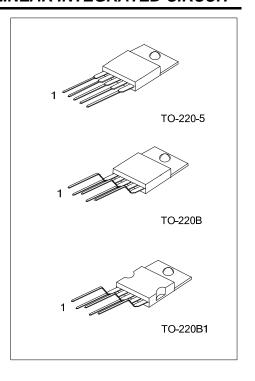
UNISONIC TECHNOLOGIES CO., LTD

TDA2003

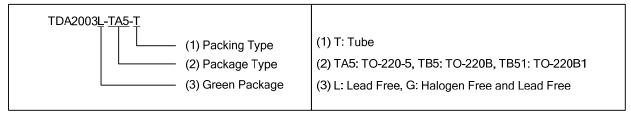
LINEAR INTEGRATED CIRCUIT

10W CAR RADIO AUDIO AMPLIFIER

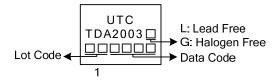

DESCRIPTION

The UTC **TDA2003** is a monolithic audio power amplifier integrated circuit.

■ FEATURES


*Very Low External Component Required.

- *High Current Output (up to 3 A).
- *Low Harmonic and Crossover Distortion.
- *Built-in Over Temperature Protection.
- *Short Circuit Protection Between all Pins.



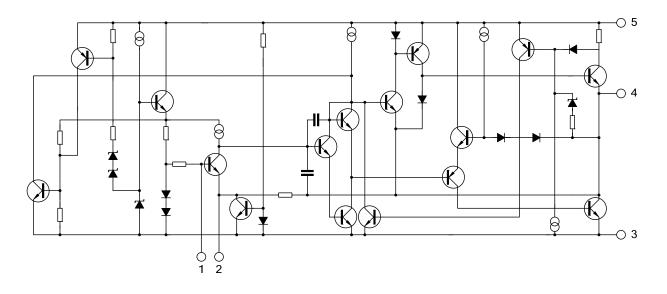
■ ORDERING INFORMATION

Ordering	Number	Dookono	Dealine	
Lead Free	Halogen Free	Package	Packing	
TDA2003L-TA5-T	TDA2003G-TA5-T	TO-220-5	Tube	
TDA2003L-TB5-T	TDA2003G-TB5-T	TO-220B	Tube	
TDA2003L-TB51-T	TDA2003G-TB51-T	TO-220B1	Tube	

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 10

UTC UNISONIC TECHNOLOGIES CO., LTD


TDA2003

LINEAR INTEGRATED CIRCUIT

PIN DESCRIPTION

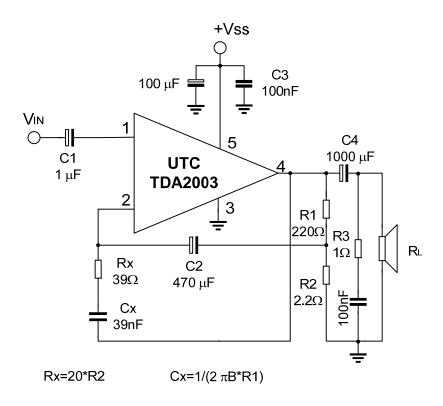
PIN NO.	PIN NAME
1	Non inverting input
2	Inverting input
3	Ground
4	Output
5	Supply Voltage

BLOCK DIAGRAM

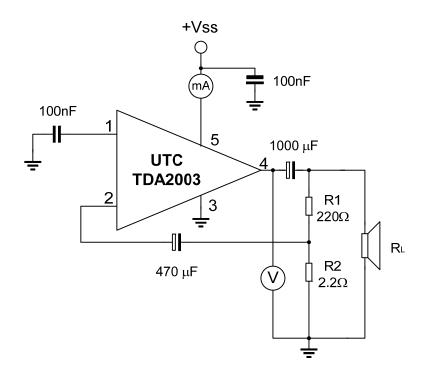
■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAM	ETER	SYMBOL	RATINGS	UNIT
Peak Supply Voltage		V _{SS}	40	V
DC Supply Voltage		V _{SS}	28	V
Operating Supply Voltage		V _{SS}	18	V
Output Deals Commant	Repetitive		3.5	Α
Output Peak Current	Non Repetitive	IO(PEAK)	4.5	Α
Power Dissipation at T _C = 90°C		P _D	20	W
Storage and Junction Temperature		T _{STG}	-40 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

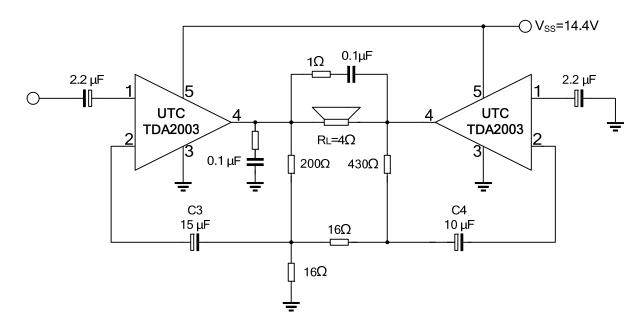

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, Refer to the test circuit, V_S=16V, unless otherwise specified.)$

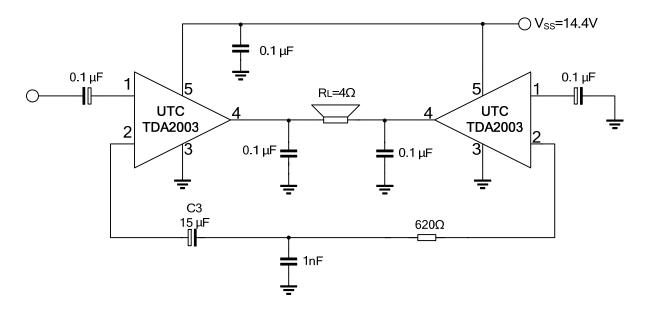

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT		
DC CHARACTERISTICS									
Supply Voltage	V _{SS}				8		18	V	
Quiescent Output Voltage	V_{OUT}				6.1	6.9	7.7	>	
Quiescent Drain Current	I _D				44	50	mA		
AC CHARACTERISTICS									
				$R_L=4\Omega$	5.5	6			
Output Power		THD=10%,	%,	$R_L=2\Omega$	9	10] ,,,	
Output Fower	P _{OUT}	f=1kHz		R_L =3.2 Ω		7.5		W	
				R_L =1.6 Ω		12			
		6.4111		P_{OUT} =0.5W, R_L =4 Ω		14			
Input Consitivity				P_{OUT} =6W, R_L =4 Ω		55			
Input Sensitivity	Vı	f=1kHz		P_{OUT} =0.5W, R_L =2 Ω		10		mV	
				P_{OUT} =10W, R_L =2 Ω		50			
Input Saturation Voltage	$V_{I(RMS)}$			300			mV		
Frequency Response(-3dB)	F	P_{OUT} =1W, R_L =4 Ω		40		15000	Hz		
Total Harmonic Distortion	THD		Pour	$=0.05 \sim 4.5$ W, R _L $=4$ Ω		0.15		- %	
Lotal Harmonic Distortion	IIID		Pour	=0.05 \sim 7.5W, R _L =2 Ω		0.15		/0	
Input Resistance(Pin 1)	Rı	Open Loop, f=1kHz		70	150		kΩ		
Input Noise Current	iN				60	200	pА		
Input Noise Voltage	eN				1	5	μV		
Open Loop Voltage Gain	Gvo	f=1kHz			80		dB		
Coperi Loop Voltage Gairi	Gvo	f=10kHz			60		dB		
Closed Loop Voltage Gain	Gvc	f=1kHz, R_L =4 Ω		39.3	40	40.3	dB		
Efficiency f=1kHz	η	P_{OUT} =6W, R_L =4 Ω			69		%		
Efficiency, f=1kHz		P_{OUT} =10W, R_L =2 Ω			65				
Supply Voltage Rejection	SVR	f=100Hz, V_{RUPPLE} =0.5V R_{G} =10kΩ, R_{L} =4Ω		30	36		dB		

■ TEST CIRCUIT

AC Test Circuit


DC Test Circuit

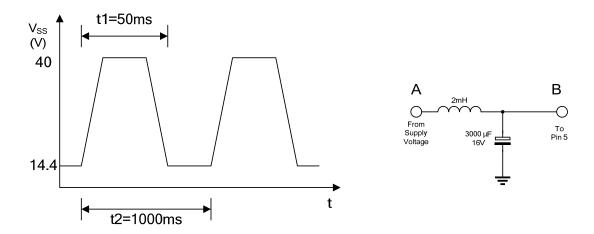
■ TYPICAL APPLICATION CIRCUIT


20W Bridge Configuration Application

The Values of the capacitors C3 and C4 are different to optimize the SVR (Typ. 40dB)

■ TYPICAL APPLICATION CIRCUIT

Low Cost Bridge Configuration Application Circuit(Pout=18W)


■ BUILT-IN PROTECTION SYSTEMS

LOAD DUMP VOLTAGE SURGE

The UTC TDA2003 has a circuit which enables it to withstand a voltage pulse train, on pin 5.

If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 5, in order to assure that the pulses at pin 5 will be head within the limits.

A suggested LC network. With this network, a train of pulses with amplitude up to 120V and width of 2ms can be applied at point A. This type of protection is ON when the supply voltage(pulsed or DC) exceeds 18V. For this reason the maximum operating supply voltage is 18V.

SHORT CIRCUIT (AC and DC Conditions)

The UTC TDA2003 can withstand a permanent short-circuit on the output for a supply voltage up to 16V.

POLARITY INVERSION

High current (up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse(normally connected in series with the supply).

The feature is added to avoid destruction if, during fitting to the car, a mistake on connection of the supply is made.

OPEN GROUND

When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the UTC **TDA2003** protection diodes are included to avoid any damage.

INDUCTIVE LOAD

A protection diode is provide between pin 4 and pin 5(see the internal schematic diagram) to allow use of the UTC TDA2003 with inductive loads. In particular, the UTC TDA2003 can drive a coupling transformer for audio modulation.

DC VOLTAGE

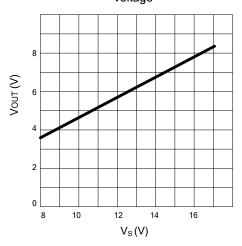
The maximum operating DC voltage on the UTC TDA2003 is 18V.

However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries were series connected to crank the engine.

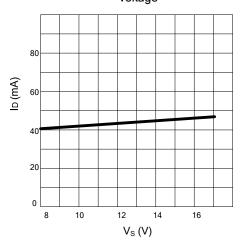
THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

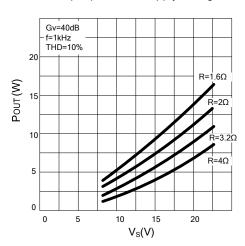
- (1) An overload on the output (even if it is permanent), or an excessive ambient temperature can be easily withstood.
- (2) The heat-sink can have a smaller factor compared with that of a conventional circuit. There is no device damage in case of excessive junction temperature: all that happens is that Po (and therefore P_D) and Id are reduced.

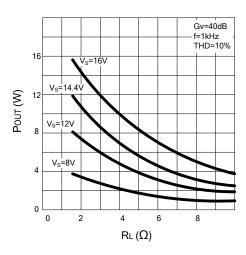

■ COMPONENTS USAGE SUGGESTION

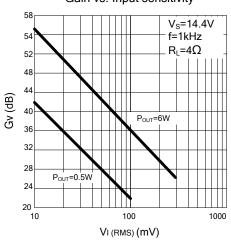
The recommended values of the components are those shown on typical application circuit Different values can be used. The following table can help the designer.

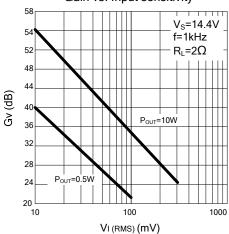

20 dood o o o o o							
COMPONENT	RECOMMENDED	PURPOSE	LARGE THAN	SMALLER THAN			
OOM ONEN	VALUE	1 31 11 332	RECOMMENDED VALUE	RECOMMENDED VALUE			
R1	(Gv-1)×R2	gain setting.		increase of drain current			
R2	2.2Ω	gain and SVR setting.	Decrease of SVR				
			Danger of oscillation at high				
R3	1Ω	Frequency stability	frequencies with inductive				
			loads.				
Rx	≈20R2	Upper frequency cutoff	Poor high frequencies	Danger of oscillation			
		oppor irequerity eaten	attenuation	Buriger or decination			
C1	2.2µF	Input DC decoupling		Noise at switch-on			
C1	2.2μι	input DC decoupling		switch-off			
C2	470µF	Ripple rejection		Decrease of SVR			
C3	0.1µF	Supply voltage bypass		Danger of oscillation			
C4	1000μF	Cupply voltage bypage		Higher low frequency			
C4		Supply voltage bypass		cutoff			
	0.1µF Frequency			Danger of oscillation at			
C5		Frequency stability		high frequencies with			
				inductive loads.			
Сх	≈1/(2π×B×R1)	Upper frequency cutoff	Lower bandwidth	Larger bandwidth			

TYPICAL CHARACTORISTICS

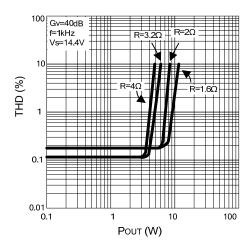

Quiescent output voltage vs.Supply voltage


Quiescent drain current vs. Supply voltage

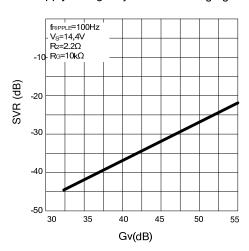

Output power vs. Supply voltage


Output power vs.load resistance

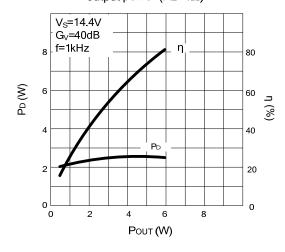
Gain vs. Input sensitivity

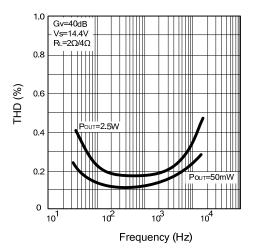


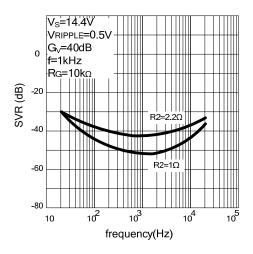
Gain vs. Input sensitivity

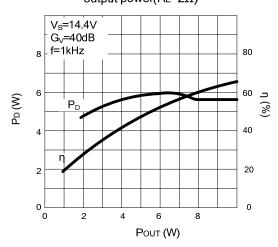


■ TYPICAL CHARACTORISTICS (Cont.)

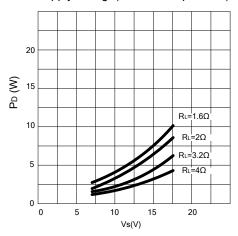

Distortion vs. output power


Supply voltage rejection vs. voltage gain

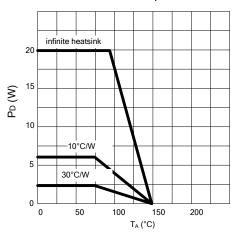

Power dissipation and efficiency vs. output power ($RL=4\Omega$)


Distortion vs.frequency

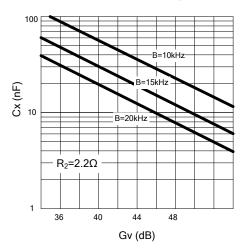
Supply voltage rejection vs.frequency



Power dissipation and efficiency vs. output power($RL=2\Omega$)



■ TYPICAL CHARACTORISTICS (Cont.)


Maximum Power dissipation and supply voltage(sine wave operation)

Maximum allowable dissipation and ambient temperature

Typical values of capacitor(Cx) for different values of frequency response

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.