LTP3558

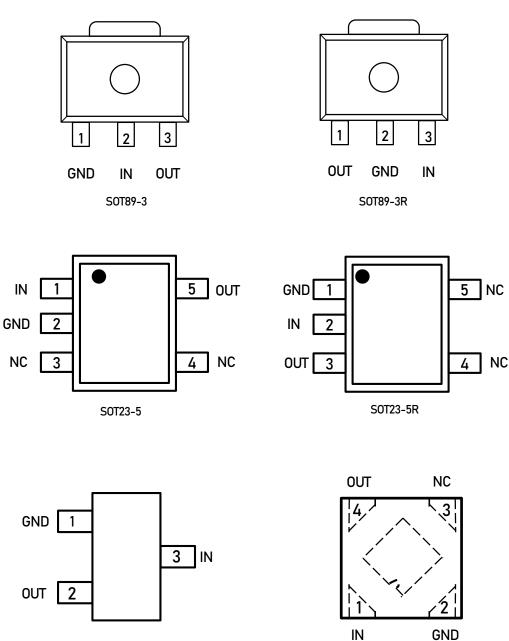
General Description

The LTP3558 is a high voltage, low power consumption and high performance LDO. The family uses an advanced CMOS process and a P-MOSFET pass device to achieve fast start-up, with high output voltage accuracy. The LTP3558 is stable with a 1.0μ F~ 10μ F ceramic output capacitor, and uses a precision voltage reference and feedback loop to achieve a worst-case accuracy of 2% over all load, line, process, and temperature variations.

Features

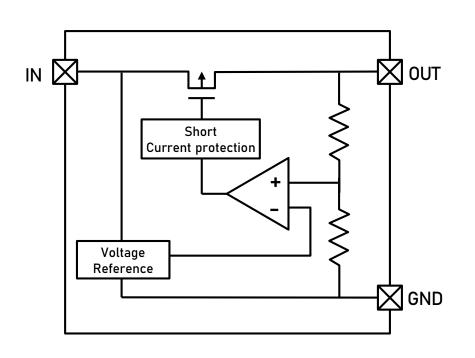
- Wide Input Voltage Range: up to 36V
- Output Current: 200mA
- Standard Fixed Output Voltage Options: 1.8V, 2.5V, 3.0V, 3.3V, 3.6V, and 5.0V
- Other Output Voltage Options Available on Request
- Low Iα: 1.5μΑ
- Low Dropout Voltage
- Short current protection: 100mA
- Excellent Load and Line Transient Response
- Line Regulation: 0.01%/V Typically
- Available Packages: S0T23-3, S0T23-5, DFN1x1-4, S0T89-3

Order Information


Model	Package	Ordering Number Note1	Packing Option
LTP3558	S0T23-3	LTP3558-xxXT3	Tape and Reel, 3000
	S0T23-5	LTP3558-xxXT5	Tape and Reel, 3000
	S0T23-5R	LTP3558-xxRXT5	Tape and Reel, 3000
	DFN1x1-4	LTP3558-xxXF4	Tape and Reel, 10000
	S0T89-3	LTP3558-xxXT4	Tape and Reel, 1000
	S0T89-3R	LTP3558-xxRXT4	Tape and Reel, 1000

Notel: xx stands for output voltage, e.g. if xx = 18, the output voltage is 1.8V; if xx = 30, the output voltage is 3.0V.

Pin Configuration



Pin Function

Pin No.				D'a Nama	Dia Essentian			
S0T23-3	S0T23-5	S0T23-5R	SOT89-3	S0T89-3R	DFN1x1-4L	Pin Name	Pin Function	
3	1	2	2	3	1	IN	Supply input pin.	
1	2	1	1	2	2	GND	Ground.	
	3	4			3	NC	No connection.	
	4	5				NC	No connection.	
2	5	3	3	1	4	OUT	Output pin.	

Block Diagram

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

LTP3558

Functional Description

Input Capacitor

A 1µF-10µF ceramic capacitor is recommended to connect between Vin and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both Vin and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from 1μ F to 10μ F, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

Low Quiescent Current

The LTP3558, consuming only around 1.5 μ A for all input range and output loading, provides great power saving in portable and low power applications.

Short Current Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin is short-circuit to GND, the short current limit protection will be triggered and clamp the output current to approximately 100mA to prevent over-current and to protect the regulator from damage due to overheating.

Parameter	Rating	Unit	
IN pin to GND pin	-0.3 to 40	V	
OUT pin to GND pin	-0.3 to 6	V	
	SOT23-3 360		
	SOT23-5 250		
Thermal Resistance (Junction to Ambient)	S0T23-5R 250	°C/W	
	DFN1X1-4L 180	C/ W	
	SOT89-3 135		
	SOT89-3R 135		
Operating Junction Temperature	-40 to 125	°C	
Storage Temperature	-65 to 150	°C	
Lead Temperature (Soldering, 10 sec)	300	°C	
ESD (HBM mode)	ESDA/JEDEC JS-001-2017	±2000V	

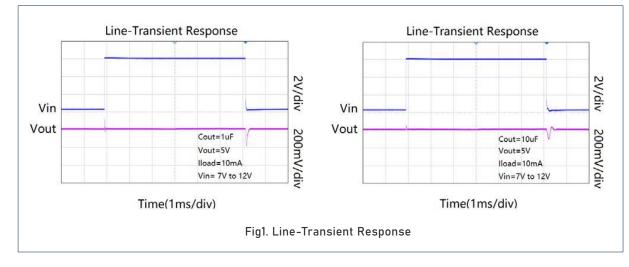
Absolute Maximum Ratings

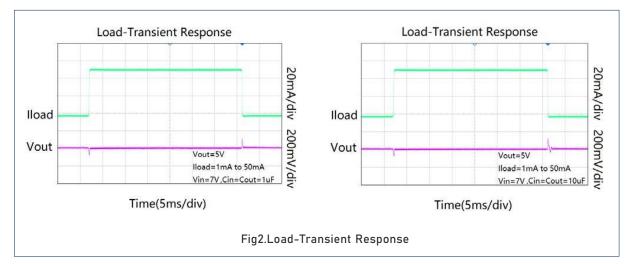
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

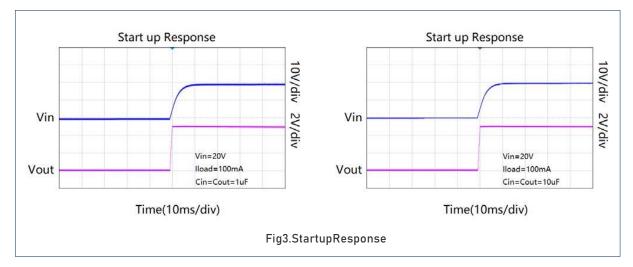
Linearin and designs are registered trademarks of Linearin Technology Corporation.

© Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.


Electrical Characteristics

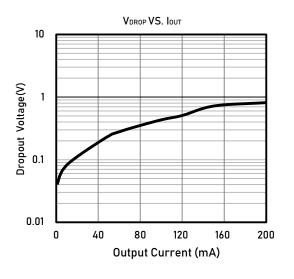
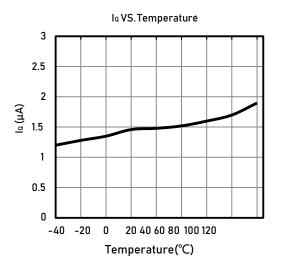

(V_{IN}= V_{0UT}+2V, T_a= 25 °C, C_{IN}=10uF, C_{0UT}=10uF unless otherwise noted)

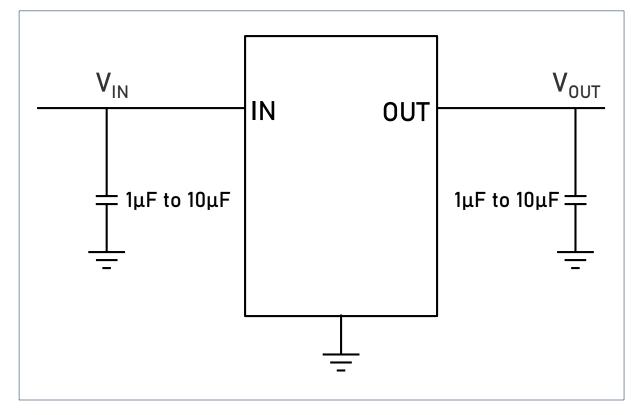

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Input Voltage Operation Range	V _{IN}				36	۷		
		V _{out} = 5.0 V, I _{out} = 150mA		720				
Dropout Voltago	V	V _{out} = 5.0 V, I _{out} = 100mA		420		mV		
Dropout Voltage	V _{DROP}	V _{OUT} = 3.3 V, I _{OUT} = 150mA		820		mv		
		V _{OUT} = 3.3 V, I _{OUT} = 100mA		520				
DC Supply Quiescent Current	Ι _α			1.5	3	μA		
Regulated Output Voltage	V _{OUT}	I _{out} =1mA	V _{out} X 0.98		V _{QUT} X1.02	V		
Output Voltage Line Regulation	Reg _{LINE}	V _{IN} = V _{OUT} +1V to 30V, Iout = 10mA (△V _{OUT} /△V _{IN} /V _{OUT})		0.01	0.04	%/V		
Output Voltage Load	Reg _{load}	I _{out} from 1mA to 150mA V _{IN} =V _{out} +2V		5	20	mV		
Regulation		I _{out} from 1mA to 150mA V _{IN} =10V		25	60	mV		
Maximum Output Current	I _{out}	V _{IN} = V _{OUT} +2V	200			mA		
Short Current Protection	I _{SHORT}	OUT short to GND		100		mA		
Output Noise	e _N	10Hz to 100kHz, I _{out} = 30mA,		90		μV _{RMS}		

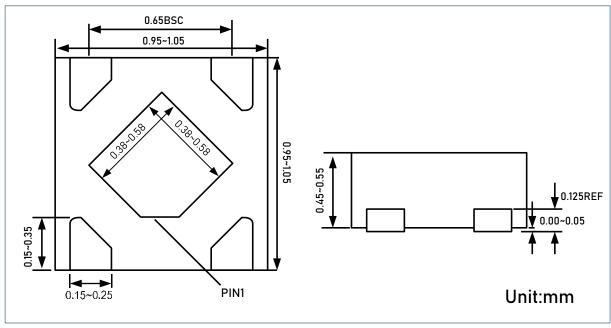
TYPICAL PERFORMANCE CHARACTERISTICS

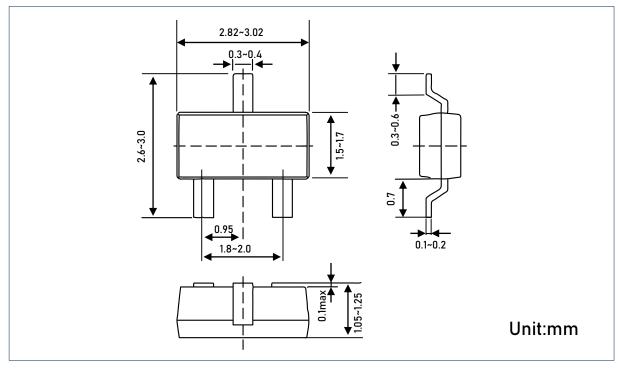
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.

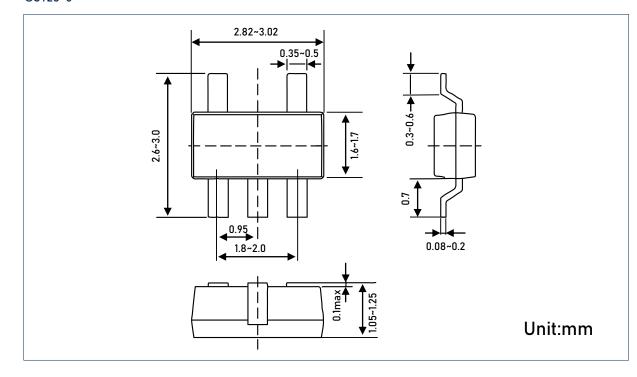

Fig4. Dropout Voltage VS Output Current

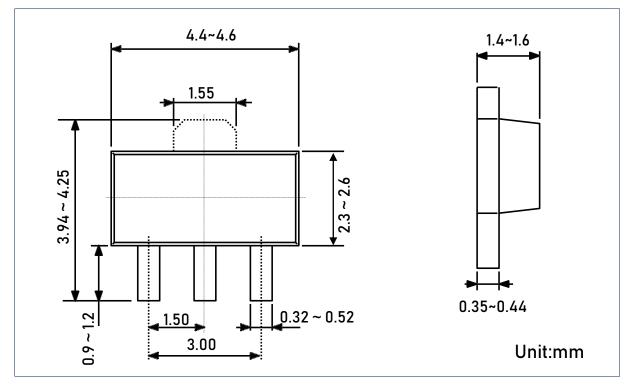

Application Circuits



Package Dimension

DFN1x1-4


S0T23-3


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

S0T23-5

SOT89-3

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Linearin and designs are registered trademarks of Linearin Technology Corporation. © Copyright Linearin Technology Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

LTP3558 36V Input Voltage, 200-mA, Ultra-low I_Q LDOs

