# EG2126 芯片用户手册

600V 两路半桥驱动芯片



# 版本变更记录

| 版本号  | 日期          | 描述              |
|------|-------------|-----------------|
| V1.0 | 2017年08月10日 | EG2126 数据手册初稿   |
| V1.1 | 2019年05月8日  | 提高输入门限和运放输出电流能力 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |
|      |             |                 |



# 見 录

|    | بابا ابدار |                  |    |
|----|------------|------------------|----|
| 1. |            |                  |    |
| 2. | 描述         |                  | 1  |
| 3. | 应用金        | 领域               | 1  |
| 4. |            | · · · ·          |    |
|    | • 1 /4 1   | 引脚定义             |    |
|    |            | 引脚描述             |    |
| 5. |            | 框图               |    |
| 6. |            | 应用电路             |    |
| 7. |            | 特性               |    |
| ٠. |            | 极限参数             |    |
|    |            | 典型参数             |    |
|    |            |                  |    |
|    |            | 开关时间特性及死区时间波形图   |    |
| 8. |            | 设计               |    |
|    | 8.1        | VDD 端电源电压        | 8  |
|    | 8.2        | 输入逻辑信号要求和输出驱动器特性 | 8  |
| 9. | 封装         | 尺寸               | 10 |
|    | 9.1        | SOP28L 封基尺寸      | 10 |

# EG2126 芯片数据手册 V1.1

#### 1. 特性

- 高端悬浮自举电源设计,耐压可达 600V
- 集成两路半桥驱动
- 内置 5V 电源输出
- 内置三个端口的运放
- 内置三个端口的比较器
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- 低端 VCC 电压范围 3V-20V
- 输出电流能力 IO +2.0A/-2.0A
- 内建死区控制电路
- 自带闭锁功能,彻底杜绝上、下管输出同时导通
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道高电平有效,控制低端 LO 输出
- 封装形式: SOP28L
- 无铅无卤符合ROHS标准

#### 2. 描述

EG2126 是一款高性价比的大功率 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了 5V 的 LDO、一个运放、一个比较器、逻辑信号输入处理电路、死区时控制电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路,更适合用于全桥拓扑电路。

EG2126 高端的工作电压可达 600V,低端 VDD 的电源电压范围宽 3V~20V。该芯片具有闭锁功能防止输出功率管同时导通,输入通道 HIN 和 LIN 内建了一个下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO +2.0A/-2.0A,采用 SOP28L 封装。

## 3. 应用领域

- 全桥拓扑电源
- 变频水泵控制器
- 电动车控制器
- 无刷电机驱动器

#### 4. 引脚

#### 4.1 引脚定义

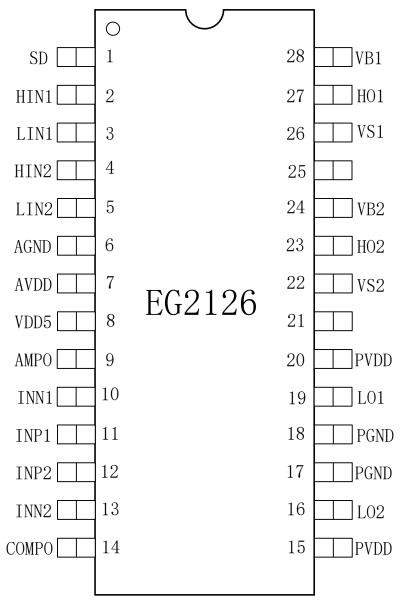



图 4-1. EG2126 管脚定义



#### 4.2 引脚描述

| 引脚序号 | 引脚名称  | I/O   | 描述                                                             |  |  |  |  |
|------|-------|-------|----------------------------------------------------------------|--|--|--|--|
| 1    | SD    | I     | 逻辑输入,高电平关闭两路 HO1、 LO1 和 HO2、LO2 的输出                            |  |  |  |  |
| 2    | HIN1  | ı     | 逻辑输入控制信号高电平有效,控制高端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管 "1"是开启功率 MOS 管 |  |  |  |  |
| 3    | LIN1  | I     | 逻辑输入控制信号低电平有效,控制低端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管 "1"是开启功率 MOS 管 |  |  |  |  |
| 4    | HIN2  | I     | 逻辑输入控制信号高电平有效,控制高端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管 "1"是开启功率 MOS 管 |  |  |  |  |
| 5    | LIN2  | I     | 逻辑输入控制信号低电平有效,控制低端功率 MOS 管的导通与截止 "0"是关闭功率 MOS 管 "1"是开启功率 MOS 管 |  |  |  |  |
| 6    | AGND  | -     | 芯片的模拟地端                                                        |  |  |  |  |
| 7    | AVDD  | Power | 模拟电源                                                           |  |  |  |  |
| 8    | VDD5  | 0     | 5V 输出,外接一个 1uF 电容                                              |  |  |  |  |
| 9    | AMPO  | 0     | 运放输出端口                                                         |  |  |  |  |
| 10   | INN1  | I     | 运放负端输入                                                         |  |  |  |  |
| 11   | INP1  | I     | 运放正端输入                                                         |  |  |  |  |
| 12   | INP2  | I     | 比较器正端输入                                                        |  |  |  |  |
| 13   | INN2  | I     | 比较器负端输入                                                        |  |  |  |  |
| 14   | COMPO | 0     | 比较器输出端口                                                        |  |  |  |  |
| 15   | PVDD  | Power | 功率电源                                                           |  |  |  |  |
| 16   | LO2   | 0     | 输出控制低端 MOS 功率管的导通与截止                                           |  |  |  |  |
| 17   | PGND  | -     | 芯片功率地                                                          |  |  |  |  |
| 18   | PGND  | -     | 芯片功率地                                                          |  |  |  |  |
| 19   | LO1   | 0     | 输出控制低端 MOS 功率管的导通与截止                                           |  |  |  |  |
| 20   | PVDD  | Power | 功率电源                                                           |  |  |  |  |
| 22   | VS2   | 0     | 高端悬浮地端                                                         |  |  |  |  |
| 23   | HO2   | 0     | 输出控制高端 MOS 功率管的导通与截止                                           |  |  |  |  |
| 24   | VB2   | Power | 高端悬浮电源                                                         |  |  |  |  |
| 26   | VS1   | 0     | 高端悬浮地端                                                         |  |  |  |  |
| 27   | HO1   | 0     | 输出控制高端 MOS 功率管的导通与截止                                           |  |  |  |  |
| 28   | VB1   | Power | 高端悬浮电源                                                         |  |  |  |  |

# 5. 结构框图

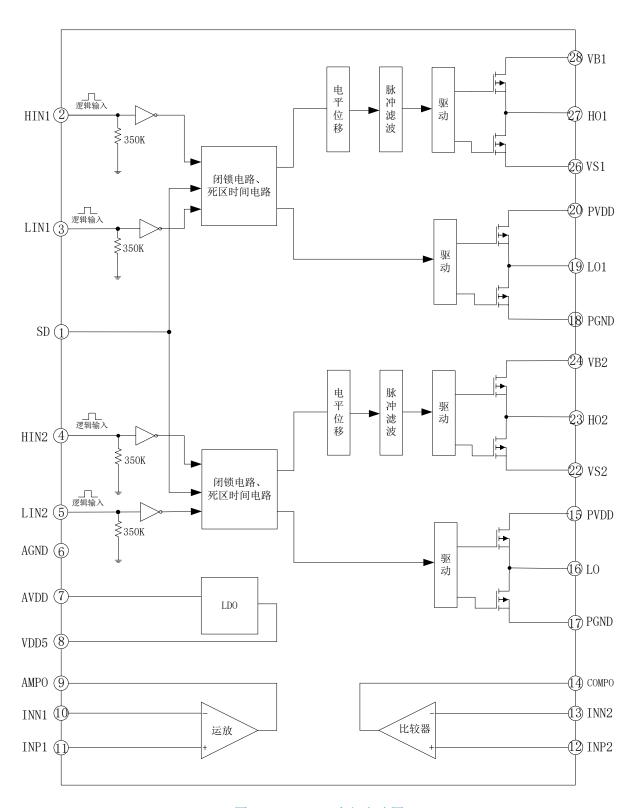



图 5-1. EG2126 内部电路图

# 6. 典型应用电路



图 6-1. EG2126 典型应用电路图

# 7. 电气特性

#### 7.1 极限参数

| 符号              | 参数名称      | 测试条件  | 最小     | 最大      | 单位            |
|-----------------|-----------|-------|--------|---------|---------------|
| 自举高端 VB 电源      | VB1、VB2   | -     | -0.3   | 600     | V             |
| 高端悬浮地端          | VS1、VS2   | -     | VB-25  | VB+0.3  | V             |
| 高端输出            | HO1、HO2   | -     | VS-0.3 | VB+0.3  | ٧             |
| 低端输出            | LO1、LO2   | -     | -0.3   | VCC+0.3 | ٧             |
| 电源              | AVDD、PVDD | -     | -0.3   | 25      | V             |
| 高通道逻辑信号<br>输入电平 | HIN1、HIN2 | -     | -0.3   | VCC+0.3 | V             |
| 低通道逻辑信号<br>输入电平 | LIN1、LIN2 | -     | -0.3   | VCC+0.3 | V             |
| 环境温度            | TA        | -     | -40    | 125     | Ç             |
| 储存温度            | Tstr      | -     | -55    | 150     | ${\mathbb C}$ |
| 焊接温度            | TL        | T=10S | -      | 300     | ${\mathbb C}$ |

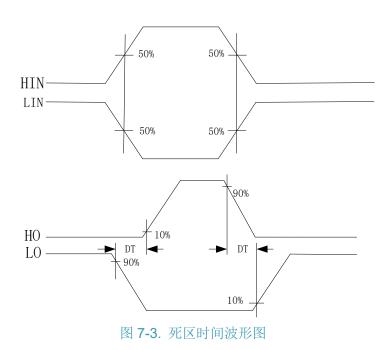
注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

## 7.2 典型参数

无另外说明,在 TA=25℃, Vcc=12V, 负载电容 CL=10nF 条件下

| 参数名称             | 符号     | 测试条件                   | 最小   | 典型  | 最大  | 单位 |
|------------------|--------|------------------------|------|-----|-----|----|
| 电源               | VDD    | -                      | 3    | 12  | 20  | V  |
| 静态电流             | lcc    | 输入悬空,<br>AVDD=PVDD=12V | 150  | 370 | 600 | uA |
| 输入逻辑信号高<br>电位    | Vin(H) | 所有输入控制信号               | 2.8  | 1   | -   | V  |
| 输入逻辑信号低<br>电位    | Vin(L) | 所有输入控制信号               | -0.3 | 0   | 1.0 | V  |
| 输入逻辑信号高<br>电平的电流 | lin(H) | Vin=5V                 | -    | -   | 15  | uA |
| 输入逻辑信号低<br>电平的电流 | lin(L) | Vin=0V                 | -15  | -   | -   | uA |
| HO和LO输出关<br>闭电压  | VHLO   | SD=5V                  | -    | 0   | 0.5 | V  |
| 基准电压特性           |        |                        |      |     |     |    |
| 基准电压             | VDD5   | AVDD=12V               | 4.9  | 5.0 | 5.1 | V  |




| _               |            |                                                                            |     | 000  | A MARH I | 他的   |
|-----------------|------------|----------------------------------------------------------------------------|-----|------|----------|------|
| VDD5 输出电流<br>能力 | Іоит       | AVDD=8V 到 12V                                                              | 50  | -    | 300      | mA   |
| 负载调整率           | △Vоит/Vоит | 1mA< Iоит <50 mA                                                           | -   | 10   | -        | mV   |
| 空载调整率           | △Vоит/Vоит | 6V <avdd<20v< td=""><td>-</td><td>10</td><td>-</td><td>mV</td></avdd<20v<> | -   | 10   | -        | mV   |
| 输出电压温度系<br>数    | △Vουτ/△Τ   | Іоит=5 mA                                                                  | 1   | 0.5  | -        | mV/℃ |
| 运放特性            |            |                                                                            |     |      |          |      |
| 输入失调电压          | Vaos       | -                                                                          | ı   | •    | 10       | mV   |
| 输入电压范围          | Vaicr      | VDD5=5V                                                                    | 0.2 | •    | 4.5      | V    |
| 输出电流能力          | lao        | VDD5=5V                                                                    | -   | 100  | -        | uA   |
| 比较器特性           |            |                                                                            |     |      |          |      |
| 输入失调电压          | Vcos       | -                                                                          | -   | -    | 10       | mV   |
| 输入电压范围          | Vcicr      | VDD5=5V                                                                    | 0.2 | -    | 4.95     | V    |
| 输出电流能力          | Ico        | VDD5=5V                                                                    | -   | -    | 1        | mA   |
| 低端输出 LO1、       | LO1 开关时间架  | <b>}性</b>                                                                  |     |      |          |      |
| 开延时             | Ton        | 见图 7-1                                                                     | -   | 280  | -        | nS   |
| 关延时             | Toff       | 见图 7-1                                                                     | -   | 100  | -        | nS   |
| 上升时间            | Tr         | 见图 7-1                                                                     | -   | 120  | -        | nS   |
| 下降时间            | Tf         | 见图 7-1                                                                     | -   | 80   | -        | nS   |
| 高端输出 HO1、F      | IO2 开关时间特  | 性                                                                          |     |      |          |      |
| 开延时             | Ton        | 见图 7-2                                                                     | -   | 250  | -        | nS   |
| 关延时             | Toff       | 见图 7-2                                                                     | -   | 100  | -        | nS   |
| 上升时间            | Tr         | 见图 7-2                                                                     | -   | 120  | -        | nS   |
| 下降时间            | Tf         | 见图 7-2                                                                     | -   | 100  | -        | nS   |
| 死区时间特性          |            |                                                                            |     |      |          |      |
| 死区时间            | DT         | 见图 <b>7-3</b> ,<br>无负载电容 CL=0                                              | -   | 100  | -        | nS   |
| IO 输出最大驱动能      | <br>吃力     |                                                                            |     |      |          |      |
| IO 输出拉电流        | IO+        | Vo=0V,VIN=VIH<br>PW≤10uS                                                   | -   | +2.0 | -        | А    |
| IO 输出灌电流        | IO-        | Vo=12V,VIN=VIL<br>PW≤10uS                                                  | -   | -2.0 | -        | А    |
|                 |            |                                                                            |     |      |          |      |

#### 7.3 开关时间特性及死区时间波形图



图 7-1. 低端输出 LO 开关时间波形图

图 7-2. 高端输出 HO 开关时间波形图



# 8. 应用设计

#### 8.1 VDD 端电源电压

针对不同的MOS管,选择不同的驱动电压,高压开启MOS管推荐电源VDD工作电压典型值为10V-15V;低压开启MOS管推荐电源VCC工作电压 3V-10V。

# 8.2 输入逻辑信号要求和输出驱动器特性

EG2126 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出

电流小,可以使 MCU 输出逻辑信号直接连接到 EG2126 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 2.0A 和最大输出电流可达 2.0A, 高端上桥臂通道可以承受 600V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 280nS、关断传导延时为 100nS。低端输出开通的上升时间为 120nS、关断的下降时间为 80nS,高端输出开通的上升时间为 120nS、关断的下降时间为 100nS。

输入信号和输出信号逻辑功能图如图 8-2:

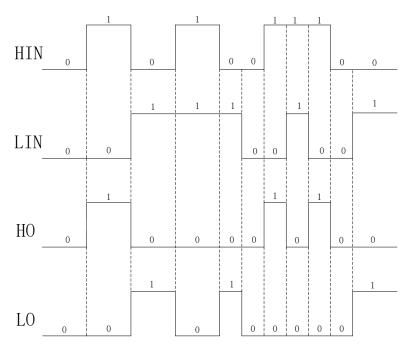
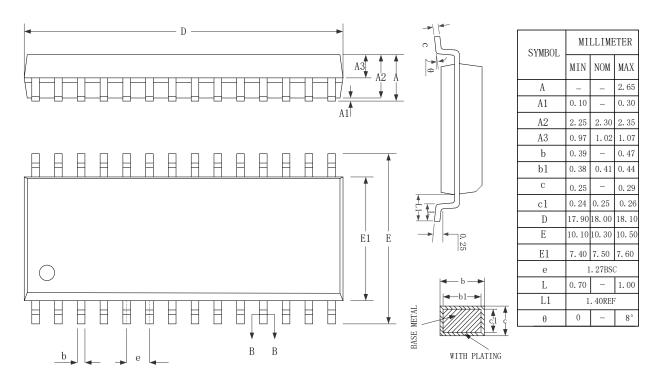



图 8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:


| 输入      |     | 输出 |    |  |  |
|---------|-----|----|----|--|--|
| 输入、输出逻辑 |     |    |    |  |  |
| HIN     | LIN | НО | LO |  |  |
| 0       | 0   | 0  | 0  |  |  |
| 0       | 1   | 0  | 1  |  |  |
| 1       | 0   | 1  | 0  |  |  |
| 1       | 1   | 0  | 0  |  |  |

从真值表可知,当输入逻辑信号 HIN 为"1"和 LIN 为"0"时,驱动器控制输出 HO 为"1"上管打开,LO 为"0"下管关断;当输入逻辑信号 HIN 为"0" 和 LIN 为"1"时,驱动器控制输出 HO 为"0"上管关断,LO 为"1"下管打开;在输入逻辑信号 HIN 和 LIN 同时为"0"或同时为"1"情况下,驱动器控制输出 HO、LO 为"0"将上、下功率管同时关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。



# 9. 封装尺寸

# 9.1 SOP28L 封装尺寸

