

#### **DESCRIPTION**

The CBG9326 is high efficiency GaAs HBT MMIC driver amplifier which operates between 3.0 and 4.5 GHz. The amplifier is packaged in a low cost, surface mount 8 leaded package with an exposed base for improved RF and thermal performance. The amplifier provides 19 dB of gain and +25 dBm of saturated power from a +3.3V supply voltage, and 23dB of gain and +26dBm of saturated power from a +5V supply voltage. Power down capability is available to conserve current consumption when the amplifier is not in use. Internal circuit matching was optimized to provide greater than 40% PAE.

The device is provided in an EMSOP8 package.

#### **BLOCK DIAGRAM**

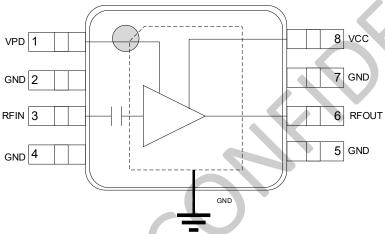



Figure 1. CBG9326 Block Diagram

#### **FEATURES**

- Psat Output Power: +26 dBm
- PAE > 40%
- Output IP3: +32 dBm
- High Gain: 24 dB
- Vs: +5V
- Ultra-Small Package: EMSOP8 (MSL1, 260℃ per JEDEC J-STD-020)

#### APPLICATIONS

- Microwave Radios
- Broadband Radio Systems
- Wireless Local Loop Driver Amplifier



# **PIN-OUT DIAGRAM**

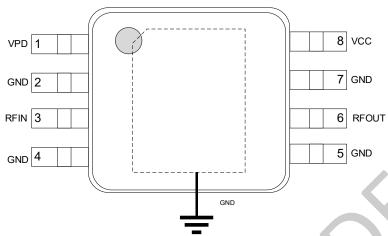



Figure 2. CBG9326 Pin out (Top View)

# **PIN ASSIGNMENTS**

| Pin | Name | Description     | Pin | Name  | Description            |
|-----|------|-----------------|-----|-------|------------------------|
| 1   | VPD  | Control Voltage | 5   | GND   | Ground                 |
| 2   | GND  | Ground          | 6   | RFOUT | RF Output Power        |
| 3   | RFIN | RF Input Power  | 7   | GND   | Ground                 |
| 4   | GND  | Ground          | 8   | VCC   | Collector Bias Voltage |



### **ABSOLUTE MAXIMUM RATINGS**

| Parameters                                                 | Symbol          | Min | Max  | Units |
|------------------------------------------------------------|-----------------|-----|------|-------|
| Collector Bias Voltage (Vcc)                               | Vcc             |     | +5.5 | V     |
| Control Voltage Range (Vpd)                                | $V_{PD}$        |     | +5.5 | V     |
| RF Input Power (RFIN)(Vs = Vpd = +5Vdc)                    | P <sub>IN</sub> |     | +15  | dBm   |
| Supply current                                             | Icc             |     | 800  | mA    |
| Storage temperature                                        | T <sub>st</sub> | -40 | +150 | °C    |
| Operating Temperature                                      | Tc              | -40 | +85  |       |
| Junction Temperature                                       | $T_J$           |     | +150 | ô     |
| Continuous Pdiss (T = 85 °C) (derate 14 mW/°C above 85 °C) |                 |     | 0.92 | W     |
| Electrostatic discharge: Human Body Model (HBM)            |                 |     | 1000 | V     |

#### NOTE:

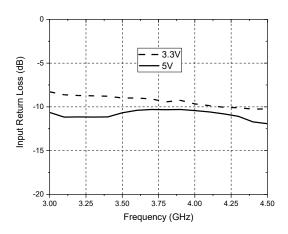
Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other parameters set at or below their nominal value. Exceeding any of the limits listed here may result in permanent damage to the device.

| ESD I | HANDL | .ING: | A |
|-------|-------|-------|---|
|-------|-------|-------|---|

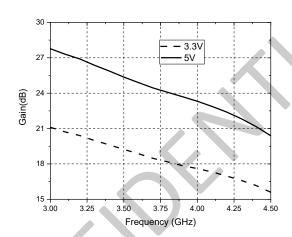
Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This device must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.



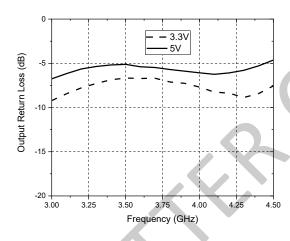
# **CBG9326 ELECTRICAL SPECIFICATIONS**<sup>1</sup>


| Parameters                                                                        | Parameters Symbol Te |                            |      | Min  | Тур. | Max  | Units  |
|-----------------------------------------------------------------------------------|----------------------|----------------------------|------|------|------|------|--------|
| (TC = +25 $^{\circ}$ C, Input/Output Load = 50 $\Omega$ , Unless Otherwise Noted) |                      |                            |      |      |      |      |        |
| Frequency                                                                         | f                    | Main frequency band        |      | 3000 |      | 4500 | MHz    |
| Gain                                                                              | G                    | Pin = -30dBm               | 3.3V | 16   | 20   | 21.5 | dB     |
|                                                                                   |                      |                            | 5V   | 21   | 24   | 28   |        |
| Input return loss                                                                 | <br> S11             | Pin = -30dBm               | 3.3V |      | 9    |      | dB     |
| input return 1000                                                                 | 10111                |                            | 5V   |      | 11   |      | GD.    |
| Output return loss                                                                | S22                  | Pin = -30dBm               | 3.3V |      | 7    |      | dB     |
| Output return 1035                                                                | 022                  |                            | 5V   |      | 6    |      | uБ     |
| Output Power for 1dB                                                              |                      | CW, Reference to small sig | ,    | 23   | 24   |      |        |
| Compression                                                                       | P1dB                 | gain                       | 3.3V | 21   | 24   |      | dBm    |
|                                                                                   |                      |                            | 5V   |      |      |      |        |
| Saturated Output Power                                                            | Psat                 | CW, Pin =8dBm              | 3.3V | 24   | 25   |      | dBm    |
|                                                                                   | , sat                |                            | 5V   | 25.5 | 27   |      | uD.III |
| PAE@Psat                                                                          | PAE                  | @Psat                      |      | 35   | 42   | 50   | %      |
| Output Third Order Intercept                                                      | IP3                  |                            |      |      | 30.5 |      | dBm    |
| Noise Figure                                                                      | NF                   |                            |      |      | 5    |      | dB     |
|                                                                                   | Icq                  | Vpd = 0V                   |      | 0    | 1    |      | uA     |
| Supply Current                                                                    | 104                  | Vpd = 3.3V/Vcc = 3.3V      |      | 20   | 25   |      | mA     |
|                                                                                   |                      | Vpd = 5V/Vcc = 5V          |      | 90   | 95   |      | mA     |
| Control Current                                                                   | lpd                  |                            |      |      | 7    |      | mA     |
| Switching time                                                                    | tON/tOFF             |                            |      |      | 10   |      | ns     |

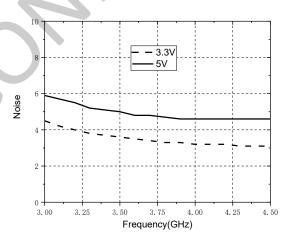



## **PERFORMANCE PLOTS**

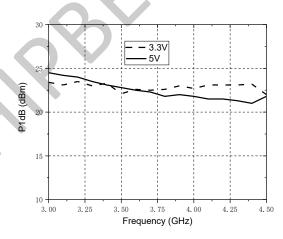
(Test conditions unless otherwise noted: Temp. = +25 °C, Input/Output Load = 50 Ω)


### Input Return Loss

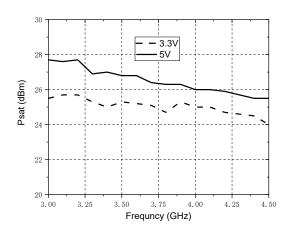



#### Gain




#### **Output Return Loss**




### Noise Figure



#### P1dB



#### Psat





## **EVALUATION BOARD SCHEMATIC**

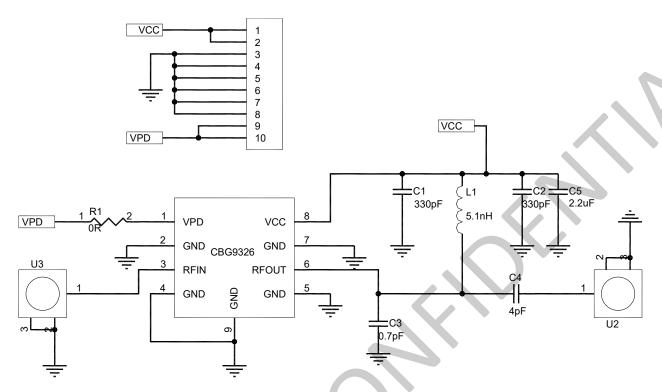



Figure 3. CBG9326 Evaluation Board Schematic



## **EVALUATION BOARD ASSEMBLY DRAWING**

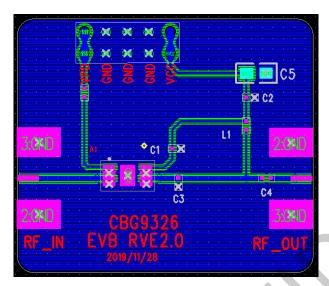



Figure 4. CBG9326 Evaluation Board Assembly Drawing

## **BILL OF MATERIALS**

| Component | Value  | Size | Vendor | Part Number |
|-----------|--------|------|--------|-------------|
| C1        | 330pF  | 0402 | Murata |             |
| C2        | 330pF  | 0402 | Murata |             |
| C3,       | 0.7pF  | 0402 | Murata |             |
| C4        | 4pF    | 0402 | Murata |             |
| C5        | 2.2 µF | 0805 | Murata |             |
| L1        | 5.1nH  | 0402 | Murata |             |



## **PCB LAND PATTERN**

|   | A             | В    |  |  |  |
|---|---------------|------|--|--|--|
| 1 | Dimensions    |      |  |  |  |
| 2 | Land X1       | 4.40 |  |  |  |
| 3 | Land Y1       | 0.45 |  |  |  |
| 4 | Tab Land X2   | 1.45 |  |  |  |
| 5 | Tab Land Y2   | 1.75 |  |  |  |
| 6 | Silkscreen R1 | 2.40 |  |  |  |
| 7 | Silkscreen R2 | 0.00 |  |  |  |
| 8 | Courtyard V1  | 0.00 |  |  |  |
| 9 | Courtyard V2  | 3.60 |  |  |  |

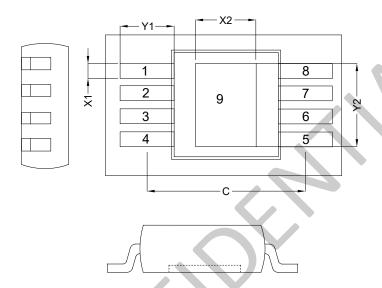



Figure 5. CBG9326 PCB Layout Footprint



### TYPICAL PART MARKING

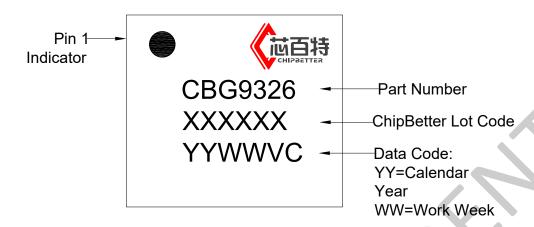



Figure 6. Typical Part Marking for the CBG9326

# PACKAGE DIMENSIONS (All Dimensions in mm):

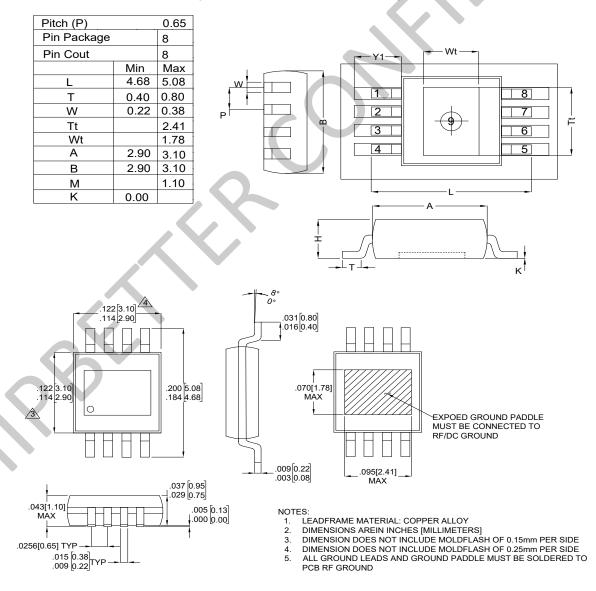



Figure 7. CBG9326 Package Dimension



### **CONTACT INFORMATION**

For the latest specifications, additional product information, worldwide sales and distribution locations:

**Web:** www.chipbetter.com **Tel:** 0755-26654180

### **DISCLAIMERS**

ChipBetter reserves the right to make changes without further notice to specifications and product descriptions in this document to improve reliability, function or design. ChipBetter does not assume any liability arising out of the application or use of information or product described in this document. Neither does ChipBetter convey any license under its intellectual property rights nor licenses to any of circuits described in this document to any third party. The information in this document is believed to be accurate and reliable and is provided on an "as is" basis, without any express or implied warranty. Any information given in this document does not constitute any warranty of merchantability or fitness for a particular use. The operation of this product is subject to the user's implementation and design practices. ChipBetter products are not designed or intended for use in life support equipment, devices or systems, or other critical applications, and are not authorized or warranted for such use.

Copyright of ChipBetter Microelectronics Co, Ltd. All rights reserved.