Description The PJL4115SR is a high-efficiency step-down LED driver controller with a wide input voltage range of 6V to 30V. It is designed to operate in continuous current mode. The PJL4115SR employs a hysteretic control architecture that accurately regulates LED current with a feedback coming from an external high-side current-sense resistor. This control scheme optimizes circuit stabilization and fast response time without loop compensation. Its low 200mV average feedback voltage reduces power loss and improves the converter's efficiency. The PJL4115SR implements PWM and analog dimming together through the DIM pin. It also Includes thermal overload protection in case of output overload. #### **Features** - Wide 6V to 30V Input Range - Able to Drive < 1.5A LED Load - High Efficiency - Open LED Protection - No need compensation - Thermal Shutdown - Hysteresis Control - RoHS and Halogen free compliance - Available in SOT-89-5 Package ## **Applications** - Automotive/Decorative LED Lighting - Emergency Lighting - LED Backlighting - Low Voltage Halogen Replacement ## **Typical Application** www.pingjingsemi.com 1/9 # **Pin Function And Descriptions** **SOT-89-5** | Pin No. | Symbol | Description | | | |---------|--------|--|--|--| | 1 | SW | Drain of the internal NMOS | | | | 2 | GND | Ground | | | | 3 | DIM | PWM/Analog Diming Input. Internal weak pull up. Drive DIM low to turn off the output | | | | 4 | CSN | Connect sensor input reference to VIN for measure output current. | | | | 5 | VIN | Power input | | | www.pingjingsemi.com 2/9 ## **Block Diagram** # Absolute Maximum Ratings (at $T_A = 25$ °C) | Parameter | Value | Unit | | |---|------------------|------------|------| | VIN,CSN to GND | -0.3 ~ +36 | V | | | SW to GND | | -0.3 ~ +36 | V | | DIM to GND | -0.3 ~ +6.5 | V | | | Junction to Ambient Thermal Resistance R _{θJA} | | 45 | °C/W | | Operation Junction temperature range | TJ | -40 ~ +150 | °C | | Storage temperature range | T _{STG} | -55 ~ +150 | °C | www.pingjingsemi.com 3/9 # High Brightness Step-Down LED Driver ## **Electrical Characteristics** T_J = 25°C, V_{IN} = 12V, unless otherwise noted | Parameter | Symbol | Test Conditions | Min. | Тур. | Max. | Unit | |--|---------------------|----------------------------------|------|------|------|------| | Input Voltage | V _{IN} | | 6 | | 30 | V | | VCC UVLO Threshold | V _{UVLOTH} | V _{CC} Rising | | 5.5 | | V | | VCC UVLO Hysteresis | Vuvlohys | V _{CC} Falling | | 0.5 | | V | | Quiescent Supply Current | IQ | No Switching | | 270 | | μA | | Current Sense Voltage | Vcs | V _{IN} -C _{SN} | 194 | 200 | 206 | mV | | Current Sense Threshold | V _{CS_HY} | | | 15 | | % | | CSN Input Current | I _{CSN} | | | 3 | | μA | | DIM Floating Voltage | V _{DIM_F} | | | 3.8 | | V | | DIM Input Leakage Current | I _{DIM} | V _{DIM} =5V | | 27 | | μA | | DIM Pull Up Current | I _{DIM_PU} | V _{DIM} =0V | | -25 | | μA | | DIM Input High | V _{DIM_} H | | 2.5 | | | V | | DIM Input Low | V _{DIM_L} | | | | 0.3 | V | | DIM Voltage Range | V _{DIM} | V _{DIM} Rising | 0.5 | | 2.5 | V | | Min. Recommended PWM Dimming Frequency | F _{PWMmin} | | | 0.1 | | KHz | | Max. Recommended PWM Dimming Frequency | FPWMmax | | | 20 | | KHz | | Max. Switch Frequency | F _{MAX} | | | 1 | | MHz | | MOSFET ON Resistance | R _{DS(ON)} | | | 240 | | mΩ | | Thermal Regulate | T _{REG} | Temp Rising | | 105 | | °C | | Thermal Shutdown | T _{SH} | | | 160 | | °C | www.pingjingsemi.com 4/9 ## **Typical Characteristic Curves** $T_A = 25$ °C, $V_{IN} = 24$ V, $R_{CS} = 0.3\Omega$, unless otherwise noted Power ON (Vin=24V,L=33uH, 4LEDs) Power OFF (Vin=24V,L=33uH, 4LEDs) Operation waveform (Vin=12V, L=33uH, 4LEDs) Operation waveform www.pingjingsemi.com 5 / 9 **PWM Dimming** (Vin=24V, L=33uH, lout=1A, 4LEDs) **PWM Dimming** (Vin=24V, L=33uH, lout=1A, 4LEDs) #### **PWM Dimming** (Vin=24V, L=33uH, lout=1A, 4LEDs) #### **PWM Dimming** (Vin=24V, L=33uH, lout=1A, 4LEDs) www.pingjingsemi.com 6/9 ### **Operation** #### **Steady State** The PJL4115SR is a step-down LED-current convertor that is easily configured for a wide input that ranges from 6V to 30V input. The PJL4115SR uses a High-side current-sense resistor to detect and regulate LED current. The average voltage across the current- sense resistor is measured and regulated in the 200mV range. The internal 1.2V reference voltage provides a 0.5V reference to enable the part. When VDIM>0.5V, the output of the comparator goes high and enables the other blocks. While the internal DIM pin weak pull up to 3V #### **Dimming Control** The PJL4115SR allows the DIM pin to control both Analog and PWM dimming. Whenever the voltage on DIM is less than 0.3V, the chip turns off. For analog dimming, when the voltage on DIM is from 0.5V to 2.5V, the LED current will change from 0% to 100% of the maximum LED current. If the voltage on DIM pin is higher than 2.5V, output LED current will equal the maximum LED current. For PWM dimming, the signal amplitude must exceed 2.5V. Choose a PWM frequency in range of 100Hz to 20kHz for good dimming linearity. www.pingjingsemi.com 7/9 ## **Applications Information** #### **Setting the LED Current** The LED current is identical and set by the current sense resistor between the CS pin and GND pin. For R_{SENSE} =0.2 Ω , the LED current is set to 1A Selecting the Inductor Lower value of inductance can result in a higher switching frequency, which causes a larger switching loss. Choose a switch frequency between 100kHz to 500kHz for most application. According to switching frequency, inductor value can be estimated as $$L = \frac{\left(1 - V_{OUT} / V_{IN}\right) \times V_{OUT}}{0.3 \times I_{LED} \times f_{SW}}$$ For higher efficiency, choose an inductor with a DC resistance as small as possible. #### **Selecting the Input Capacitor** The input capacitor reduces the surge current drawn from the input supply and the switching noise from the device. Choose a capacitor of 100uF for most applications. The voltage rating should be greater than the input voltage. **U**se a low ESR capacitor for input decoupling. ## **Layout Consideration** Pay careful attention to the PCB layout and component placement. RSENSE should be placed close to the CS pin and GND pin in order to minimize current sense error. The input loop—including input capacitor, Schottky diode, and MOSFET—should be as short as possible. www.pingjingsemi.com 8 / 9 #### **Package Outline** SOT-89-5 Dimensions in mm #### **Ordering Information** | Device | Package | Shipping | |-----------|---------|------------------------| | PJL4115SR | SOT-89 | 1,000PCS/Reel&7inches | | F3L4113SR | 301-09 | 3,000PCS/Reel&13inches | www.pingjingsemi.com 9/9