

爱德万测试的 新一代车载芯片测试方案

Junlin Wang Advantest China BD&COE

All Rights Reserved - ADVANTEST CORPORATION CONFIDENTIAL

Agenda

01 Introduction of Advantest

- **02** Trend and test challenges of New-Generation Automotive semiconductor
- **03** V93000 Solutions for Testing New-Generation Automotive Components
- **04** Solution Examples for New-Generation Automotive Components

Advantest at a Glance

2018 Global Technology Leader by Thomson Reuters 65+

Innovating in the measurement arena for **65+ years**

Named **THE #1** large supplier of chip making equipment for three consecutive years

A 10 BEST supplier for 34 consecutive years

V93000 Heritage of Technical Excellence in Automotive

V93000 is extending its automotive coverage.

ADVANTEST

Generation se_y = False
Operation == "MIRROR_y
Fror_mod.use_x = False
Fror_mod.use_y = True
Fror_mod.use_z = False
Operation == "MIRROR_Z"
Fror_mod.use_x = False
Fror_mod.use_y = False
Fror_mod.use_z = True

election at the end -add
_ob.select= 1
er_ob.select=1

Trend and test challenges of New-Generation Automotive semiconductor

Electrification(xEV), Autonomous Driving (ADAS, V2X)

All Rights Reserved - ADVANTEST CORPORATION CONFIDENTIAL

Trend of Automotive

Electrification

 Zero Emission is driving xEV development. Advanced high power & battery technologies are required.

Autonomous Driving

 Sensors & High-End Computing Technologies are Integrated by ADAS / Autonomous Applications.

Next-Generation Automotive Technologies

Source: IHS Markit Automotive Electronics & Semiconductor Market Trends

Automotive Electronics to be tested

<u>Traditional Automotive</u> <u>Semiconductor Segments:</u>

Typical Automotive Applications: Safety and Chassis ABS, ESC, Airbag... Power Train Engine Management, injection, transmission... Body comfort electronic door/window/seat controls, LED lighting, wiper...) Infotainment Audio, GPS... Sensors Acceleration, gyro,

pressure...

Vehicle Bus Comms **Airbag Control** (LIN, CAN, Ethernet....) Infotainment **ADAS Controllers** MCU + Embedded Power (CPU, MCU) Gas Sensors Kevless Entrv MEMS Sensors **Tire Pressure** Monitoring System Radar (77GHz) PMIC (USB,... Headlamp Driver Brake Management Headlamp Controller (ABS, ESC) Engine Management (ECU)

Multiple Technologies in new generation automotive:

New Generation Automotive: Hybrid & Electric Vehicles (EV) Battery monitor, Battery Charger, balancing, Motor Driver/controller Switches (HS/LS, H-Bridges...) **ADAS system extends** Lidar, Radar **Digital Lighting** Camera and Sensors High performance computing V2X (vehicle to everything) 5G, Cellular, Wi-Fi, BT, IoT,...

Test challenges for the new automotive semiconductors

Electrification

Zero Emission HV/ PHV/ EV

- Battery trends towards higher voltages (E-Mobility) for efficient motor drive
- Advanced High Power Technologies (SiC/GaN) bring higher switching frequencies, need higher force and measure accuracy to test low RDSON, increase voltages and currents

Networking

Connected Car

- Increasing wireless content in order to communicate outside the vehicle V2X,
- High frequency mmWave testing (OTA)
- challenging RF standards
- GPS location information
- Big data processing in the cloud

Automatic Operation

ADAS/ Autonomous Car

- Increase in high-sensitivity sensors
- Equipped with **advanced CPU**, Shrinking device voltages, precision force & measure
- Higher and higher speed interfaces, More scan vectors
- More complex APU and modems
- Multiple technologies merging:
- ✓ Car Radar / Lidar / High performance computing / High power / 5G / …

Safety & Security

Realization of Zero Defect

• Market failure zero

•

- In-process defects zero
- Long lifetime >10+ years
- Safety/Data encryption

ADVANTES

Solution for Testing New-Generation Automotive Components

All Rights Reserved - ADVANTEST CORPORATION CONFIDENTIAL

Solution for Testing Automotive Components

11

V93000 EXA Scale Generation

Key automotive testing instuments

FVI16 **Digital feedback designed** Floating High Power VI

- 16 channels per card
- Stacking up to ±200V
- Ganging up to 155A

AVI64 **Digital feedback designed** Universal Analog Pin

- 64 channels per card
- VI: -40V..+80V, 200mA / pin
- High Precision DC 100uV accuracy
- AWG / Digitizer / DiffVM / TMU / HV Digital IO
- Floating High Current Unit: 4A

- 256 pins with 1A
- Best Accuracy 150uV & Dynamic Response <40mV
- Unlimited & flexible ganging mA to >> 1000A

- 3.5Gvec / per pin, 896Gvec
 one pin via Xtreme
 pooling[™]
- Digital, TMU, VI, AWG/DGT, DPS/ganging

Why Digital Feedback Closed-Loop?

high reliability and quality Automotive testing required:

- Glitch free connection/ transient to avoid DUT damage, latch up, overstress (electrical, thermal or mechanical) → high quality requirements of test → AEC-Q100 zero defects
- Avoid connection issues experienced during power test development
- Faster test development time → higher productivity
 - Less debugging effort
 - No need of hand crafted connection sequence
 - Min. 5ms (manual prg.) vs. ~1ms (automated sequence) for each connect
- spike check before product release (Automotive requirement)

Why Digital Feedback Closed-Loop?

AVI64/FVI16 Adopting Advantest Power design technology already validated on Automotive applications in the world's top automotive semiconductor companies

Seamless adjustment of bandwidth and slewrate

 \rightarrow Adapt to various load conditions (resistive, capacitive, inductive) to optimize settling times and overshoot, High quality of test, no overshoots which can lead to device latchup, etc.

Seamless mode change between vForce to iForce

- No disconnect needed

e.g for regulator testing load and line regulation in one sequence

ADVANTEST 15

Solution Examples for New-Generation Automotive Components

All Rights Reserved - ADVANTEST CORPORATION CONFIDENTIAL

Solution Examples for New-Generation Automotive Components

Multiple Technologies in followed slides will show you test solutions for: new generation automotive: **New Generation Automotive:** Battery Management System IC Hybrid & Electric Vehicles (EV) Battery monitor, Battery Digital Light • Charger, balancing, Motor Driver/controller Lidar Technology solution • Switches (HS/LS, H-Bridges...) ADAS system extends Autonomous Systems Lidar, Radar **Digital Lighting** Camera and Sensors High performance computing, Soc/GPU/CPU V2X (vehicle to everything) Vehicle to Everything • 5G, Cellular, Wi-Fi, BT, IoT....

17 **ADVANTEST**

Electrification: Battery Management System IC

With the shift to HV/ PHV/ EVs, the market for battery monitoring ICs will expand to maximize the use of battery capacity.

 \rightarrow The demand for "Testing Battery Monitoring ICs with High Precision" will increase.

V93000 PAC

16xModules, 7104x 18650 cells connected in serial (~4.2 V max @ 100% SOC), to reach 400V package voltage

⁽Used in early Tesla S Models Tesla 84 kWh / 400 V Battery)

Features of a BMS chips:

- 1. Dynamic Monitoring in real time.
- Acquisition battery cell V, T, I.
- Battery cell state monitor (e.g OV/UV).
- 2. Balancing control.
- 3. communication SPI / GPIO between communicating devices or other nodes (T, I).

PS1600 Universal Pin

DC.. 1600Mbps Digital, TMU, VI/PPMU, DPS 128 channels per card

FVI16

floating high Power VI

16x ch. -60V...+120V, 10A Power VI. HV-DPS, AWG/DGT, TMU 200V stacking, 155A ganging

AVI64 Universal Analog Pin 64xch -40V...+80V. 200mA VI

Precision DC, 100uV accuracy

TMU, AWG/DGT, HV Digital IO

PMUX 12 x 1:4 Kelvin multiplexers (Up to 1536 DC switches)

ADVANTEST

Lidar Technology solution

Mechanical Lidar

- MEMS mirror based or rotating optics
- Cost intensive. less reliable

Solid State Lidar

- Robust, no more moving parts
- 3D scanning capability by laser and photo diode arrays
- Cost down < 100 USD

AVI64

Universal Analog Pin -40V...+80V, 200mA VI, accuracy 100uV Precision DC, TMU, AWG/DGT, Digital 64 channels per card

for precicion parametric tests on analog frontend

PS1600 Universal Pin

DC.. 1600Mbps Digital, TMU, VI/PPMU, DPS **128 channels per card**

for digital tests of signal processing chain

Digital Light – Future Headlamp Technology

Enables next step of safety:

- Display warnings on pavement
- Display traffic lanes
- Blank out faces of pedestrians
- Intelligent high beam
- And much more...

V93000 – Slim test solution fits into a Scalable A-Class System

High speed data interface for individual real time LED control ...

 PS1600 Universal Pin
 Image: Constraint of the second s

Supply LED chip with >50W of DC power...

DPS128 HC -2.5V...7V, 1A max (-6V...+15V HV) Precision DC, DPS, VI 128 channels per card DC Scale XPS256 256x 1A, unlimited ganging < 40mV droop, NEW

Autonomous Systems – AUDI A8 ADAS module (level 3)

AUDI A8 ADAS module (level 3)

Source: Audi

> Multiple SoCs from different vendors on the same board

21 **ADVANTEST**.

V2X - Vehicle to Everything enhances ADAS

- 1. Improve active safety
- 2. Better traffic efficiency
- 3. Increase situational awareness

22

All functionality controlled

Best throughput and highest

through HW sequencer

repeatability

Automotive Electronics tested on V93000

<u>Traditional Automotive</u> <u>Semiconductor Segments:</u>

Typical Automotive Applications:

- Safety and Chassis
 - ABS, ESC, Airbag...
- Power Train
 - Engine Management, injection, transmission...
- Body comfort electronic
 - door/window/seat controls, LED lighting, wiper...)
- Infotainment
 - Audio, GPS...
- Sensors
 - Acceleration, gyro, pressure...

Multiple Technologies in new generation automotive:

New Generation Automotive:

- Hybrid & Electric Vehicles (EV)
 - Battery monitor, Battery
 Charger, balancing,
 - Motor Driver/controller
 - Switches (HS/LS, H-Bridges...)
- ADAS system extends
- ELidar
 - Digital Lighting
 - Camera and Sensors
 - High performance computing, Soc/GPU/CPU
- · V2X (vehicle to everything)
 - 5G, Cellular, Wi-Fi, BT, loT,...

Automotive Electronics tested on V93000

Summary

- Electrification and Autonomous Driving need more and more new semiconductor technologies to support them.
- ✓ Battery technologies trend towards higher voltages for efficient motor drive. Advanced High Power Technologies (SiC/GaN) bring higher switching frequencies, need higher force/measure accuracy to test low RDSON, increase voltages /currents requirements.
- ADAS need multiple Technologies to realize autonomous driving, like Sensors, High-End Computing, 5G. Test techniques need the know-how of Power, Analog, Digital, Mixed Signal, and RF. ATE meets challenges for more and more channels per system, higher performance & reliability due to new technologies.
- Advantest V93000 provides **complete solutions** to address next-generation automotive testing.
- V93000 digital feedback control loop technology provides high quality test signal for automotive ICs testing, help you to realize the goal of **Zero-defect strategy.**

\rightarrow All in one platform

Find the Best Test Solution for New Generation of Automotive ICs with **ADVANTEST**.