百盛新纪元半导体
电话：13534212799
Q Q：2851339680

Description

The FR9850F is a synchronous step－down DC／DC converter with fast constant on time（FCOT）mode control．The device provides 4.5 V to 18 V input voltage range and 2A continuous load current capability．It is constant on time pulse width modulation（PWM）controller that supports FCOT mode control．Operation frequency depends on Input and output voltage condition．

The FR9850F fault protection includes cycle－by－cycle ourrent limit，short circuit protection， UVLO and thermal shutdown，The softstat function prevents intush current atturn－on．The FR9850－use fast constant on time control that provides fast transient response，the noise mmunity and all kinds of very low ESR output capacitor for ensuring performance stabilization．

The FR9850F is offered in SOT－23－6 package，which provides good thermal conductance．

Pin Assignments

S6 Package（SOT－23－6）

Figure 1．Pin Assignments of FR9850F

18V，2A Synchronous Step－Down DC／DC Converter

Features

－Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Integrated Power MOSFET （ $145 \mathrm{~m} \Omega / 90 \mathrm{~m} \Omega$ ）
－Wide Input Voltage Range： 4.5 V to 18 V
－Output Voltage Range： 0.6 V to 8 V
－2A Output Current
－FCOT Mode Enables Fast Transient Response
－Pseudo 850 kHz Frequency
－Input Under Voltage Lockout
－Internal 1.5 ms Soft－Start
－Cycle－by－Cycle Current Limit
－Hiccup Short Circuit Protection
－Over Temperature Protection with Auto Recovery
－SOT－23－6 Package

Applications

－STB（Set－Top－Box）
－LCD Display，TV
－Distributed Power System
－Networking，XDSL Modem

Ordering Information

FR9850F \square Package Type
S6：SOT－23－6

SOT－23－6 Marking

Part Number	Product Code
FR9850FS6	GE0

FR9850F

Typical Application Circuit

Figure 2. FR9850F Application Circuit
$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, the recommended BOM list is as below.

$V_{\text {out }}$	C1	R1	R2	$\mathbf{C 4}$	$\mathbf{L 1}$	C2
1.05 V	$22 \mu \mathrm{~F} \mathrm{MLCC}$	$7.5 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$68 \mathrm{pF} \sim 220 \mathrm{pF}$	$2.2 \mu \mathrm{H}$	$22 \mu \mathrm{~F} \mathrm{MLCC}$
1.2 V	$22 \mu \mathrm{~F} \mathrm{MLCC}$	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$68 \mathrm{pF} \sim 220 \mathrm{pF}$	$2.2 \mu \mathrm{H}$	$22 \mu \mathrm{~F} \mathrm{MLCC}$
1.8 V	$22 \mu \mathrm{~F} \mathrm{MLCC}$	$20 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$68 \mathrm{pF} \sim 220 \mathrm{pF}$	$2.2 \mu \mathrm{H}$	$22 \mu \mathrm{~F} \mathrm{MLCC}$
2.5 V	$22 \mu \mathrm{~F} \mathrm{MLCC}$	$31.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$68 \mathrm{pF} \sim 220 \mathrm{pF}$	$3.3 \mu \mathrm{H}$	$22 \mu \mathrm{~F} \mathrm{MLCC}$
3.3 V	$22 \mu \mathrm{~F} \mathrm{MLCC}$	$45.3 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$68 \mathrm{pF} \sim 220 \mathrm{pF}$	$4.7 \mu \mathrm{H}$	$22 \mu \mathrm{~F} \mathrm{MLCC}$
5 V	$22 \mu \mathrm{~F} \mathrm{MLCC}$	$73.2 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$68 \mathrm{pF} \sim 220 \mathrm{pF}$	$4.7 \mu \mathrm{H}$	$22 \mu \mathrm{~F} \mathrm{MLCC}$

Table 1. Recommended Component Values FR9850F

Functional Pin Description

Pin Name	Pin No.	Pin Function
BST	$\mathbf{1}$	High side gate drive boost pin. A capacitor rating between 0.1uF~1uF must be connected from this pin to LX. It can boost the gate drive to fully turn on the internal high side NMOS.
GND	$\mathbf{2}$	Ground pin.
FB	$\mathbf{3}$	Voltage feedback input pin. Connect FB and VOUT with a resistive voltage divider. This IC senses feedback voltage via FB and regulates it at 0.6V.
$\overline{\text { SHDN }}$	$\mathbf{4}$	Enable input pin. Pull high to turn on IC, and pull low to turn off IC. Connect VIN with a 100k self-startup. resistor for
VIN	$\mathbf{5}$	Power supply input pin. Placed input capacitors as close as possible from VIN to GND to avoid noise influence.
LX	$\mathbf{6}$	Power switching node. Connect an external inductor to this switching node.

Block Diagram

Figure 3. Block Diagram of FR9850F
Absolute Maximum Ratings ${ }^{\text {(Note 1) }}$

- Supply Voltage V_{IN} -0.3 V to +20 V
- Enable Voltage $\mathrm{V}_{\overline{\mathrm{SHDN}}}$ -0.3 V to +20 V
- LX Voltage VLX -0.3 to ($\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}$)
- Dynamic LX Voltage in 15ns Duration -5 V to $\mathrm{V}_{\mathrm{IN}}+5 \mathrm{~V}$
- BST Pin Voltage $\mathrm{V}_{\text {BSt }}$ -0.3 V to $\mathrm{V}_{\mathrm{LX}}+6.5 \mathrm{~V}$
- All Other Pins Voltage -0.3 V to +6 V
- Maximum Junction Temperature (T_{J}) $+150^{\circ} \mathrm{C}$
- Storage Temperature (T_{s}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
- Lead Temperature (Soldering, 10sec.) $+260^{\circ} \mathrm{C}$
- Package Thermal Resistance, $\left(\theta_{\mathrm{JA}}\right)^{\text {(Note 2) }}$
SOT-23-6 $250^{\circ} \mathrm{C} / \mathrm{W}$
- Package Thermal Resistance, (θ_{Jc})
SOT-23-6$110^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Note 2: θ_{JA} is measured at $25^{\circ} \mathrm{C}$ ambient with the component mounted on a high effective thermal conductivity 4-layer board of JEDEC-51-7. The thermal resistance greatly varies with layout, copper thickness, number of layers and PCB size.

Recommended Operating Conditions

- Supply Voltage $\mathrm{V}_{\mathbb{I N}}$ +4.5 V to +18 V
- Operation Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
fitipower

Electrical Characteristics

($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IN }}$ Quiescent Current	IdDQ	$\mathrm{V}_{\overline{\mathrm{SHDN}}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1 \mathrm{~V}$		0.3		mA
$\mathrm{V}_{\text {IN }}$ Shutdown Supply Current	ISD	$V_{\overline{\text { SHDN }}}=0 \mathrm{~V}$		1	10	$\mu \mathrm{A}$
Feedback Voltage	V_{FB}	$4.5 \mathrm{~V} \leqq \mathrm{~V}_{1 \mathrm{~N}} \leqq 18 \mathrm{~V}$	0.591	0.6	0.609	V
Feedback Input Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$		0.01	0.1	$\mu \mathrm{A}$
High-Side MOSFET R ${ }_{\text {DS(ON) }}$	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$			145		$m \Omega$
Low-Side MOSFET R ${ }_{\text {DS(ON) }}$	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$			90		$\mathrm{m} \Omega$
Valley Current Limit ${ }^{\text {(Note 3) }}$	lıimit			3		A
On Time	Ton	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.05 \mathrm{~V}$		130		ns
Minimum Off Time	Toff(MIN)	$\mathrm{V}_{\mathrm{FB}}=0.4 \mathrm{~V}$		200		ns
Input Supply Voltage UVLO Threshold	V UVLO(Vth)	$V_{\text {IN }}$ Rising		4		V
UVLO Threshold Hysteresis	V UVLO(HYS)			0.35		V
Internal Soft-Start Period ${ }^{\text {(Note 3) }}$	Tss			1.5		ms
$\overline{\text { SHDN }}$ Input Low Voltage	$\mathrm{V}_{\overline{\mathrm{SHDN}}(\mathrm{L})}$				0.5	V
$\overline{\text { SHDN }}$ Input High Voltage	$\mathrm{V}_{\overline{\mathrm{SHDN}}(\mathrm{H})}$		1.5			V
$\overline{\text { SHDN }}$ Input Current	$I_{\overline{S H D N}}$	$V_{\overline{\text { SHDN }}}=2 \mathrm{~V}$		2		$\mu \mathrm{A}$
Thermal Shutdown Threshold ${ }^{(N o t e ~ 3)}$	$\mathrm{T}_{\text {sD }}$			160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis ${ }^{(N o t e ~ 3)}$	$\mathrm{T}_{\mathrm{HYS}}$			30		${ }^{\circ} \mathrm{C}$

Note 3: Not production tested.

Typical Performance Curves

Figure 4. Efficiency vs. Load Current

Figure 6. Efficiency vs. Load Current

Figure 8. Switching Frequency vs. Temperature

Figure 5. Efficiency vs. Load Current
$V_{\overline{S H D N}}=2 V, V_{F B}=1 V$

Figure 7. Quiescent current vs. Temperature

Figure 9. Feedback voltage vs. Temperature

Typical Performance Curves (Continued)

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{C} 1=22 \mu \mathrm{~F}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{C} 4=82 \mathrm{pF}, \mathrm{L} 1=4.7 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.
$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$

Figure 10. Steady State Waveform
$\mathrm{I}_{\text {out }}=0 \mathrm{~A}$

Figure 12. Startup Through Power Supply Waveform $I_{\text {OUT }}=0 A$

40ms/div.
Figure 14. Shutdown Through Power Supply Waveform
$I_{\text {OUT }}=2 A$

Figure 11. Steady State Waveform
$I_{\text {OUT }}=2 A$

Figure 13. Startup Through Power Supply Waveform

Figure 15. Shutdown Through Power Supply Waveform

Typical Performance Curves (Continued)

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=3.3 \mathrm{~V}, \mathrm{C} 1=22 \mu \mathrm{~F}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{C} 4=82 \mathrm{pF}, \mathrm{L} 1=4.7 \mu \mathrm{H}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 16. Startup Through $\overline{\text { SHDN }}$ Waveform
$I_{\text {OUT }}=0 A$

4ms/div.

Figure 18. Shutdown Through SHDN Waveform

$\mathrm{I}_{\text {OUT }}=2 \mathrm{~A}$

Figure 17. Startup Through $\overline{\text { SHDN }}$ Waveform

Figure 19. Shutdown Through SHDN Waveform

Function Description

The FR9850F is a synchronous step-down DC/DC converter with fast constant on time (FCOT) mode control. It has integrated high-side ($145 \mathrm{~m} \Omega$, typ) and low-side ($90 \mathrm{~m} \Omega$, typ) power switches, and provides 2 A continuous load current. It regulates input voltage from 4.5 V to 18 V , and down to an output voltage as low as 0.6 V . Using FCOT control scheme provides fast transient response, which can minimize the component size without additional external compensation network.

Enable

The FR9850F $\overline{\text { SHDN }}$ pin provides digital control to turn on/turn off the regulator. When the voltage of $\overline{\text { SHDN }}$ exceeds the threshold voltage, the regulator starts the soft start function. If the $\overline{\mathrm{SHDN}}$ pin voltage is below than the shutdown threshold voltage, the regulator will turn into the shutdown mode and the shutdown current will be smaller than $1 \mu \mathrm{~A}$. For auto start-up operation, connect $\overline{\mathrm{SHDN}}$ to VIN through a $100 \mathrm{k} \Omega$ resistor.

Soft Start

The FR9850F employs internal soft start function to reduce input inrush current during start up. The typical value of internal soft start time is 1.5 ms .

Input Under Voltage Lockout

When the FR9850F is power on, the internal circuits are held inactive until $\mathrm{V}_{\mathbb{I N}}$ voltage exceeds the input UVLO threshold voltage. And the regulator will be disabled when $\mathrm{V}_{\text {IN }}$ is below the input UVLO threshold voltage. The hysteretic of the UVLO comparator is 350 mV (typ).

Over Current Protection

The FR9850F over current protection function is implemented using cycle-by-cycle current limit architecture. The inductor current is monitored by Low-side MOSFET. When the load current increases, the inductor current also increases. When the valley inductor current reaches the current limit threshold, the output voltage starts to drop. When the over current condition is removed, the output voltage returns to the regulated value.

Short Circuit Protection

The FR9850F provides short circuit protection function to prevent the device damage from short condition. When the short condition occurs and the feedback voltage drops lower than 0.33 V , the oscillator frequency will be reduced naturally and hiccup mode will be triggered to prevent the inductor current increasing beyond the current limit. Once the short condition is removed, the frequency will return to normal.

Over Temperature Protection

The FR9850F incorporates an over temperature protection circuit to protect itself from overheating. When the junction temperature exceeds the thermal shutdown threshold temperature, the regulator will be shutdown. And the hysteretic of the over temperature protection is $30^{\circ} \mathrm{C}$ (typ).

Application Information

Output Voltage Setting

The output voltage $\mathrm{V}_{\text {OUT }}$ is set using a resistive divider from the output to FB. The FB pin regulated voltage is 0.6 V . Thus the output voltage equation is:

$$
\mathrm{V}_{\text {OUT }}=0.6 \mathrm{~V} \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

Table 2 lists recommended values of R1 and R2 for most used output voltage.
Table 2 Recommended Resistance Values

$\mathbf{V}_{\text {out }}$	$\mathbf{R 1}$	$\mathbf{R 2}$
5 V	$73.2 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
3.3 V	$45.3 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
2.5 V	$31.6 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
1.8 V	$20 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
1.2 V	$10 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$
1.05 V	$7.5 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$

Place resistors R1 and R2 close to FB pin to prevent stray pickup.

Input Capacitor Selection

The use of the input capacitor is filtering the input voltage ripple and the MOSFETS switching spike voltage. Because the input current to the step-down converter is discontinuous, the input capacitor is required to supply the current to the converter to keep the DC input voltage. The capacitor voltage rating should be 1.25 to 1.5 times greater than the maximum input voltage. The input capacitor ripple current RMS value is calculated as:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{CIN}(\mathrm{RMS})}=\mathrm{I}_{\mathrm{OUT}} \times \sqrt{\mathrm{D} \mathrm{\times(1-D)}} \\
& \mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}
\end{aligned}
$$

Where D is the duty cycle of the power MOSFET.
This function reaches the maximum value at $D=0.5$ and the equivalent RMS current is equal to $\mathrm{I}_{\mathrm{OUT}} / 2$. The following diagram is the graphical representation of above equation.

A low ESR capacitor is required to keep the noise minimum. Ceramic capacitors are better, but tantalum or low ESR electrolytic capacitors may also suffice. When using tantalum or electrolytic capacitors, a $0.1 \mu \mathrm{~F}$ ceramic capacitor should be placed as close to the IC as possible.

Output Capacitor Selection

The output capacitor is used to keep the DC output voltage and supply the load transient current. When operating in constant current mode, the output ripple is determined by four components:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{RIPPLE}}(\mathrm{t}) & =\mathrm{V}_{\operatorname{RIPPLE}(\mathrm{C})}(\mathrm{t})+\mathrm{V}_{\operatorname{RIPPLE}(\mathrm{ESR})}(\mathrm{t}) \\
& +\mathrm{V}_{\operatorname{RIPPLE}(\mathrm{ESL})}(\mathrm{t})+\mathrm{V}_{\text {NOISE }}(\mathrm{t})
\end{aligned}
$$

The following figures show the form of the ripple contributions.
$\mathrm{V}_{\text {RIPPLE(ESR) }}(\mathrm{t})$

(t)
$+$
$\mathrm{V}_{\text {RIPPLE(ESL) }}(\mathrm{t})$

$+\quad(\mathrm{t})$
$V_{\text {RIPPLE(C) }}(\mathrm{t})$

(t)
$+$

=

(t)

Application Information (Continued)

$V_{\text {RIPPLE(ESR) }}=\frac{V_{\text {OUT }}}{F_{\text {OSC }} \times \mathrm{L}} \times\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right) \times E S R$
$V_{\text {RIPPLE(ESL) }}=\frac{E S L}{L} \times V_{\text {IN }}$
$\mathrm{V}_{\text {RIPPLE(C) }}=\frac{\mathrm{V}_{\text {OUT }}}{8 \times \mathrm{F}_{\mathrm{OSC}^{2}} \times \mathrm{L} \times \mathrm{C}_{\mathrm{OUT}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$
Where $F_{\text {OSC }}$ is the switching frequency, L is the inductance value, V_{IN} is the input voltage, ESR is the equivalent series resistance value of the output capacitor, ESL is the equivalent series inductance value of the output capacitor and the $\mathrm{C}_{\text {out }}$ is the output capacitor.
Low ESR capacitors are preferred to use. Ceramic, tantalum or low ESR electrolytic capacitors can be used depending on the output ripple requirement. When using the ceramic capacitors, the ESL component is usually negligible.
It is important to use the proper method to eliminate high frequency noise when measuring the output ripple. The figure shows how to locate the probe across the capacitor when measuring output ripple. Removing the scope probe plastic jacket in order to expose the ground at the tip of the probe. It gives a very short connection from the probe ground to the capacitor and eliminating noise.

Inductor Selection

The output inductor is used for storing energy and filtering output ripple current. But the trade-off condition often happens between maximum energy storage and the physical size of the inductor. The first consideration for selecting the output inductor is to make sure that the inductance is large enough to keep the converter in the continuous current mode.

That will lower ripple current and result in lower output ripple voltage. The ΔI_{L} is inductor peak-to-peak ripple current:

$$
\Delta \mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~F}_{\mathrm{OSC}} \times \mathrm{L}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)
$$

A good compromise value between size and efficiency is to set the peak-to-peak inductor ripple current $\Delta \mathrm{I}_{\mathrm{L}}$ equal to 30% of the maximum load current. But setting the peak-to-peak inductor ripple current ΔI_{L} between $20 \% \sim 50 \%$ of the maximum load current is also acceptable. Then the inductance can be calculated with the following equation:

$$
\begin{gathered}
\Delta \mathrm{I}_{\mathrm{L}}=0.3 \times \mathrm{I}_{\text {OUT(MAX }} \\
\mathrm{L}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }} \times \mathrm{F}_{\text {OSC }} \times \Delta \mathrm{I}_{\mathrm{L}}}
\end{gathered}
$$

External Diode Selection

For 5 V input applications, it is recommended to add an external boost diode. This helps improving the efficiency. The boost diode can be a low cost one such as 1N4148.

FR9850F

Outline Information

SOT-23-6 Package (Unit: mm)

SYMBOLS UNIT	DIMENSION IN MILLIMETER	
	MIN	MAX
A	0.90	1.45
A1	0.00	0.15
A2	0.90	1.30
B	0.30	0.50
D	2.80	3.00
E	2.60	3.00
E1	1.50	1.70
e	0.90	1.00
e1	1.80	2.00
L	0.30	0.60

Note: Followed From JEDEC MO-178-C.

Carrier Dimensions

