-4-2 (ESD) Contact Air		±10 ±15	kV
Total Power Dissipation on FR-5 Board (Note 1) @ T _A = 25°C	P _D	150	mW
Storage Temperature Range	T _{stg}	-55 to +150	°C
Junction Temperature Range	TJ	-55 to +125	°C
Lead Solder Temperature – Maximum (10 Second Duration)	T_L	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

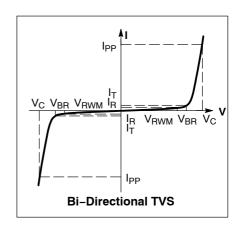
1. $FR-5 = 1.0 \times 0.75 \times 0.62$ in.

LESD8L3.3CT5G

Ordering information

Device	Marking	Shipping
LESD8L3.3CT5G	S	10000/Tape&Reel

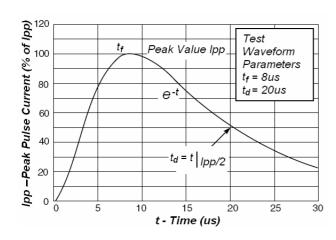
Jan. 2022 Rev.F 1/4



ELECTRICAL CHARACTERISTICS

(T_A = 25°C unless otherwise noted)

Symbol	Parameter			
I _{PP}	Maximum Reverse Peak Pulse Current			
V _C	Clamping Voltage @ I _{PP}			
V _{RWM} Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}			
V_{BR}	Breakdown Voltage @ I _T			
Ι _Τ	Test Current			
ΙF	Forward Current			
V _F	Forward Voltage @ I _F			
P _{pk}	Peak Power Dissipation			
С	Capacitance @ V _R = 0 and f = 1.0 MHz			


LESD8L3.3CT5G



ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 1.0 \text{ V Max.}$ @ $I_F = 10 \text{ mA}$ for all types)

		V _{RWM} (V)	I _R (nA) @ V _{RWM}	V _{BR} (V) @ I _T (Note 2)		ŀт	C (pF)	V _C (V) @ I _{PPM} = 2 A (Note 3)	V _C
Device	Device Marking	Max	Max	Min	Max	mA	Max	Max	Per IEC61000-4-2 (Note 4)
LESD8L3.3CT5G	S	3.3	50	3.8	8	1.0	0.9	15	Figures 1 and 2 See Below

- 2. V_{BR} is measured with a pulse test current I_T at an ambient temperature of 25°C. 3. Surge current waveform per Figure 5.
- 4. For test procedure see Figures 3 and 4.

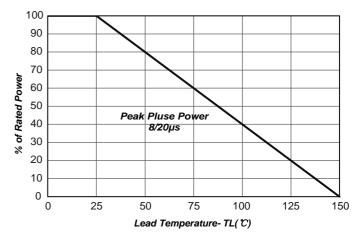
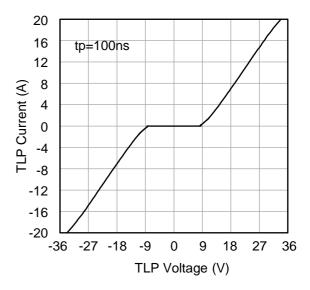


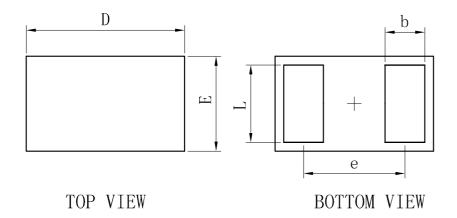
Fig 2.Power Derating Curve

Rev.F 2/4 Jan. 2022

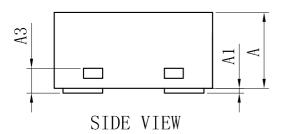
LESD8L3.3CT5G

Fig 3 .Clamping Voltage vs. Peak Pulse Current

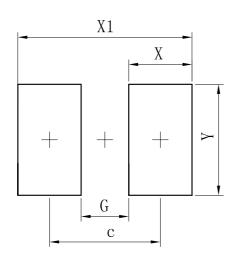



Fig 4. TLP Measurement

Jan. 2022



LESD8L3.3CT5G


Package Outline Dimension

S0D882				
Dim	Min	Тур	Max	
D	0. 95	1.00	1.05	
Е	0. 55	0.60	0.65	
е		0.64	ı	
L	0.44	0.49	0. 54	
b	0. 20	0. 25	0.30	
A	0.43	0.48	0. 53	
A1	0	-	0.05	
А3	0. 127REF.			
All Dimensions in mm				

Suggested Pad layout

Dimensions	(mm)
С	0.70
G	0.30
X	0.40
X1	1. 10
Y	0.70

Jan. 2022 Rev.F 4/4

DISCLAIMER

- Curve guarantee in the specification. The curve of test items with electric parameter is used as quality guarantee. The curve of test items without electric parameter is used as reference only.
- Before you use our Products for new Project, you are requested to carefully read this document and fully understand its contents. LRC shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any LRC's Products against warning, caution or note contained in this document.
- All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using LRC's Products, please confirm the latest information with a LRC sales represe--ntative.