RS2AW THRU RS2MW **PINNING** ### **Surface Mount Fast Recovery Rectifiers** Reverse Voltage - 50 to 1000 V Forward Current - 2 A #### **FEATURES** - For surface mounted applications - Low profile package - Glass Passivated Chip Junction - Ideal for automated placement - Fast reverse recovery time - Lead free in comply with EU RoHS 2011/65/EU directives #### **MECHANICAL DATA** - Case: SOD-123FL ■ Terminals: Solderable per MIL-STD-750, Method 2026 Approx. Weight:15mg 0.00053oz Maximum Ratings and Electrical characteristics Ratings at 25 $^{\circ}\text{C}$ ambient temperature unless otherwise specified. Single phase half-wave 60 Hz, resistive or inductive load, for capacitive load current derate by 20 %. | 2 | Anode | | | | | | |---------|---|--|--|--|--|--| | 1 | 2 | | | | | | | Marking | Top View Marking Code: RS2AW~RS2GW: 2F2 RS2JW: 2F5 RS2KW~RS2MW: 2F7 Simplified outline SOD-123FL and symbol | | | | | | **DESCRIPTION** Cathode | | | | RS2DW | RS2GW | RS2JW | RS2KW | RS2MW | Units | |------------------------------------|--|--|--|--|---|---|---|---| | V_{RRM} | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | V_{RMS} | 35 | 70 | 140 | 280 | 420 | 560 | 700 | ٧ | | V _{DC} | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | ٧ | | I _{F(AV)} | 2 | | | | | | А | | | I _{FSM} | 50 | | | | | | А | | | V _F | 1.3 | | | | | | V | | | I _R | 5
100 | | | | | | μA | | | t _{rr} | 150 250 500 | | | | 00 | ns | | | | C _j | 40 | | | | | | pF | | | $R_{\scriptscriptstyle \theta JA}$ | 90 | | | | | °C/W | | | | T_{j},T_{stg} | -55 ~ +150 | | | | | °C | | | | | $\begin{array}{c} V_{\text{RMS}} \\ V_{\text{DC}} \\ \\ I_{\text{F(AV)}} \\ \\ I_{\text{FSM}} \\ \\ V_{\text{F}} \\ \\ I_{\text{R}} \\ \\ t_{\text{rr}} \\ \\ C_{j} \\ \\ R_{\text{BJA}} \\ \\ T_{j}, T_{\text{stg}} \\ \end{array}$ | V _{RMS} 35 V _{DC} 50 I _{F(AV)} I _{FSM} V _F I _R t _{rr} C _j R _{θJA} T _j , T _{stg} | V _{RMS} 35 70 V _{DC} 50 100 I _{F(AV)} I _{FSM} V _F I _R t _{rr} 1 C _j R _{θJA} T _j , T _{stg} | VRMS 35 70 140 VDC 50 100 200 IFINA IFINA IFINA IFINA VF IFINA | VRMS 35 70 140 280 VDC 50 100 200 400 IFIGHT 2 IFIGHT 50 VF 1.3 IR 100 trr 150 Cj 40 Result 90 Tj, Tstg -55 ~ +15 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | V _{RMS} 35 70 140 280 420 560 V _{DC} 50 100 200 400 600 800 I _{F(AV)} 2 I _{FSM} 50 V _F 1.3 I _R 5 100 t _{rr} 150 250 5 C _j 40 R _{θJA} 90 T _j , T _{stg} -55 ~ +150 | V _{RMS} 35 70 140 280 420 560 700 V _{DC} 50 100 200 400 600 800 1000 I _{F(AV)} 2 50 50 1.3 < | ^{1)} Measured with IF = 0.5 A, IR = 1 A, Irr = 0.25 A. SHIKE MAKE CONSCIOUS PRODUCT Conscious Products Begin With Conscious People ²⁾ P.C.B. mounted with 0.2 X 0.2" (5 X 5 mm) copper pad areas # RS2AW THRU RS2MW SHIKE MAKE CONSCIOUS PRODUCT CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE # **RS2AW THRU RS2MW** ### PACKAGE OUTLINE ### Plastic surface mounted package; 2 leads SOD-123FL ### The recommended mounting pad size ### Marking | Type number | Marking code | | | | |-------------|--------------|--|--|--| | RS2AW | - 2F2
- | | | | | RS2BW | | | | | | RS2DW | | | | | | RS2GW | | | | | | RS2JW | 2F5 | | | | | RS2KW | 2F7 | | | | | RS2MW | 267 | | | | SHIKE MAKE CONSCIOUS PRODUCT CONSCIOUS PRODUCTS BEGIN WITH CONSCIOUS PEOPLE