PNP Silicon

CASE 318-08, STYLE 6 SOT- 23 (TO-236AB)

- MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {cEo }}$	-40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {cBo }}$	-40	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBo }}$	-5.0	Vdc
Collector Current - Continuous	I_{c}	-500	mAdc

- THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR -5 Board (1)	P_{D}	225	mW
$\mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Derate above $25^{\circ} \mathrm{C}$		556	${ }^{\circ} \mathrm{CMW}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {बUA }}$	300	mW
	D		
Alumina Substrate (2) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		2.4	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Derate above $25^{\circ} \mathrm{C}$		417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient	$\mathrm{R}_{\text {बNA }}$	${ }^{\circ} \mathrm{C}$	
Junction and Storage Temperature	$\mathrm{T}_{J}, \mathrm{~T}_{\text {stg }}$	$-55 \mathrm{to}+150$	

- ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (3) $\left(I_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right.$)	$\mathrm{V}_{\text {(BR)CEO }}$	-40	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=-0.1 \mathrm{mAdc}, I_{E}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	-40	-	Vdc
Emitter-Base Breakdown Voltage $\left(I_{E}=-0.1 \mathrm{mAdc}, I_{C}=0\right)$	$V_{\text {(BR)EBO }}$	-5.0	-	Vdc
Base Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=-35 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EB}}=-0.4 \mathrm{Vdc}\right)$	I_{BEV}	-	-0.1	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(V_{C E}=-35 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EB}}=-0.4 \mathrm{Vdc}\right)$		-	-0.1	$\mu \mathrm{Adc}$

1. $F R-5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
2. Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina.
3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$; Duty Cycle $\leq 2.0 \%$.

- ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Max	Unit
ON CHARACTERISTICS				
DC Current Gain	$\mathrm{h}_{\text {FE }}$			-
$\left(I_{C}=-0.1 \mathrm{mAdc}, \mathrm{V}_{C E}=-1.0 \mathrm{Vdc}\right)$		30	-	
$\left(\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{V}_{C E}=-1.0 \mathrm{Vdc}\right)$		60	-	
$\left(I_{c}=-10 \mathrm{mAdc}, \mathrm{V}_{C E}=-1.0 \mathrm{Vdc}\right)$		100	-	
$\left(I_{C}=-150 \mathrm{mAdc}, \mathrm{V}_{\text {cE }}=-2.0 \mathrm{Vdc}\right)(3)$		180	390	
$\left(I_{C}=-500 \mathrm{mAdc}, \mathrm{V}_{C E}=-2.0 \mathrm{Vdc}\right)(3)$		20	-	
Collector-Emitter Saturation Voltage(3)	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$			Vdc
$\left(I_{C}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{mAdc}\right)$		-	-0.4	
$\left(I_{C}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}\right)$		-	-0.75	
Base-Emitter Saturation Voltage (3)	$\mathrm{V}_{\text {BE(sat) }}$			Vdc
$\left(\mathrm{I}_{\mathrm{C}}=-150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-15 \mathrm{mAdc}\right)$		-0.75	-0.95	
$\left(\mathrm{I}_{\mathrm{C}}=-500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=-50 \mathrm{mAdc}\right)$		-	-1.3	

- SMALL-SIGNAL CHARACTERISTICS

$\begin{aligned} & \text { Current-Gain - Bandwidth Product } \\ & \left(\mathrm{I}_{\mathrm{C}}=-20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right) \end{aligned}$		200	-	MHz
Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	8.5	pF
Emitter-Base Capacitance $\left(\mathrm{V}_{\mathrm{BE}}=-0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {eb }}$	-	30	pF
Input Impedance $\left(V_{C E}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{c}}=-1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{h}_{\text {ie }}$	1.5	15	k Ω
Voltage Feedback Ratio $\left(V_{C E}=-10 \mathrm{Vdc}, I_{c}=-1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{h}_{\text {re }}$	0.1	8.0	$\times 10^{-4}$
Small-Signal Current Gain $\left(V_{C E}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{c}}=-1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	$\mathrm{h}_{\text {fe }}$	60	500	-
Output Admittance $\left(V_{C E}=-10 \mathrm{Vdc}, I_{c}=-1.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{kHz}\right)$		1.0	100	$\mu \mathrm{mhos}$

- SWITCHING CHARACTERISTICS

Delay Time	$\begin{aligned} & \left(V_{C C}=-30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{EB}}=-2.0 \mathrm{Vdc},\right. \\ & \left.I_{C}=-150 \mathrm{mAdc}, I_{\mathrm{B} 1}=-15 \mathrm{mAdc}\right) \end{aligned}$	$\mathrm{t}_{\text {a }}$	-	15	ns
Rise Time		t_{d}	-	20	
Storage Time	$\begin{aligned} & \left(V_{c c}=-30 \mathrm{Vdc}, I_{C}=-150 \mathrm{mAdc},\right. \\ & \left.I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=-15 \mathrm{mAdc}\right) \end{aligned}$	ts	-	225	ns
Fall Time		t_{f}	-	30	

3. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$; Duty Cycle $\leq 2.0 \%$.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 1. Turn-On Time
Figure 2. Turn-Off Time

2SA1036K

TYPICAL TRANSIENT CHARACTERISTICS

Figure 4. Charge Data
Figure 3. Capacitance

Figure 5. Turn-On Time

Figure 6. Rise Time

Figure 7. Storage Time

SMALL-SIGNAL CHARACTERISTICS
NOISE FIGURE
$V_{C E}=-10 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}$
Bandwidth $=1.0 \mathrm{~Hz}$

Figure 8. Frequency Effects

Figure 9. Source Resistance Effects

h PARAMETERS

$\left(V_{C E}=-10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

I_{c}, COLLECTOR CURRENT (mAdc)
Figure 10. Current Gain
$h_{\text {re' }}$ VOLTAGE FEEDBACK RATIO (X 10^{-4})

I_{c}, COLLECTOR CURRENT (mAdc)
Figure 12. Voltage Feedback Ratio

Figure 11. Input Impedance

Figure 13. Output Admittance

STATIC CHARACTERISTICS

Figure 14. DC Current Gain

Figure 15. Collector Saturation Region

I_{c}, COLLECTOR CURRENT (mA)
Figure 16. "On" Voltages

$I_{\text {c }}$, COLLECTOR CURRENT (mA)
Figure 17. Temperature Coefficients

