

UN6 Series

Description

UN6 series radial leaded PTCs are designed to provide resettable over-current protection for USB, Low voltage electrical equipment applications. With maximum 6 volts and maximum 40-ampere short circuit rating.

Features

- RoHS compliant, Lead-Free and Halogen-Free
- 40A short circuit rating
- 6V operating voltage
- Fast time-to-trip
- Meets all USB protection requirements

Applicable

- Computers and peripherals
- USB hubs ,ports and peripherals
- Power ports
- General electronics

Electrical Parameters

Part Number	I hold (A)	I _{trip} (A)	V _{max} (Vdc)	l _{max} (A)	P _{dtyp} . (W)	Maximum Time To Trip		Resistance		
						Current (A)	Time (Sec.)	R _{min} (mΩ)	R _{max} (mΩ)	R _{1max} (mΩ)
UN6-050	0.50	1.00	6	40	0.45	1.50	10	180	400	600
UN6-065	0.65	1.30	6	40	0.50	1.95	10	120	270	400
UN6-075	0.75	1.50	6	40	0.55	2.25	10	110	230	345
UN6-090	0.90	1.80	6	40	0.60	2.70	10	90	180	270
UN6-110	1.10	2.20	6	40	0.70	3.30	10	70	140	210
UN6-120	1.20	2.40	6	40	0.75	3.60	10	70	140	210
UN6-135	1.35	2.70	6	40	0.80	4.05	10	55	110	150
UN6-160	1.60	3.20	6	40	0.90	4.80	10	45	90	115
UN6-185	1.85	3.70	6	40	1.00	5.55	12	40	80	100
UN6-250	2.50	5.00	6	40	1.20	7.5	12	27	55	70

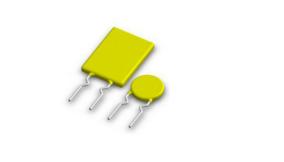
I hold= Hold current: maximum current device will pass without tripping in 25°C still air.

I $_{\text{trip}}\text{=}$ Trip current: minimum current at which the device will trip in 25°C still air.

V $_{max}$ = Maximum voltage device can withstand without damage at rated current (I $_{max}$)

I $_{\text{max}}\text{=}$ Maximum fault current device can withstand without damage at rated voltage (V_{max})

 $P_{dtyp.}$ = Power dissipated from device when in the tripped state at 25°C still air.


R _{min}= Minimum resistance of device in initial (un-soldered) state.

R max = Maximum resistance of device in initial (un-soldered) state.

R _{1max}= Maximum resistance of device at 25°C measured one hour after tripping.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.

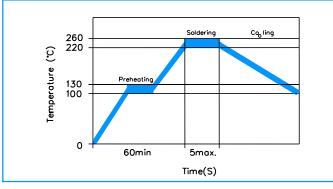
www.unsemi.com.tw

UN6 Series

Temperature Rerating Chart – I hold (A)

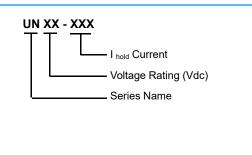
	Ambient Operation Temperature									
Part Number	-40°C	-20°C	0°C	25°C	40°C	50°C	60°C	70°C	85°C	
	Hold Current (A)									
UN6-050	0.73	0.65	0.58	0.50	0.42	0.39	0.34	0.31	0.26	
UN6-065	0.94	0.85	0.75	0.65	0.54	0.50	0.44	0.40	0.34	
UN6-075	1.09	0.98	0.86	0.75	0.62	0.58	0.51	0.46	0.39	
UN6-090	1.31	1.17	1.04	0.90	0.75	0.69	0.61	0.55	0.47	
UN6-110	1.60	1.43	1.27	1.10	0.91	0.85	0.75	0.67	0.57	
UN6-120	1.74	1.56	1.38	1.20	1.00	0.92	0.82	0.73	0.62	
UN6-135	1.96	1.76	1.55	1.35	1.12	1.04	0.92	0.82	0.70	
UN6-160	2.32	2.08	1.84	1.60	1.33	1.23	1.09	0.98	0.83	
UN6-185	2.68	2.41	2.13	1.85	1.54	1.42	1.26	1.13	0.96	
UN6-250	3.63	3.25	2.88	2.50	2.08	1.93	1.70	1.53	1.30	

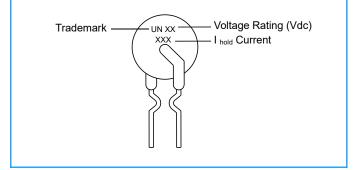
Test Procedures and Requirement


Test	Test Conditions	Accept/Reject Criteria
Resistance	In still air @25±2°C	R _{min} ≤R≤R _{max}
Hold Current	60 min, at I _{hold} , In still air @25±2°C	No trip
Time to Trip	Specified current, 3I _{hold} , @25±2°C	T≤Maximum Time To Trip
Trip Cycle Life	V _{max} , I _{max} ,15min	Resistance change rate≪50%
Trip Endurance	Vmax,24hours	No arcing or burning

UN6 Series

Soldering Parameters



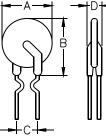

Pre-Heating Zone	Refer to the condition recommended by the manufacturer. Max. ramping rate should not exceed 4°C/Sec				
Soldering Zone	Max. solder temperature should not exceed 260°C				
Cooling Zone	Cooling by natural convection in air				

Physical Specifications

Lead Material	Tin-plated Copper clad steel				
Soldering Characteristics	Solder ability per MIL-STD-202, Method 208E				
Insulating Material	Cured, flame retardant epoxy polymer meets UL 94V-0 requirements.				
Device Labeling	Marked with 'UN voltage, current rating				

Part Numbering

Part Marking


UN Semiconductor Co., Ltd.

UN6 Series

Dimensions

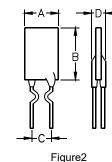


Figure1

В С D Lead (dia) Α Packaging Part Figure Number mm mm mm mm (Bulk Pack) mm (Max.) (Max.) (Max.) (Typ.) UN6-050 Figure1 6.00 11.3 5.1 ± 0.5 3.0 0.5 1000 UN6-065 Figure1 6.00 12.0 5.1±0.5 3.0 0.5 1000 UN6-075 Figure1 7.00 12.0 5.1±0.5 3.0 0.5 1000 UN6-090 1000 Figure2 6.50 11.5 5.1 ± 0.5 3.0 0.5 UN6-110 Figure2 7.00 12.0 5.1±0.5 3.0 1000 0.5 UN6-120 Figure1 7.20 12.2 5.1±0.5 3.0 0.5 1000 UN6-135 Figure2 6.50 14.5 5.1 ± 0.5 3.0 05 1000 UN6-160 Figure2 8.80 13.8 5.1 ± 0.5 3.0 0.5 1000 UN6-185 15.5 Figure2 8.80 5.1±0.5 3.0 0.5 1000 UN6-250 Figure2 10.00 16.0 5.1±0.5 3.0 0.5 1000

Warning

- This product should not be used in an application where the maximum interrupt voltage or maximum interrupt current in a fault condition, Operation beyond the maximum rating or improper use may result in device damage and possible electrical arcing and flame.
- ♦ A PPTC device is not a fuse, It is a nonlinear thermistor that limits current, Because under a fault condition all PPTC devices go into a high resistance state but not open circuit hazardous voltage may be present at PPTC.
- The devices are intended for protection against occasional over-current or over-temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events.
- In most application, power must be removed and the fault condition cleared in order to reset a PPTC device.
- PPTC devices are not recommended to be installed in applications where the device is constrained such that its PPTC properties are inhibited, for example in rigid potting materials or Add devices surface coating, Bundled devices ontology, which lack adequate clearance to accommodate device expansion.
- Contamination on of the PPTC material with certain silicone-based oils or some aggressive solvents can adversely impact the performance of the devices. For example, Organic solvents to cleaning.