1. General description

The 74HC4067; 74HCT4067 is a single-pole 16-throw analog switch (SP16T) suitable for use in analog or digital 16:1 multiplexer/demultiplexer applications. The switch features four digital select inputs (S0, S1, S2 and S3), sixteen independent inputs/outputs (Yn), a common input/output (Z) and a digital enable input (\bar{E}). When \bar{E} is HIGH, the switches are turned off. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{cc}.

2. Features and benefits

- Wide supply voltage range from 2.0 V to 10.0 V
- Input levels S0, S1, S2, S3 and E inputs:
- For 74HC4067: CMOS level
- For 74HCT4067: TTL level
- CMOS low power dissipation
- High noise immunity
- Low ON resistance:
- 80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
- 70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$
- 60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$
- Complies with JEDEC standards:
- JESD8C (2.7 V to 3.6 V)
- JESD7A (2.0 V to 6.0 V)
- Latch-up performance exceeds 100 mA per JESD 78 Class II Level B
- ESD protection:
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V
- CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Typical 'break before make' built-in

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4067D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1
74HCT4067D				
74HC4067DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1
74HCT4067DB				
74HC4067PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1
74HCT4067PW				
74HC4067BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN24	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85 \mathrm{~mm}$	SOT815-1
74HCT4067BQ				

5. Functional diagram

Fig. 1. Logic symbol

Fig. 2. IEC logic symbol

Fig. 3. Schematic diagram (one switch)

Fig. 4. Functional diagram

Fig. 5. Logic diagram

6. Pinning information

6.1. Pinning

Fig. 6. Pin configuration SOT137-1 (SO24), SOT340-1 (SSOP24) and SOT355-1 (TSSOP24)

Transparent top view
(1) This is not a supply pin. There is no electrical or mechanical requirement to solder the pad. In case soldered, the solder land should remain floating or connected to V_{Cc}.

Fig. 7. Pin configuration SOT815-1 (DHVQFN24)

6.2. Pin description

Table 2. Pin description

Symbol	Pin	Description
Z	1	common input or output
Y7, Y6, Y5, Y4, Y3, Y2, Y1, Y0,	$2,3,4,5,6,7,8,9$,	independent input or output
Y15, Y14, Y13, Y12, Y11, Y10, Y9, Y8	$16,17,18,19,20,21,22,23$	
S0, S1, S2, S3	$10,11,14,13$	address input
GND	12	ground (0 V)
E	15	enable input (active LOW)
V $_{\text {CC }}$	24	supply voltage

7. Functional description

Table 3. Function table
$H=$ HIGH voltage level; $L=$ LOW voltage level; $X=$ don't care.

Inputs					Channel ON
E	S3	S2	S1	S0	
L	L	L	L	L	Y0 to Z
L	L	L	L	H	Y1 to Z
L	L	L	H	L	Y2 to Z
L	L	L	H	H	Y3 to Z
L	L	H	L	L	Y4 to Z
L	L	H	L	H	Y5 to Z
L	L	H	H	L	Y6 to Z
L	L	H	H	H	Y7 to Z
L	H	L	L	L	Y8 to Z
L	H	L	L	H	Y9 to Z
L	H	L	H	L	Y10 to Z
L	H	L	H	H	Y11 to Z
L	H	H	L	L	Y12 to Z
L	H	H	L	H	Y13 to Z
L	H	H	H	L	Y14 to Z
L	H	H	H	H	Y15 to Z
H	X	X	X	X	-

8. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		$[1]$	-0.5	+11.0
I_{K}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$			
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{SW}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$		-	± 20
I_{SW}	switch current	$\mathrm{V}_{\mathrm{SW}}=-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	mA		
I_{CC}	supply current		-	± 25	mA
$\mathrm{I}_{\mathrm{GND}}$	ground current		-	+50	mA
$\mathrm{~T}_{\text {Stg }}$	storage temperature		-50	-	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ}{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-65	+150	${ }^{\circ} \mathrm{C}$
P	power dissipation	per switch	$[2]$	-	500

[1] To avoid drawing V_{CC} current out of terminal Z , when switch current flows in terminals Yn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no V_{CC} current will flow out of terminals Yn . In this case there is no limit for the voltage drop across the switch, but the voltages at Yn and Z may not exceed V_{CC} or GND.
[2] For SOT137-1 (SO24) package: $\mathrm{P}_{\text {tot }}$ derates linearly with $16.2 \mathrm{~mW} / \mathrm{K}$ above $119^{\circ} \mathrm{C}$. For SOT340-1 (SSOP24) packages: $P_{\text {tot }}$ derates linearly with $12.4 \mathrm{~mW} / \mathrm{K}$ above $110^{\circ} \mathrm{C}$. For SOT355-1 (TSSOP24) package: $P_{\text {tot }}$ derates linearly with $12.4 \mathrm{~mW} / \mathrm{K}$ above $110^{\circ} \mathrm{C}$. For SOT815-1 (DHVQFN24) package: $\mathrm{P}_{\text {tot }}$ derates linearly with $15.0 \mathrm{~mW} / \mathrm{K}$ above $117^{\circ} \mathrm{C}$.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	74HC4067			74HCT4067			Unit
			Min	Typ	Max	Min	Typ	Max	
V_{CC}	supply voltage		2.0	5.0	10.0	4.5	5.0	5.5	V
V_{1}	input voltage		GND	-	V_{CC}	GND	-	V_{Cc}	V
$\mathrm{V}_{\text {SW }}$	switch voltage		GND	-	V_{CC}	GND	-	V_{Cc}	V
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{cc}}=2.0 \mathrm{~V}$	-	-	625	-	-	-	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	1.67	139	-	1.67	139	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	83	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	31	-	-	-	ns
Tamb	ambient temperature		-40	+25	+125	-40	+25	+125	${ }^{\circ} \mathrm{C}$

10. Static characteristics

Table 6. Ron resistance per switch for types 74HC4067 and 74HCT4067
$V_{l}=V_{I H}$ or $V_{I L}$; for test circuit see Fig. 8.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.
For 74HC4067: $V_{C C}-G N D=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
For 74HCT4067: $V_{C C}-G N D=4.5 \mathrm{~V}$.

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Typ	Max	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{array}{c\|} \operatorname{Max} \\ \left(125^{\circ} \mathrm{C}\right) \end{array}$	
$\mathrm{R}_{\mathrm{ON} \text { (peak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }}$ to GND					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad[1]$	-	-	-	-	Ω
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	110	180	225	270	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	95	160	200	240	Ω
		$\mathrm{V}_{\text {CC }}=9.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	75	130	165	195	Ω
$\mathrm{R}_{\mathrm{ON} \text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{GND}$ or V_{CC}					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A} \quad[1]$	150	-	-	-	
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	90	160	200	240	Ω
		$\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$; $\mathrm{I}_{\text {SW }}=1000 \mu \mathrm{~A}$	80	140	175	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$; $\mathrm{I}_{\mathrm{SW}}=1000 \mu \mathrm{~A}$	70	120	150	180	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {cc }}$ to GND					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ [1]	-	-	-	-	Ω
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	9	-	-	-	Ω
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	8	-	-	-	Ω
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6	-	-	-	Ω

[^0]
\[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{is}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\
& R_{\mathrm{ON}}=\frac{V_{\mathrm{SW}}}{I_{\mathrm{SW}}}
\end{aligned}
$$
\]

Fig. 8. Test circuit for measuring R_{ON}

$\mathrm{V}_{\text {is }}=0 \mathrm{~V}$ to V_{Cc}
(1) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
(2) $V_{C C}=6.0 \mathrm{~V}$
(3) $\mathrm{V}_{\mathrm{Cc}}=9.0 \mathrm{~V}$

Fig. 9. Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$

Table 7. Static characteristics 74HC4067
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	1.5	1.2	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	2.4	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.2	3.2	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	4.7	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	-	0.8	0.5	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	2.1	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	2.8	1.80	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	-	4.3	2.70	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Fig. } 10 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.8	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & V_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-G N D ; \text { see Fig. } 11 \end{aligned}$	-	-	± 0.8	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	1.80	V
		$\mathrm{V}_{\text {CC }}=9.0 \mathrm{~V}$	-	-	2.70	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{\text {cc }}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\text {(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{1}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Fig. } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & V_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|V_{\mathrm{SW}}\right\|=V_{\mathrm{CC}}-G N D ; \text { see } \text { Fig. } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
I_{Cc}	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	160	$\mu \mathrm{A}$
$\mathrm{Tamb}^{\text {a }}$-40 ${ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.80	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.70	V
1	input leakage current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND				
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mid \mathrm{V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Fig. } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Fig. } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & V_{1}=V_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320	$\mu \mathrm{A}$

Table 8. Static characteristics 74HCT4067
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	V
V_{IL}	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\left\|V_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-$ GND; see Fig. 10				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.8	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Fig. } 11 \end{aligned}$	-	-	± 0.8	$\mu \mathrm{A}$
ICC	supply current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\text {is }}=\mathrm{GND}$ or V_{CC}; $V_{\text {os }}=V_{C C}$ or $G N D ; V_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	8.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND ; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				
		pin E	-	60	216	$\mu \mathrm{A}$
		pin Sn	-	50	180	$\mu \mathrm{A}$
C_{1}	input capacitance		-	3.5	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} ; \text { see Fig. } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & V_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|V_{\mathrm{SW}}\right\|=V_{\mathrm{CC}}-G N D ; \text { see Fig. } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
I_{CC}	supply current	$\begin{aligned} & V_{1}=V_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{oS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	80.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	per input pin; $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				
		pin E	-	-	270	$\mu \mathrm{A}$
		pin Sn	-	-	225	$\mu \mathrm{A}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$						
$\mathrm{V}_{1 \mathrm{H}}$	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-G N D ; \text { see Fig. } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 8.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON) }}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \left\|\mathrm{V}_{\mathrm{SW}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{GND} \text {; see Fig. } 11 \end{aligned}$	-	-	± 8.0	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{os}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-	-	160	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	per input pin; $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V				
		pin E	-	-	294	$\mu \mathrm{A}$
		pin Sn	-	-	245	$\mu \mathrm{A}$

$V_{\text {is }}=V_{C C}$ and $V_{\text {os }}=G N D$
$V_{\text {is }}=G N D$ and $V_{o s}=V_{C C}$
Fig. 10. Test circuit for measuring OFF-state leakage current

$V_{\text {is }}=V_{C C}$ and $V_{\text {os }}=$ open
$V_{\text {is }}=G N D$ and $V_{\text {os }}=$ open
Fig. 11. Test circuit for measuring ON -state leakage current

11. Dynamic characteristics

Table 9. Dynamic characteristics 74HC4067
GND $=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Fig. 14.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Typ	Max	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{array}{c\|} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{array}$	
t_{pd}	propagation delay	Yn to Z; see Fig. 12 [1][2]					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	25	75	95	110	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	9	15	19	22	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	7	13	16	19	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	5	9	11	14	ns
		Z to Yn					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	18	60	75	90	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	6	12	15	18	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	5	10	13	15	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	4	8	10	12	ns
$\mathrm{t}_{\text {off }}$	turn-off time	E to Yn; see Fig. 13					
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	74	250	315	375	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	27	50	63	75	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	27	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	22	43	54	64	ns
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	20	38	48	57	ns
		Sn to Yn					
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	83	250	315	375	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	30	50	63	75	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	29	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	24	43	54	64	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	21	38	48	57	ns
		E to Z					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	85	275	345	415	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	31	55	69	83	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	25	47	59	71	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	24	42	53	63	ns
		Sn to Z					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	94	290	365	435	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	34	58	73	87	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	27	47	62	74	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	25	45	56	68	ns

16-channel analog multiplexer/demultiplexer

Symbol	Parameter	Conditions		$25^{\circ} \mathrm{C}$		$-40{ }^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$		Unit
				Typ	Max	$\begin{gathered} \text { Max } \\ \left(85{ }^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline \operatorname{Max} \\ \left(125^{\circ} \mathrm{C}\right) \end{array}$	
$\mathrm{t}_{\text {on }}$	turn-on time	E to Yn; see Fig. 13	[4]					
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		80	275	345	415	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		29	55	69	83	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		26	-	-	-	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		23	47	59	71	ns
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		17	42	53	63	ns
		Sn to Yn						
		$\mathrm{V}_{C C}=2.0 \mathrm{~V}$		88	300	375	450	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		32	60	75	90	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		29	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		26	51	64	77	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		18	45	56	68	ns
		$\overline{\mathrm{E}}$ to Z						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		85	275	345	415	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		31	55	69	83	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		25	47	59	71	ns
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		18	42	53	63	ns
		Sn to Z						
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$		94	300	375	450	ns
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		34	60	75	90	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$		27	51	64	77	ns
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		19	45	56	68	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[5]	29	-	-	-	pF

[1] $t_{p d}$ is the same as $t_{P H L}$ and $t_{P L H}$.
[2] Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.
[3] $t_{o n}$ is the same as $t_{P H Z}$ and $t_{P L Z}$.
[4] $t_{\text {off }}$ is the same as $t_{P Z H}$ and $t_{P Z L}$.
[5] $\quad C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$f_{i}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz;
$\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}=$ sum of outputs;
$C_{L}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 10. Dynamic characteristics 74HCT4067
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless specified otherwise; for test circuit see Fig. 14.
$V_{i s}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	$25^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Typ	Max	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} \operatorname{Max} \\ \left(125{ }^{\circ} \mathrm{C}\right) \end{gathered}$	
t_{pd}	propagation delay	Yn to Z; see Fig. 12 [1][2]					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	9	15	19	22	ns
		Z to Yn					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	6	12	15	18	ns
$\mathrm{t}_{\text {off }}$	turn-off time	E to Yn; see Fig. 13 [3]					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	26	55	69	83	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	26	-	-	-	ns
		Sn to Yn					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	31	55	69	83	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	30	-	-	-	ns
		E to Z					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	30	60	75	90	ns
		Sn to Z					
		$\mathrm{V}_{C \mathrm{C}}=4.5 \mathrm{~V}$	35	60	75	90	ns
$\mathrm{t}_{\text {on }}$	turn-on time	E to Yn; see Fig. 13 [4]					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	32	60	75	90	ns
		$\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	32	-	-	-	ns
		Sn to Yn					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	35	60	75	90	ns
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	33	-	-	-	ns
		$\overline{\mathrm{E}}$ to Z					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	38	65	81	98	ns
		Sn to Z					
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	38	65	81	98	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\left(\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right) \quad[5]$	29	-	-	-	pF

[1] $t_{p d}$ is the same as $t_{P H L}$ and $t_{P L H}$.
[2] Due to higher Z terminal capacitance (16 switches versus 1) the delay figures to the Z terminal are higher than those to the Y terminal.
[3] $t_{o n}$ is the same as $t_{\text {PHZ }}$ and $t_{\text {PLZ }}$.
[4] $t_{\text {off }}$ is the same as $t_{\text {PZH }}$ and $t_{\text {PzL }}$.
[5] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}$ where:
$f_{i}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{s w}\right) \times V_{C C}{ }^{2} \times f_{o}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{sw}}=$ switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

11.1. Waveforms and test circuit

Fig. 12. Input $\left(\mathrm{V}_{\text {is }}\right)$ to output $\left(\mathrm{V}_{\text {os }}\right)$ propagation delays

Measurement points are shown in Table 11.
Fig. 13. Turn-on and turn-off times
Table 11. Measurement points

Type	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{V}_{\mathbf{M}}$
74 HC 4067	$\mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$
74 HCT 4067	3.0 V	1.3 V

Test data is given in Table 12.
Definitions test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{L}}=$ Load resistance.
S1 = Test selection switch.
Fig. 14. Test circuit for measuring switching times
Table 12. Test data

Test	Input				Output		S1 position
	Control E	Address Sn	Switch Yn (Z)	t_{r}, t_{f}	Switch Z (Yn)		
	$\mathrm{V}_{\text {IL }}$ [1]	V_{I} [1]	$\mathrm{V}_{\text {is }}$		C_{L}	R_{L}	
$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	GND	GND or $\mathrm{V}_{\text {CC }}$	GND to $\mathrm{V}_{\text {cc }}$	6 ns	50 pF	-	open
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PZH }}$	GND to V_{CC}	GND to V_{Cc}	$\mathrm{V}_{\text {CC }}$	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega$	GND
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PZL }}$	GND to V_{CC}	GND to V_{CC}	GND	6 ns	$50 \mathrm{pF}, 15 \mathrm{pF}$	$1 \mathrm{k} \Omega$	V_{CC}

[1] For 74HCT4067: maximum input voltage $\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$.

12. Additional dynamic characteristics

Table 13. Additional dynamic characteristics
Recommended conditions and typical values; GND $=0 \mathrm{~V}$.
$V_{\text {is }}$ is the input voltage at a Yn or Z terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a Yn or Z terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions		$25^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
THD	total harmonic distortion	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Fig. 15					
		$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {is }(p-p)}=4.0 \mathrm{~V}$		-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\text {is }(\mathrm{p}-\mathrm{p})}=8.0 \mathrm{~V}$		-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$					
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=4.0 \mathrm{~V}$		-	0.12	-	\%
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V} ; \mathrm{V}_{\text {is(p-p) }}=8.0 \mathrm{~V}$		-	0.06	-	\%
$\mathrm{a}_{\text {iso }}$	isolation (OFF-state)	$R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF}$; see Fig. 16	[1]				
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		-	-50	-	dB
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$		-	-50	-	dB
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Fig. 17	[2]				
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$		-	90	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$		-	100	-	MHz
$\mathrm{C}_{\text {sw }}$	switch capacitance	independent pins Y		-	5	-	pF
		common pin Z		-	45	-	pF

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Adjust input voltage $V_{\text {is }}$ to 0 dBm level at $V_{\text {os }}$ for $f_{i}=1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$. After set-up, f_{i} is increased to obtain a reading of -3 dB at $\mathrm{V}_{\text {os }}$.

Fig. 15. Test circuit for measuring total harmonic distortion

a. Isolation (OFF-state)

b. Test circuit
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.
Fig. 16. Isolation (OFF-state) as a function of frequency

a. Typical -3 dB frequency response

b. Test circuit
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{R}_{\text {source }}=1 \mathrm{k} \Omega$.
Fig. 17. -3 dB frequency response

13. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.3 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & \hline 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.1	$\begin{aligned} & \hline 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & \hline 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & \hline 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & \hline 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & \hline 0.30 \\ & 0.29 \end{aligned}$	0.05	$\begin{aligned} & \hline 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & \hline 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \hline 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & \hline 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT137-1	075E05	MS-013		$\square \oplus$	$\begin{aligned} & \hline-99-12-27 \\ & 03-02-19 \end{aligned}$

Fig. 18. Package outline SOT137-1 (SO24)

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | \mathbf{c} | $\mathbf{D}^{(\mathbf{1})}$ | $\mathbf{E}^{(\mathbf{1})}$ | \mathbf{e} | $\mathbf{H}_{\mathbf{E}}$ | \mathbf{L} | $\mathbf{L}_{\mathbf{p}}$ | \mathbf{Q} | \mathbf{v} | \mathbf{w} | \mathbf{y} | $\mathbf{Z}^{(\mathbf{1})}$ | $\boldsymbol{\theta}$ |
| mm | 2 | 0.21 | 1.80 | 0.25 | 0.38 | 0.20 | 8.4 | 5.4 | 0.6 | 7.9 | 1.25 | 1.03 | 0.9 | | | | |
| | 0.05 | 1.65 | 0.25 | 0.25 | 0.09 | 8.0 | 5.2 | 0.13 | 0.1 | 0.8 | 8° | | | | | | |

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

Fig. 19. Package outline SOT340-1 (SSOP24)

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	0.5 0.2	8 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT355-1		MO-153		\square	$\begin{gathered} -9-12-27 \\ 03-02-19 \end{gathered}$

Fig. 20. Package outline SOT355-1 (TSSOP24)

DHVQFN24: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 24 terminals; body $3.5 \times 5.5 \times 0.85 \mathrm{~mm}$

Note

1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT815-1	---	---	---	$\square \oplus$	03-04-29

Fig. 21. Package outline SOT815-1 (DHVQFN24)

14. Abbreviations

Table 14. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal-Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT4067 v. 7	20200602	Product data sheet	-	74HC_HCT4067 v. 6
Modifications:	- The format of this data sheet has been redesigned to comply with the identity guidelines of Nexperia. - Legal texts have been adapted to the new company name where appropriate. - Section 2 updated. - Table 4: Derating values for $P_{\text {tot }}$ total power dissipation have been updated.			
74HC_HCT4067 v. 6	20150522	Product data sheet	-	74HC_HCT4067 v. 5
Modifications:	- Type numbers 74 HC 4067 N and 74 HCT 4067 N (SOT101-1) removed. - Fig. 8, Fig. 9: Figure note $\mathrm{V}_{\text {is }}=0 \mathrm{~V}$ to $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{GND}\right)$ changed to $\mathrm{V}_{\text {is }}=0 \mathrm{~V}$ to V_{CC}			
74HC_HCT4067 v. 5	20111213	Product data sheet	-	74HC_HCT4067 v. 4
Modifications:	- Legal pages updated.			
74HC_HCT4067 v. 4	20110518	Product data sheet	-	74HC_HCT4067 v. 3
74HC_HCT4067 v. 3	20071015	Product data sheet	-	74HC_HCT4067_CNV v. 2
74HC_HCT4067_CNV v. 2	19970901	Product specification	-	-

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
[2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.
Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification - The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes - Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use - Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal
injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data - The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications - Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
Export control - This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products - Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.
Translations - A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
Contents

1. General description 1
2. Features and benefits 1
3. Applications 1
4. Ordering information 2
5. Functional diagram 2
6. Pinning information 5
6.1. Pinning 5
6.2. Pin description 5
7. Functional description. 6
8. Limiting values 6
9. Recommended operating conditions. 7
10. Static characteristics 7
11. Dynamic characteristics 12
11.1. Waveforms and test circuit 15
12. Additional dynamic characteristics 17
13. Package outline 20
14. Abbreviations 24
15. Revision history 24
16. Legal information 25
© Nexperia B.V. 2020. All rights reserved

For more information, please visit: http://www.nexperia.com
For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 2 June 2020

[^0]: [1] At supply voltages $\left(\mathrm{V}_{\mathrm{cc}}-\mathrm{GND}\right)$ approaching 2 V , the analog switch ON resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

