

PMDS-Fx

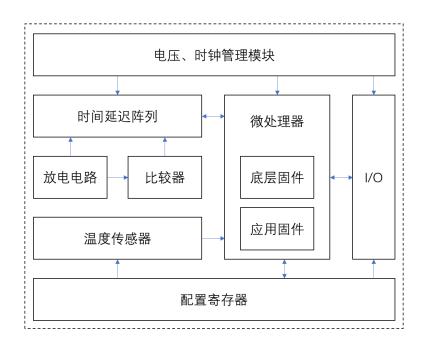
应变传感器片上系统 数据手册

版本: v3,00.211027

目录

1.	概览	3
2.	特性	4
3.	应用	5
4.	订货信息	6
5.	引脚定义	7
6.	引脚描述	8
7.	极限参数	9
8.	电气参数	10
9.	设计与应用	11
	9.1 参考电路	11
	9.2 结构设计	12
	9.3 数字输出	15
	9.4 基准稳定性	17
	9.5 线性度	18
	9.6 内置电容测量	23
	9.7 内置温度测量	23
10.	其它信息	25
	10.1 传感器的布板	25
	10.2 传感器的操作	25
	10.3 焊接建议	25
	10.4 封装信息	28
	10.5 丝印编码	30
	10.6 编带包装	31
11.	RoHS 兼容性	33
12.	版权申明与版本信息	34
	12.1 版权申明	34
	12.2 版本信息	34

1. 概览


PMDS-Fx 是业界首颗固态应变(融合)传感器片上系统,基于创新的测量原理与独特的生产工艺,提供高性能、低功耗、高可靠、低成本的应变及电容测量方案,满足用户快速上手、即时面市的需求。

PMDS-Fx 应变传感器片上系统内置 Prime Sense Limited (以下简称 Prime) 独特的专利算法,可以精确感测作用在任何一种材料表面上的应力行为 (acting force,亦可被称作微形变: micro deformation)。同时,内置算法已在全温度和全电压范围内进行补偿,用户无需执行任何额外的补偿操作。

PMDS-Fx 应变传感器片上系统的创新测量原理,保证其不会对温湿度变化、无线电波或电磁干扰等敏感。此外,该测量原理及其架构设计还能够提供极高的系统柔性,用户可以在采样频率与功耗之间进行权衡,通过简单的配置实现最适宜的功能与性能。

配合其内置的专利算法,PMDS-Fx可以通过 IIC 接口提供数字化的应力值输出,用户只需在主控芯片中设置合适的应力阈值,即可简洁、快速的实现压感触控功能;当然,用户同样可以基于高精细的应力值输出,来实现更加丰富、独特的系统功能,比如作用力、扭矩等的快速测量,而不仅仅是将其用作按键行为的判别。

功能框图如下图(1)所示。

保密,受不扩散协议所规定之条款保护。

图 (1) PMDS-F1/F2 功能框图

2. 特性

- 高灵敏度、高线性度以及高可靠性
- 快速响应, 最高采样频率可达 20 kHz
- 宽动态范围:
 - □ 典型值 0-10N @ 应力,或 10 μm @ 应变,传感器芯片封装建议的动态范围
 - □ 极限值 0-20N @ 应力, 或 20 μm @ 应变, 芯片可以恢复的极限动态范围
 - □ 双端固定悬臂结构下,仅 PCBA 配合,可以检测 200N 的最大应力值
 - □ 通过其它弹性补强结构,使用 PMDS-F1/F2 的真个系统,可以测量远高于 200N 的最大应力值
- 绝对应力范围由系统结构设计决定
- 绝对应力值输出
- 超低功耗,最低运行功耗可至 µA 等级
- 供电电压: 1.8V~ 3.6 V (驱动程序加载需要工作在 2.5 V 以上)
- 封装:

型号	封装	尺寸	输出	应用
PMDS-F1	CSP12	1.6 mm x 1.7 mm x 0.6 mm	应力数值	测量
			或中断输出	
PMDS-F2	DFN10	3.0 mm x 2.0 mm x 0.9 mm	应力数值	测量
PMDS-F3	DFN10	3.0 mm x 2.0 mm x 0.9 mm	中断输出	按键

3. 应用

PMDS-Fx 应变 (融合) 传感器适用于 取代防水按键 、金属面板按键 或 应变测

量输出 如下:

- 压感触控 / 按键:
 - □ TWS 耳机
 - □ 电子烟
 - □ 电动牙刷、电动剃须刀、冲牙器等
 - □ 厨房电器
 - □ 手机侧边键
 - □ 智慧屏控制
- 应力/扭矩测量:
 - □ 电动牙刷轴应力
 - □ 油烟机油槽
 - □ 智能马桶盖板
 - □ 体感游戏设备
 - □ 运动追踪
- 电容测量:
 - □ 佩戴检测
 - □ 滑感触控
 - □ 液位检测
 - □ 电容式接近感应
 - □ 雨量传感

4. 订货信息

型号	描述	封装	标识	包装	数量	状态	应用
PMDS-F1	超小封装	CSP12	F1	T&R	3,000	量产	应力输出
		1.60 x 1.70 mm	LNMY				
PMDS-F2	高性能	DFN10	F2	T&R	3,000	量产	应力输出
	数字输出	2.00 x 3.00 mm	LNMY				
PMDS-F3	中断输出	DFN10	F3	T&R	3,000	量产	压感按键
		2.00 x 3.00 mm	LNMY				

表 (1) 订货信息

【注】

LN 对应晶圆 Lot Number 的末两位, 机器自动抓取;

M 对应生产时的公历月份, 1-9 月份分别对应数字 1-9, 10-12 月份分别对应代码 A、B 和 C;

Y 对应生产时的公历年份, 2020-2019 分别对应数字 0-9。

5. 引脚定义

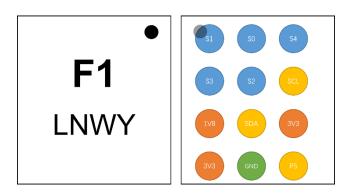


图 (2) PMDS-F1 俯视图、底视图

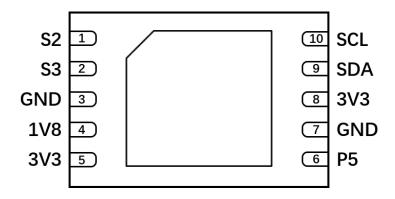


图 (3) PMDS-F2 / F3 俯视图

6. 引脚描述

F1 引脚名称	F2 / F3 引脚	引脚描述	如未使用
S1	-	传感器端口 1	NC
S0	-	传感器端口 2	NC
S4	-	传感器端口3	NC
S2	pin 1 -S2	传感器端口 4	NC
S 3	pin 2 -S3	传感器端口 5	NC
SCL	pin 10 - SCL	用于 IIC 通讯的串口时钟	
1V8	pin 4 - 1.8V	1.8V 电压	外接4.7uF电容
SDA	pin 9 - SDA	IIC 通讯的串行信号	
3V3	pin 5 -3.3 V	2.5 - 3.3V 供电	V3.3
3V3	pin 8 -3.3 V	2.5 - 3.3V 供电	V3.3
GND	pin 3&7 - GND	系统地	GND
P5	pin 6 -P5	通用输出端口	NC

表 (2) PMDS-Fx 引脚描述

7. 极限参数

工作于极限参数规定的条件之外,将有可能对器件造成永久损伤。极限参数仅用于描述该器件的极端工作条件,功能性操作仍需在电气特性规定的范畴之内实现。此外,暴露在极限参数之下超过一定的时间周期,将可能对器件的可靠性产生影响。

标识	参数	Min	Max	单位	解释
3V3	对地供电电压	-0.3	+4.0	V	
AF	工作应力范围	0	20	N	传感器芯片本身的工作应力范围
					由机械结构决定,尤其是加强筋的影响
TA	工作温度范围	-40	+85	°C	
TS	储运温度范围	-55	+150	°C	
TR	回流焊中的封装		260	°C	
	体最高温度		(TBC)		
RH	相对湿度	5	85	%	
MSL	湿度敏感等级		3		
ESD	НВМ	±1,500		V	

表 (3) 极限参数

8. 电气参数

电气参数规定了 PMDS-Fx 确保功能性工作的使用条件如下。

标识	参数	条件	Min	Тур	Max	单位
3V3	供电电压	对地电压	1.8		3.6	V
IOFF	静态电流	25°C		1.0		μA
		25°C,200Hz 采样		50		μA
ICC	供电电流	25°C,50Hz 采样		20		μA
		25°C,5Hz 采样		10		μA
		25°C,待机		2		μA

表(4)电气参数

【注】

供电电流由内部算法及采样频率配置共同决定。

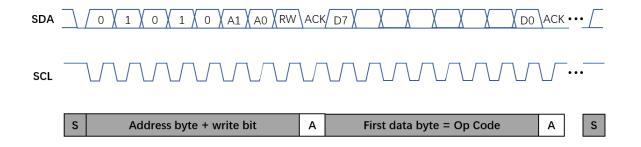


图 (4) IIC 通讯时序

9. 设计与应用

PMDS-Fx 是一颗超小封装的固态芯片应变传感器,可用于 0 到 100 kg 范围之内的高精度应力测量,应力输出的分辨率最高可达 mg 等级。

通过布设两颗 PMDS-Fx 或使用下一代坐标系产品,用户可以在二维坐标内对应力作用进行矢量分析。也可以通过布设传感器阵列,在较大的平面(比如平板电视)上实现更加多样化的压力触控功能。

作为业界首颗固态应变传感器,PMDS-Fx 为广泛应用中的人机界面提供了更加丰富、更加深刻的感知功能,有利于通过标准化工艺来快速实现个性化的交互。

9.1 参考电路

PMDS-Fx 可以被应用于耳机、电动牙刷、智能可穿戴等诸多领域,下图 (5)、(6) 展示了建议用户使用的参考电路。参照这一设计,用户可以快速、简洁的实现低功耗、高精度、低成本、高可靠的应力测量或阈值判断(压感触控)功能。

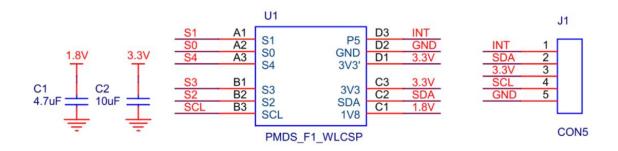


图 (5) PMDS-F1 参考电路

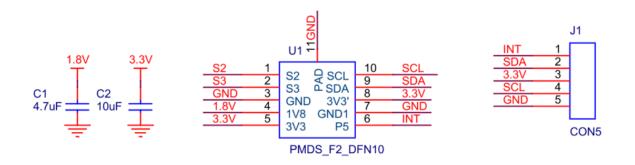


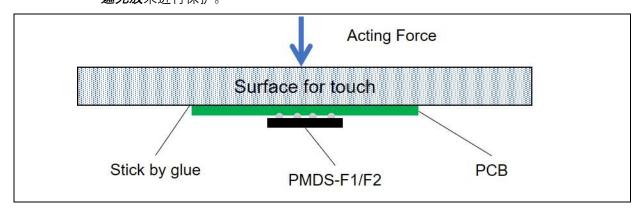
图 (6) PMDS-F2 / F3 参考电路

9.2 结构设计

PMDS-Fx 固态应变传感器可以被粘贴或固定在任何待测表面的背部,也可以通过机械机构将应变传导至传感器本体,其最大特点在于以下:

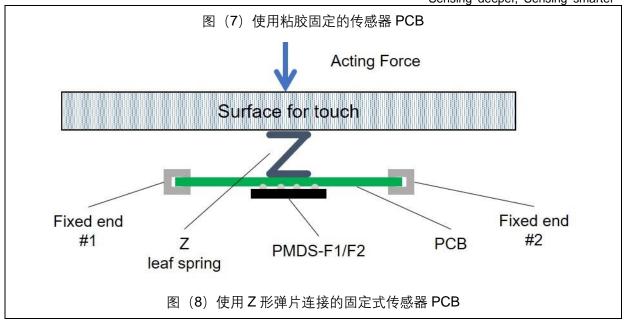
● 单芯片: 无需其它应力 / 应变敏感元件配合

● 标准化:标准 PCB 工艺即可实现,无需应力结构配合


● 即贴即用:瞬干焊接胶(如需更多细节,请联系我们的技术团队)

● 高度兼容:可以直接使用现有的应变传导结构,如 Z 形弹片、硬橡胶柱等

● 遮光处理:


PMDS-F1

对于深色外壳并且没有内置光源的系统,无需进行任何额外处理;
对于浅色外壳或带有内置光源(如 LED 等)的系统,强烈建议使用**黑色 PCB** 及**黑色 遮光胶**来进行保护。

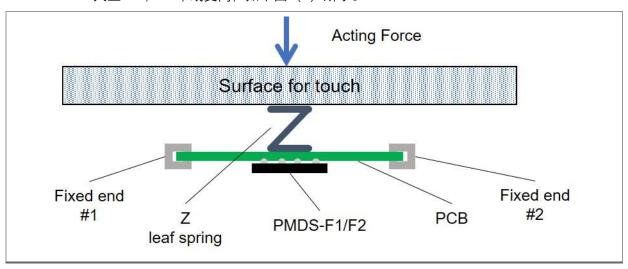
保密, 受不扩散协议所规定之条款保护。

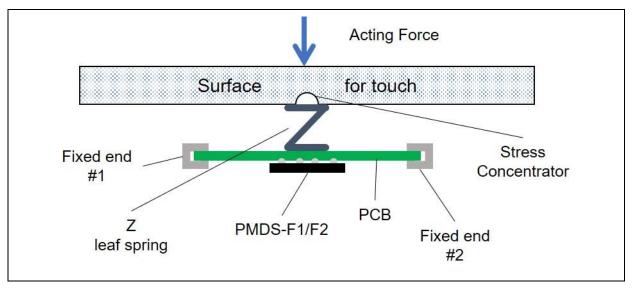
PMDS-F2 / F3无需对 PCB 及传感器作任何保护处理。

● 动态范围:

□ 增加动态范围

使用加强筋,可以大幅增加 PMDS-Fx 传感器的测量范围。标称应力可以从 0-20 牛放大至 0-1,000 牛或更高,如下图 (9) 所示。




图 (9) 通过加强筋放大测量范围

□ 减小动态范围

在作用表面增加合理设计的应力集中槽,可以大幅提高 PMDS-Fx 传感器的灵敏度,

减小其测量范围,如下图(10)所示。

图(10)通过应力集中槽提高灵敏度

综上所述,PMDS-Fx 系统的测量范围及灵敏度,并不仅仅取决于传感器本身,而是由系统设计决定的,影响因素包括如下:

- PCB 的刚性
- 工作表面的刚性
- 应力集中或加强筋结构
- 工作表面与传感器 PCB 之间的连接
- 应力传递结构
- 系统的结构力学设计

改进的结构力学设计、合理的应力集中槽可以缩小应力测量范围、提高系统灵敏度,同时还可以保证系统的刚性与可靠性。

与之相反的是,改进的结构力学设计、合理的加强筋可以放大应力测量范围,同时还可以保证系统的灵敏度与可靠性。举例来说,将 PMDS-Fx 传感器 PCB 粘贴在不锈钢摆臂上,可以检测按摩椅作用在人体上的 0-50 公斤应力,或者更甚,将传感器 PCB 通过合理设计的弹性体,粘贴在货车车厢的底部钢梁上,可以检测数千公斤乃至数十吨的载荷。

Prime 提供的标准驱动程序包含了基准跟踪等算法,可以帮助维持系统零漂在一个可以接受的范围之内,同时获得理想的稳定性和重复性。对于高精度的应力或扭矩测量而言,两点校准是必须的,其中一个是零点,另一个是最大应力值。

基于 PMDS-Fx 的应力、扭矩测量或压力按键方案,可以按照标准化的工艺批量生产,不需要额外关注制造公差,因而特别适合于快速面市、大批量产的产品。

批量生产中,机械公差以及预应力(预应力释放)等对于良率来说非常关键,尤其是在阈值被设置的极低以获取最佳灵敏度(用户体验)的情况下。

Prime 提供一套系统方法来确定预应力范围,配合专利的基准跟踪算法(baseline tracking algorithm)以解决上述问题,提高量产效率。如需更多细节,请与我们的技术人员交流。

9.3 数字输出

PMDS-Fx 工作于以下两种输出模式, 都需要用户从主控芯片向 PMDS-Fx 的指定存储区域加载标准驱动程序,标准驱动程序由 Prime 提供。

模式 1 通过 IIC 接口输出应力值,用户可以在主控芯片中执行相应操作,如设置应力阈值来实现压感按键功能,或输出应力值进行显示,或根据应力值来调整电机转速等。

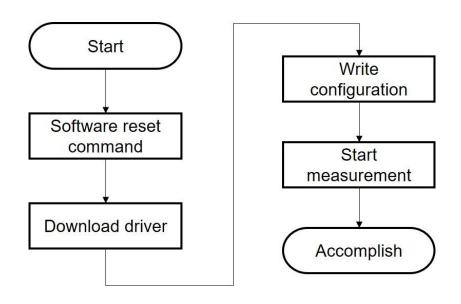
PMDS-Fx 的 IIC 接口仅工作于 slave 模式,通过 IIC SDA 和 IIC SCL 进行通讯。

控制命令如下:

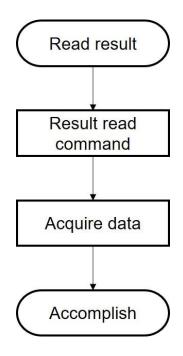
描述	命令字	字节 0										字节 1	字节 2
写	0xA0	1	0	1	0	0	0	A9	A8		A7A01		Data 0n
NVRAM													
读	0x20	0	0	1	0	0	0	A9	A8		A7A01		Data 0n
NVRAM													
写配置	0xA3	1	0	1	0	0	0	1	1	1	1 1 A5A01		Data 0n
读结果	0x40	0	1		,	45	<i>F</i>	\02			Data 0n		
上电复位	0x88	1	0	0	0	1	0	0	0	无		无	无
启动测量	0x8C	1	0	0	0	1	1	0	0			无	无

表 (5) 控制命令

【注】



SPI 和 IIC 都支持地址自动增加;


读取结果的范围是: 0~35。

IIC 地址是 0x50,需要单独配置一条 IIC 总线进行驱动。

模式 1 的标准驱动程序加载过程如下:

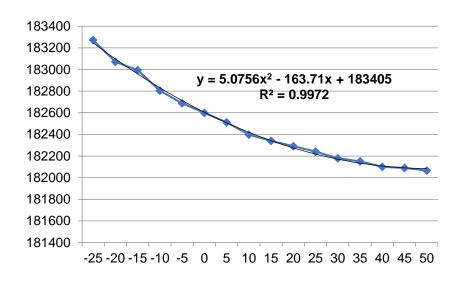
模式 1 通过 IIC 读出应力值的详情如下:

保密, 受不扩散协议所规定之条款保护。

【注】

读取通道与固件有关,不同固件可能使用的通道不相同,请联系提供固件的工程师进行确认。

模式 2 中断输出


模式 2 通过 I/O 口输出中断信号, 用户从主控芯片向 PMDS-F1/F2 的指定存储区域加载标准驱动程序后, 还需向以下存储区域写入设定的应力阈值, PMDS-F1/F2 将会自主检测应力阈值输出中断信号, 唤醒主控芯片, 实现压感按键功能。

模式 2 与模式 1 具有完全相同的标准驱动程序加载过程。

9.4 基准稳定性

PMDS-Fx 可以工作于-40 至+85 ℃。一般而言,温度场的变化是缓慢而均匀的,但为了应对可能的储运或使用过程中的小概率温度骤变,Prime 在驱动程序中内置了相应的温度补偿算法,以保证输出结果的温度漂移在较小的范围之内。

PMDS-Fx 在整个温度和供电电压范围内的基准输出如下,图 (11) 介绍了传感器基准输出 (零载荷下,或称应力零点)在固定供电电压和-25 至+50 ℃范围内的波动,图 (12) 介绍了传感器基准输出在室温 (12 °C) 和整个工作电压范围内的波动。

图(11)供电电压稳定状态下,基准输出在-20 至+50 ℃内骤变时的温度特性

传感器贴装在 PCB 上,整个传感/测量系统的应力零点随温度升高缓慢下降,通过一个如上图 所示的二阶函数,可以对工作温度范围内的应力零点漂移进行补偿,补偿后的 R² 值可以高达 0.9972。

PMDS-Fx 标准驱动程序包含了基准跟踪算法,用户不需要实施任何进一步的校准工作。

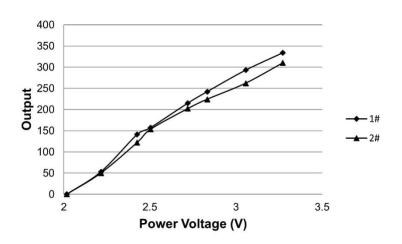
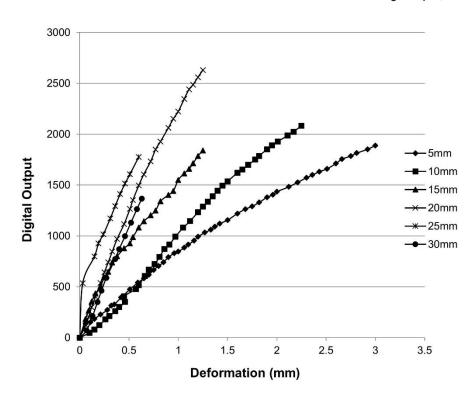


图 (12) 室温下, 基准输出的电压特性

供电电压波动状态下,PMDS-Fx 的基准输出将有相对较小的波动。对于电池供电而没有整流电路的情况,强烈建议使用 LDO 用于应力或扭矩测量场景。


对于压感触控等阈值检测应用,对供电电压的要求可以适当放宽。

9.5 线性度

对于应力或扭矩测量应用而言,传感器的线性度是关键指标之一。

下图 (13) 至 (17) 介绍了 PMDS-Fx 传感器的形变与应力输出之间的线性度回归系数, 图 (18) 介绍了测试系统的概况。

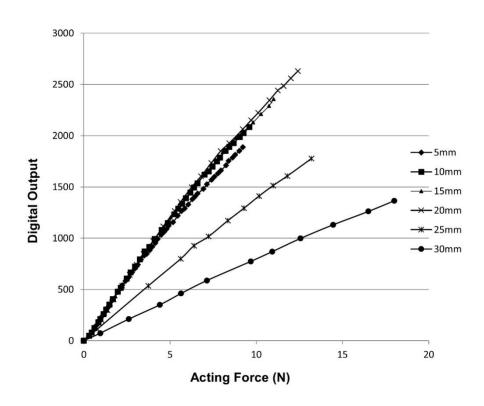
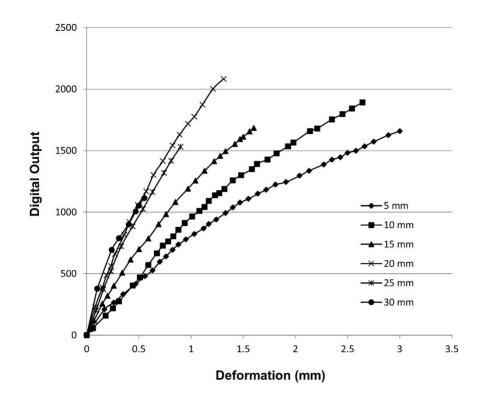



图 (13) 室温与稳定供电下, PMDS-Fx 的形变与应力输出线性度保密, 受不扩散协议所规定之条款保护。

- 形变与应力输出的线性度较高
- *合理设计的应力结构可以提高线性度,但并非必需。如下图,通过改变支撑柱与固定柱之间的间距模拟应力结构的变化*
- 线性度波动在可以接受的范围之内,同时,传感器具备较高的一致性

下图(14)介绍了另一颗 PMDS-Fx 传感器在相同测试条件下的输出结果,可以看到线性度回归系数同样较高。

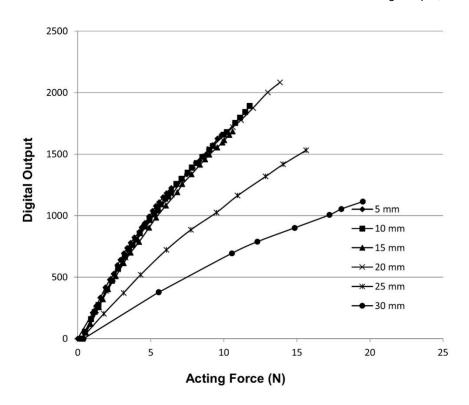


图 (14) 室温与稳定供电下,另一颗传感器的形变与应力输出线性度

将两颗传感器的形变与应力输出线性度进行对比,从下图(15)和(16)可以看到,PMDS-Fx 具有较高的一致性,完全可以应用在压感触控以外的应力或扭矩测量中。

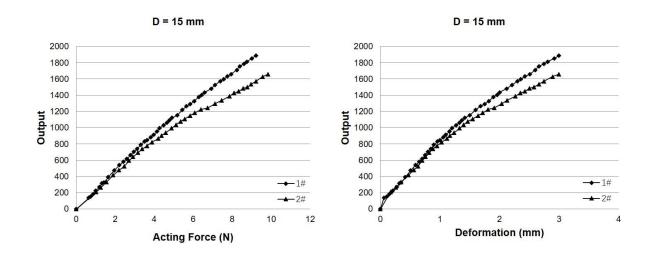
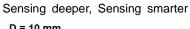



图 (15) PMDS-Fx — 致性 (D = 15 mm)

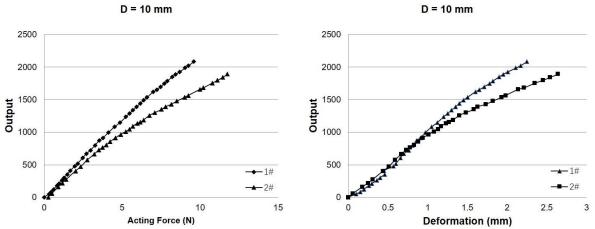


图 (16) PMDS-Fx — 致性 (D = 10 mm)

下图 (17) 介绍了 PMDS-Fx 在室温下的零漂。

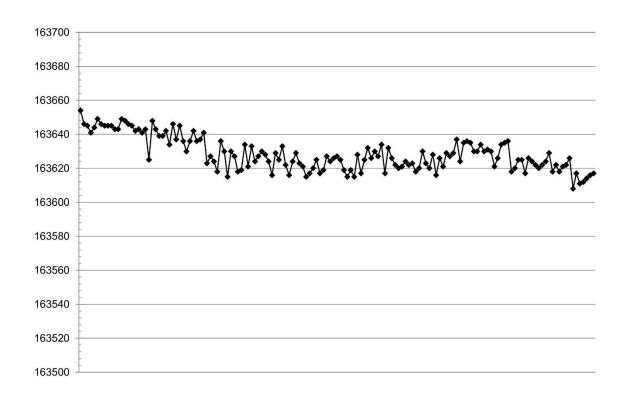


图 (17) PMDS-Fx 在室温下的零漂

Fixed end by screw

D (mm)

Force Probe

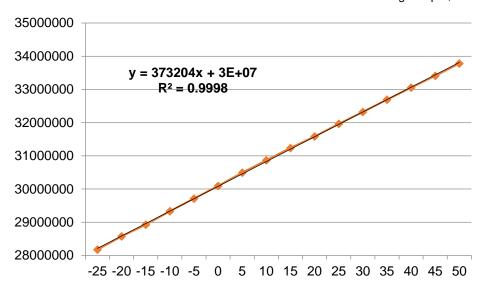
Sensing deeper, Sensing smarter

Force Gage

Force Probe

Rigid Stand

图 (18) 测试系统


9.6 内置电容测量

如需了解更多电容测量通道相关的细节,烦请不吝与我们的技术团队进行沟通。

9.7 内置温度测量

PMDS-Fx 的内置传感器可以实现最高 $\pm 0.3\,$ $^{\circ}$ 的温度精度,温度测量的线性度如下图(19)所示。

图(19)PMDS-Fx 内置温度传感器线性度

如需了解更多内置温度传感器的相关细节,烦请不吝与我们的技术团队进行沟通。

10. 其它信息

10.1 传感器的布板

- PCB 板与外壳、面板等应力集中表面的结合应当紧密、稳定、可靠
- 建议但不强制采用对称设计

10.2 传感器的操作

- PMDS-Fx 采用创新的全固态测量原理,无需注意防跌落
- 仍需注意 PCB 板与应力集中表面之间结合的稳定性与可靠性
- 可以使用超声波洗板
- 遵循静电防护要求
 - □ 使用防静电袋存储
 - □ 在 ESD 安全环境下操作
 - □ 接地以防止 ESD 损害

10.3 焊接建议

IPC/JEDECJ-STD-020D.1

回流焊的最高焊接温度应满足 IPC/JEDECJ-STD-020D.1 第 5.6 节的要求。

从温箱或湿度箱中取出的时间,应不短于 15 分钟,不长于 4 小时。如不能满足上述要求,器件需要重新被烘烤或加湿。焊接时间应在 5 到 60 分钟之内。

所有温度均为封装中心温度,通过封装表面进行测量。烘箱应按照同样的配置执行温度程序, 或在受认可的等效热负载状态下运行。

Profile Feature	Sn-Pb Eutectic Assembly	Pb-free Assembly
Preheat / Soak		
Temp Min (T_{smin})	100 °C	150 °C
Temp Max (T_{smax})	150 °C	200 °C
Time (T_s) from $(T_{smin} to T_{smax})$	60-120 seconds	60-120 seconds
Ramp up rate $(T_L to T_P)$	3°C/secondmax.	3°C/secondmax.
Liquidous temp (T_L)	183 °C	217 ℃
Time (T_L) maintained above T_L	60-150 seconds	60-150 seconds
	For users T_P must not exceed	For users T_P must not
	the classification temp.	exceed the classification
Peak package body temp (T_P)	For suppliers T_P must equal	temp.
	or exceed the classification	For suppliers T_P must equal
	temp.	or exceed the classification
		temp.
Time (T_P) within 5 °Cof the	20 seconds	30 seconds
specified classification temp (T_C)		
Ramp-down rate $(T_P to T_L)$	6 °C/secondmax.	6 °C/secondmax.
Time 25 °Cto peak temp	6 minutes max.	8 minutes
Tolerance for peak profile temp (T_P)	is defined as a supplier min. an	d a user max.

表(6)回流焊温度曲线

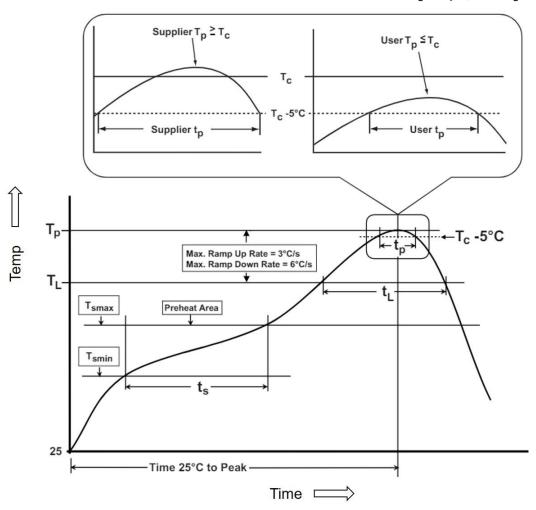


图 (20) 回流焊无铅焊接温度曲线

10.4 封装信息

PMDS-F1: WLCSP12

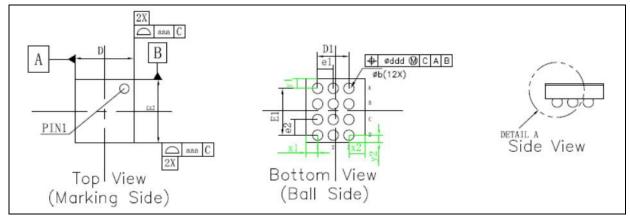


图 (21) PMDS-F1 顶视图、底视图、侧视图

图 (22) PMDS-F1 引脚与封装尺寸

PMDS-F2: DFN10

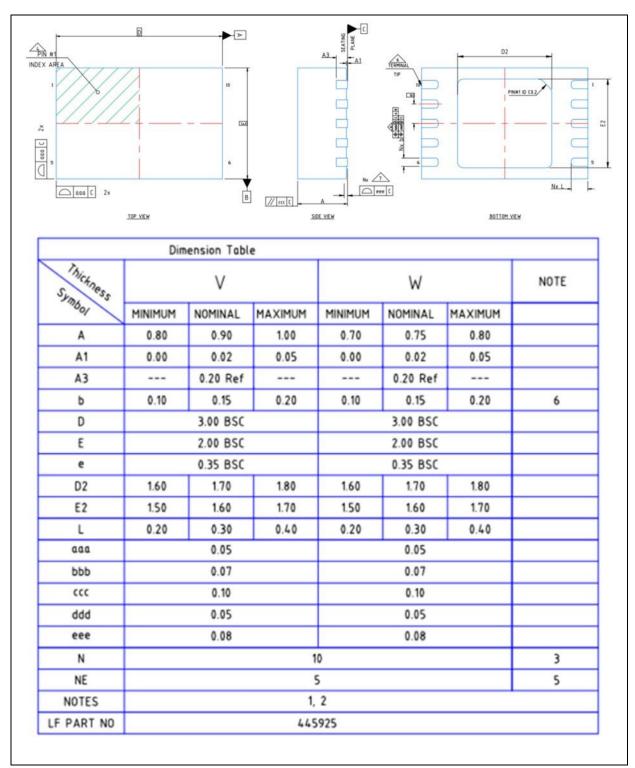


图 (23) PMDS-F2 / F3 引脚与封装尺寸

10.5 丝印编码

PMDS-Fx 的丝印编码包含两行字母及数字,印制在 WLCSP12 或 DFN10 的封装顶部。

● 第一行: 产品型号, F1、F2 或 F3

● 第二行: LNMY:

- □ LN 对应晶圆 Lot Number 的末两位, 机器自动抓取;
- □ M 对应生产时的公历月份, 1-9 月份分别对应数字 1-9, 10-12 月份分别对应代码 A、B 和 C;
- □ Y对应生产时的公历年份,2020-2019分别对应数字0-9。

10.6 编带包装

PMDS-F1 编带包装信息如下:

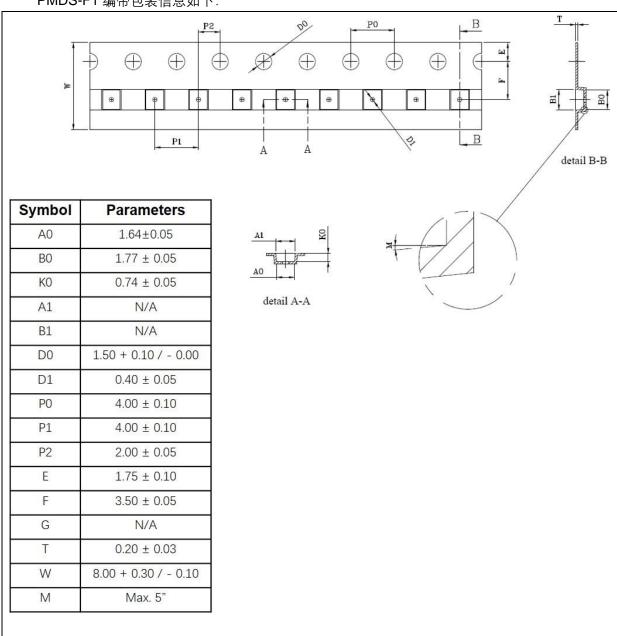


图 (24) PMDS-F1 编带包装尺寸

PMDS-F2 / F3 编带包装信息:

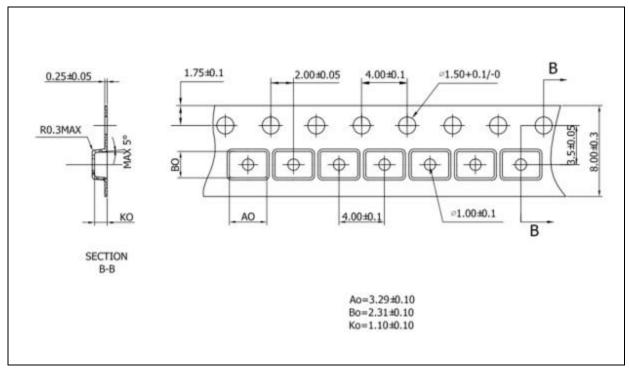


图 (25) PMDS-F2 / F3 编带包装尺寸

11. RoHS 兼容性

PMDS-Fx 完全符合当下的 RoHS 指令,可以被用作于规定的无铅流程。

12. 版权申明与版本信息

12.1 版权申明

本文档包含的所有内容归属于版权所有方,未经授权,不得被复制、存储、翻译或以其它任何 形式再次应用。

12.2 版本信息

当前最新版本 v23,00.211027(更新日期 2021-10-27)	页码
更新所有图表	-
增加基准输出的稳定性及线性度	-
更新机械结构设计建议,介绍基准自动跟随算法如何解决量产中的公差和预应力问题。	10-13
更新 IIC 时序图	8
更新电气参数中的功耗参数 (表 4)	7-8
更新动态范围及引脚描述 (表 2)	6
新增 9.6 及 9.7 节电容与温度测量相关概况	21
新增功能框图	3
更正部分笔误	-

表 (7) 版本信息

如需商务支持,请联络代理商,或我们的销售支持团队:

Prime

S. China Sales & Marketing: Mr. Kenny CHEN, kenny.chen@prime-semi.com

C. China Sales & Marketing: Ms. Kitty LV, kitty.lv@prime-semi.com

Sales & Marketing Assistant: Ms. Lisa LIU, lisa.liu@prime-semi.com

如需技术支持,请联络我们的应用技术团队:

Prime

GC Application Support: Mr. David ZHOU, david.zhou@prime-semi.com