onsemi

1.5 A Ultra-Small Controlled Load Switch with Auto-Discharge Path

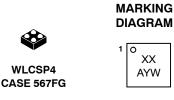
NCP333

Description

The NCP333 are low Ron MOSFET controlled by external logic pin, allowing optimization of battery life, and portable device autonomy.

Indeed, thanks to a current consumption optimization with PMOS structure, leakage currents are eliminated by isolating connected IC's on the battery when not used.

Output discharge path is also embedded to eliminate residual voltages on the output rail.

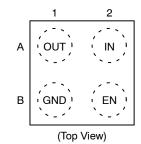

Proposed in a wide input voltage range from 1.2 V to 5.5 V, and a very small 0.76×0.76 mm WLCSP4, 0.4 pitch.

Features

- 1.2 V 5.5 V Operating Range
- 55 m Ω P MOSFET at 3.3 V
- DC Current up to 1.5 A
- Output Auto-Discharge
- Active High EN Pin
- WLCSP4 0.76 x 0.76 mm
- This Device is Pb–Free, Halogen Free/BFR Free and is RoHS Compliant

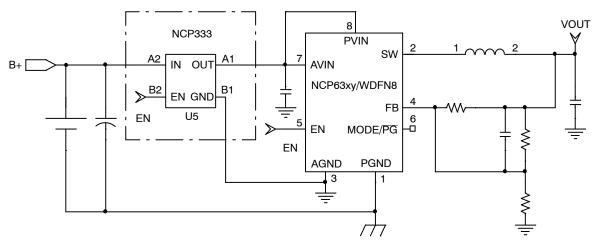
Applications

- Mobile Phones
- Tablets
- Digital Cameras
- GPS
- Portable Devices



- = Assembly Location
- Y = Year
- W = Work Week

А


PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

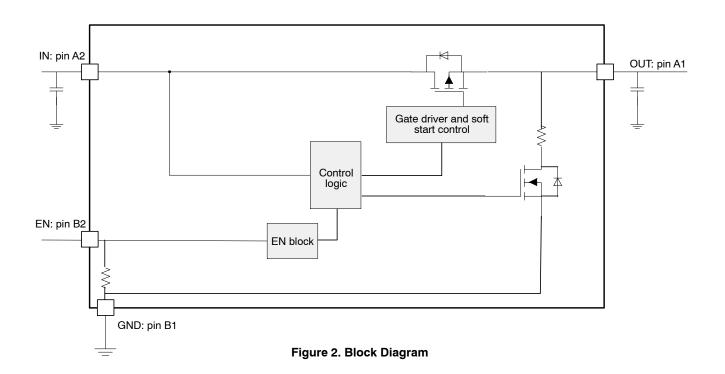

1

Table 1. PIN FUNCTION DESCRIPTION

Pin Name	Pin Number	Туре	Description
IN	A2	POWER	Load-switch input voltage; connect a 0.1 μF or greater ceramic capacitor from IN to GND as close as possible to the IC.
GND	B1	POWER	Ground connection.
EN	B2	INPUT	Enable input, logic high turns on power switch.
OUT	A1	OUTPUT	Load–switch output; connect a 0.1 μF ceramic capacitor from OUT to GND as close as possible to the IC is recommended.

Table 2. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IN, OUT, EN, Pins	V _{EN,} V _{IN,} V _{OUT}	-0.3 to + 7.0	V
From IN to OUT Pins: Input/Output	V _{IN,} V _{OUT}	0 to + 7.0	V
Human Body Model (HBM) ESD Rating are (Notes 1, 2)	ESD HBM	4000	V
Machine Model (MM) ESD Rating are (Notes 1, 2)	ESD MM	200	V
Maximum Junction Temperature	TJ	-40 to +125	°C
Storage Temperature Range	T _{STG}	-40 to +150	°C
Moisture Sensitivity (Note 4)	MSL	Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. OPERATING CONDITIONS

Symbol	Parameter	arameter Conditions		Min	Тур	Max	Unit
V _{IN}	Operational Power Supply					5.5	V
V _{EN}	Enable Voltage			0		5.5	V
T _A	Ambient Temperature Range			-40	25	+85	°C
C _{IN}	Decoupling input capacitor			0.1			μF
C _{OUT}	Decoupling output capacitor			0.1			μF
$R_{\theta JA}$	Thermal Resistance Junction to Air	WLCSP package (Note 5)			150		°C/W
I _{OUT}	Maximum DC current					1.5	А
I _{peak}	Maximum Peak current	1 ms				2	А
PD	Power Dissipation Rating (Note 6)	$T_A \leq 25^\circ C$	WLCSP package		0.4		W
		$T_A = 85^{\circ}C$	WLCSP package		0.16		W

1. According to JEDEC standard JESD22-A108.

This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22-A114 for all pins.

Authan Body Model (HBM) ±2.0 kV per JEDEC standard: JESD22-A114 for all pins Machine Model (MM) ±200 V per JEDEC standard: JESD22-A115 for all pins.
Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78 class II.
Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J-STD-020.
The R_{θJA} is dependent of the PCB heat dissipation and thermal via.
The maximum power dissipation (PD) is given by the following formula:

$$\mathsf{P}_{\mathsf{D}} = \frac{\mathsf{T}_{\mathsf{JMAX}} - \mathsf{T}_{\mathsf{A}}}{\mathsf{R}_{\mathsf{\theta}\mathsf{JA}}}$$

Table 4. ELECTRICAL CHARACTERISTICS Min & Max Limits apply for T _A between -40°C to +85°C for V _{IN} between 1.2 V to	
5.5 V (Unless otherwise noted). Typical values are referenced to $T_A = +25^{\circ}C$ and $V_{IN} = 3.3$ V (Unless otherwise noted).	

POWER SWITCH								
Static drain-source on-state resistance,	Vin = 5.5 V, I _{OUT} = 200 mA	$T_A = 25^{\circ}C$		45	55	mΩ		
(Note 7)	Vin = 3.3 V, I _{OUT} = 200 mA	$T_A = 25^{\circ}C$		55	74			
	Vin = 1.8 V,	$T_A = 25^{\circ}C$		90	125			
	$I_{OUT} = 200 \text{ mA}$	$T_A = 85^{\circ}C$			135			
	Vin = 1.2 V, I _{OUT} = 200 mA	$T_A = 25^{\circ}C$		300	400			
Output discharge path	Vin = 3.3 V	EN = low		70	110	Ω		
Output rise time (Note 8)	V _{IN} = 3.6 V	C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω		95		μs		
Output fall time (Note 8)	V _{IN} = 3.6 V	C_{LOAD} = 1 μ F, R_{LOAD} = 5 Ω		11		μs		
		C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω		40				
		C_{LOAD} = 1 μ F, R_{LOAD} = 100 Ω		94				
Turn on (Note 8)	V _{IN} = 3.6 V	C_{LOAD} = 1 μ F, R_{LOAD} = 25 Ω		195		μs		
Enable time	V _{IN} = 3.6 V	From EN low to high to Vout = 10% of fully on		100		μs		
High-level input voltage			0.9			V		
Low-level input voltage					0.5	V		
EN pull down resistor				5		MΩ		
-	Output discharge path Output discharge path Output rise time (Note 8) Output fall time (Note 8) Turn on (Note 8) Enable time High-level input voltage Low-level input voltage	on-state resistance, (Note 7) $I_{OUT} = 200 \text{ mA}$ $Vin = 3.3 \text{ V},$ $I_{OUT} = 200 \text{ mA}$ $Vin = 3.3 \text{ V},$ $I_{OUT} = 200 \text{ mA}$ $Vin = 1.8 \text{ V},$ $I_{OUT} = 200 \text{ mA}$ $Vin = 1.2 \text{ V},$ $I_{OUT} = 200 \text{ mA}$ Output discharge pathVin = 3.3 VOutput rise time (Note 8) $V_{IN} = 3.6 \text{ V}$ Output fall time (Note 8) $V_{IN} = 3.6 \text{ V}$ Turn on (Note 8) $V_{IN} = 3.6 \text{ V}$ High-level input voltageVIN = 3.6 VLow-level input voltageEnable timeEN pull down resistorVIN = 3.6 V	$\begin{array}{c c c c c c c } \mbox{on-state resistance,} & I_{OUT} = 200 \mbox{ mA} & I_{OUT} = 200 \mbox{ mA} & I_{A} = 25 \mbox{°C} \\ \hline Vin = 3.3 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 25 \mbox{°C} \\ \hline Vin = 1.8 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 85 \mbox{°C} \\ \hline Vin = 1.2 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 85 \mbox{°C} \\ \hline Vin = 1.2 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 25 \mbox{°C} \\ \hline Vin = 1.2 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 25 \mbox{°C} \\ \hline Vin = 1.2 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 25 \mbox{°C} \\ \hline Vin = 1.2 \ V, \\ I_{OUT} = 200 \mbox{ mA} & T_A = 25 \mbox{°C} \\ \hline Vin = 3.3 \ V & EN = 10 \mbox{ max} \\ \hline Output discharge path & Vin = 3.3 \ V & EN = 10 \mbox{ max} \\ \hline Output fall time (Note 8) & V_{IN} = 3.6 \ V & C_{LOAD} = 1 \ \mu F, \ R_{LOAD} = 25 \ \Omega \\ \hline C_{LOAD} = 1 \ \mu F, \ R_{LOAD} = 1 \ R_{LOAD} \ R_{LOAD} \\ \hline C_{LOAD} = 1 \ R_{LOAD} \ R_{LOAD} \ R_{LOAD} \ $	$\begin{array}{c c c c c c c c } \hline \mbox{Note 7} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 85^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 85^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{T}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{I}_A = 25^{\circ}\mbox{C} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{I}_{N} = 3.6 \ \mbox{V} & \mbox{L}_{OAD} = 1 \ \mbox{\mu}\mbox{F}_{R}\ \mbox{L}_{OAD} = 25 \ \mbox{Q} & \mbox{I}_{OLOAD} = 1 \ \mbox{\mu}\ \mbox{F}_{R}\ \mbox{L}_{OAD} = 25 \ \mbox{Q} & \mbox{I}_{OUT} = 200 \ \mbox{mA} & \mbox{I}_{OAD} = 25 \ \mbox{Q} & \mbox{I}_{OAD} = 1 \ \mbox{\mu}\ \mbox{F}_{R}\ \mbox{L}_{OAD} = 25 \ \mbox{Q} & \mbox{I}_{OAD} = 100 \ \mbox{Q} & \mbox{I}_{OAD} = 25 \ \mbox{Q} & \mbox{I}_{OAD} = 10^{\circ}\ \mbox{M}\ & \mbox{V}_{IN} = 3.6 \ \mbox{V}\ \mbox{From EN low to high to} & \mbox{V}_{OUT} = 10\% \ \mbox{Output fall time} & \mbox{V}_{IN} = 3.6 \ \mbox{V}\ & \mbox{From EN low to high to} & \mbox{V}_{OUT} = 10\% \ \mbox{O}\ & \mbox{V}_{OUT} = 10\% \ \mbox{O}\ & \mbox{O}\ & \mbox{I}_{OUT} = 10\% \ \mbox{O}\ & \mbox{O}\ & \mbox{I}_{OUT} = 10\% \ & \mbox{O}\ & \mbox{O}\ & \mbox{I}_{OUT} = 10\% \ & \mbox{O}\ & \mbox{O}\ & \mbox{O}\ & \mbox{I}_{OUT} = 10\% \ & \mbox{O}\ & \m$	on-state resistance, (Note 7) I $_{OUT} = 200 \text{ mA}$ TA = 25°C 1000000000000000000000000000000000000	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		

lq	Current consumption	Vin = 4.2 V, EN = Iow, No load		1	μA
		Vin = 4.2 V, EN = high, No load		1	μA

Guaranteed by design and characterization
 Parameters are guaranteed for C_{LOAD} and R_{LOAD} connected to the OUT pin with respect to the ground

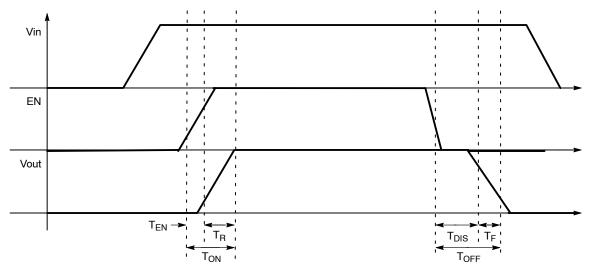
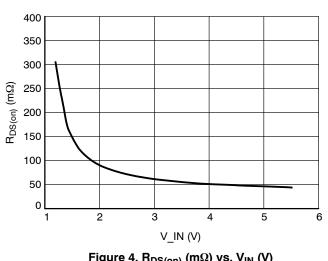
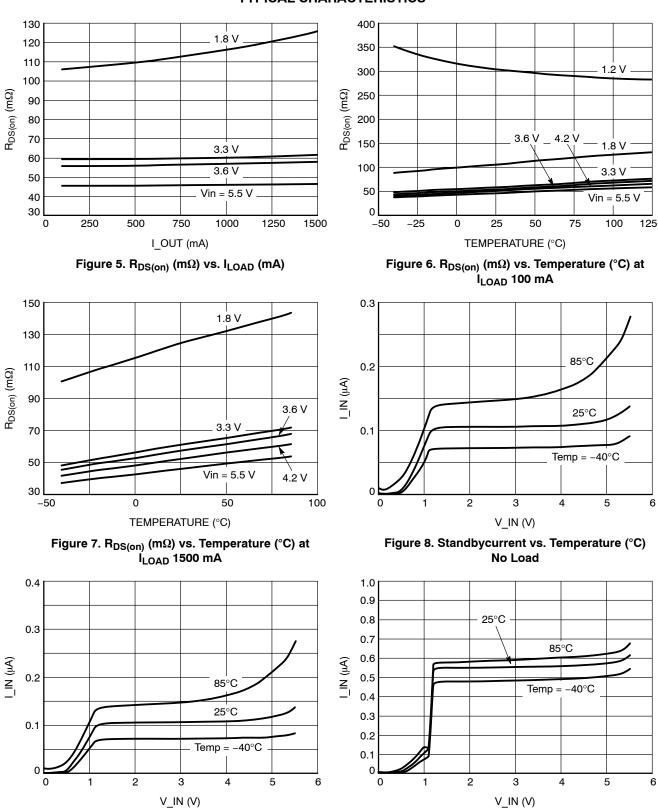




Figure 3. Enable, Rise and Fall Time

TYPICAL CHARACTERISTICS

Figure 4. $R_{DS(on)}$ (m Ω) vs. V_{IN} (V) (I_{LOAD} = 100 mA & Temp 25°C)

TYPICAL CHARACTERISTICS

Figure 9. Standbycurrent vs. Temperature (°C) Output Shorted to GND

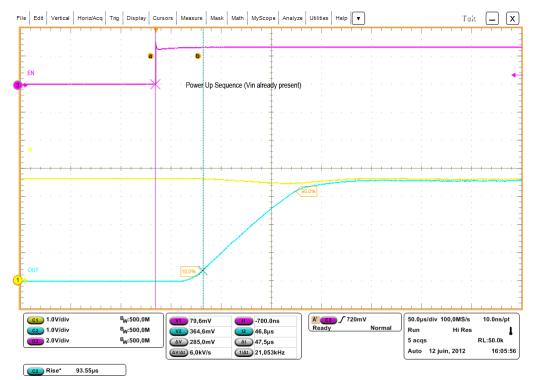


Figure 11. Enable Time and Rise Time

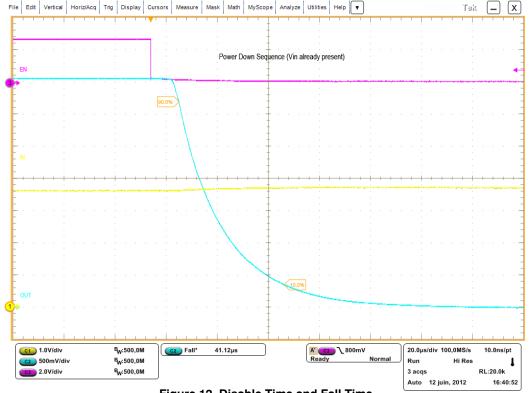


Figure 12. Disable Time and Fall Time

FUNCTIONAL DESCRIPTION

Overview

The NCP333 are a high side P channel MOSFET power distribution switch designed to isolate ICs connected on the battery in order to save energy. The part can be turned on, with a wide range of battery from 1.2 V to 5.5 V.

Enable Input

Enable pin is an active high. The path is opened when EN pin is tied low (disable), forcing P MOS switch off.

The IN/OUT path is activated with a minimum of Vin of 1.2 V and EN forced to high level.

Auto Discharge

NMOS FET is placed between the output pin and GND, in order to discharge the application capacitor connected on OUT pin. The auto-discharge is activated when EN pin is set to low level (disable state).

The discharge path (Pull down NMOS) stays activated as long as EN pin is set at low level, and Vin > 1.2 V.

In order to limit the current across the internal discharge Nmosfet, the typical value is set at 70 Ω .

Soft Start

Each part has a gate soft start control (tr) in order to limit voltage ring when part is enable on a load.

Cin and Cout Capacitors

IN and OUT, 0.1 μ F, at least, capacitors must be placed as close as possible the part for stability improvement.

APPLICATION INFORMATION

Power Dissipation

Main contributor in term of junction temperature is the power dissipation of the power MOSFET. Assuming this, the power dissipation and the junction temperature in normal mode can be calculated with the following equations:

• $P_D = R_{DS(on)} x (I_{OUT})^2$

 P_D = Power dissipation (W) $R_{DS(on)}$ = Power MOSFET on resistance (Ω) I_{OUT} = Output current (A)

• $T_J = P_D x R_{\theta JA} + T_A$ $T_J = Junction temperature (°C)$

 R_{0JA} = Package thermal resistance (°C/W) T_A = Ambient temperature (°C)

PCB Recommendations

The NCP333 integrates an up to 1.5 A rated PMOS FET, and the PCB design rules must be respected to properly evacuate the heat out of the silicon. By increasing PCB area, especially around IN and OUT pins, the R_{0JA} of the package can be decreased, allowing higher power dissipation.

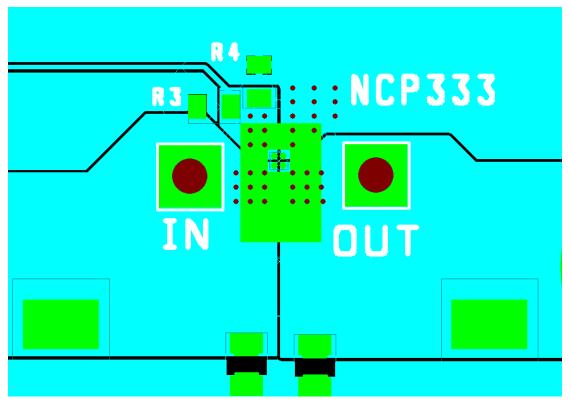


Figure 13. Routing Example: 2 oz, 4 Layers with Vias across 2 Internal Inners

Example of application definition.

 $\begin{array}{l} T_J - T_A = R_{\theta JA} \; x \; P_D = R_{\theta JA} \; x \; R_{DS(on)} \; x \; I^2 \\ T_J: \; \text{junction temperature.} \\ T_A: \; \text{ambient temperature.} \\ R_{\theta JA} = \text{Thermal resistance between IC and air, through PCB.} \\ R_{DS(on)}: \; \text{intrinsic resistance of the IC Mosfet.} \\ \text{I: load DC current.} \end{array}$

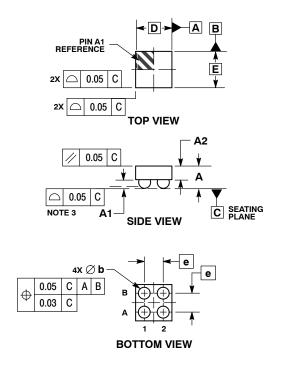
Taking into account of R_ obtain with:

• 1 oz, 2 layers: 150°C/W.

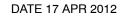
At 1.5 A, 25°C ambient temperature, $R_{DS(on)}$ 45 m Ω @ Vin 5 V, the junction temperature will be:

 $T_J = T_A + R_{\theta JA} \ge P_D = 25 + 150 \ge 0.045 \ge 1.5^2 = 40^{\circ}C/W$

ORDERING INFORMATION

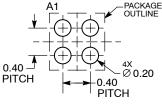

Device	N	Marking	Option	Package	Shipping [†]
NCP333FC	2G	AE	Autodischarge	WLCSP 0.76 x 0.76 mm	3000 Tape / Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.



SCALE 4:1

WLCSP4, 0.76x0.76
CASE 567FJ
ISSUE O



NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 CONTROLLING DIMENSION: MILLIMETERS.
 COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

CROWNS OF SOLDER B							
	MILLIMETERS						
DIM	MIN	MIN MAX					
Α	0.57 0.63						
A1	0.18	0.23					
A2	0.40 REF						
b	0.24	0.28					
D	0.76 BSC						
E	0.76 BSC						
е	0.40	BSC					

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98AON79919E Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	WLCSP4, 0.76X0.76		PAGE 1 OF 1			
ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative