

MH188 Hall-effect sensor is a temperature stable, stress-resistant sensor. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH188 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, Advanced DMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

This device requires the presence of both south and north polarity magnetic fields for operation. In the presence of a south polarity field of sufficient strength, the device output sensor on, and only switches off when a north polarity field of sufficient strength is present.

MH188 is rated for operation between the ambient temperatures -40°Cand 85°C for the E temperature range, and -40°Cto 125°C for the K temperature range. The two package styles available provide magnetically optimized solutions for most applications. Package SO is a SOT-23, a miniature low-profile surface-mount package, while package UA is a three-lead ultra mini SIP for through-hole mounting.

Packages is Halogen Free standard and which have been verified by third party lab.

Features and Benefits

- DMOS Hall IC Technology.
- Reverse bias protection on power supply pin.
- Chopper stabilized amplifier stage.
- Optimized for BLDC motor applications.
- Reliable and low shifting on high Temp condition.
- Switching offset compensation at typically 69 kHz.
- Good ESD Protection.
- 100% tested at 125 °C for K.
- Custom sensitivity / Temperature selection are available.
- RoHS compliant 2011/65/EU and Halogen Free

Applications

- High temperature Fan motor
- 3 phase BLDC motor application
- Speed sensing
- Position sensing
- Current sensing
- Revolution counting
- Solid-State Switch
- Linear Position Detection
- Angular Position Detection
- Proximity Detection
- High ESD Capability

032822 age 1 of 5 Rev. 1.07

Ordering Information

Part No.	Temperature Suffix	Package Type
MH188KUA	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	UA (TO-92S)
MH188KSO	$K (-40^{\circ}C \text{ to} + 125^{\circ}C)$	SO (SOT-23)
MH188EUA	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	UA (TO-92S)
MH188ESO	$E (-40^{\circ}C \text{ to } + 85^{\circ}C)$	SO (SOT-23)
MH188ESD	$E(-40^{\circ}C \text{ to } +85^{\circ}C)$	SD (DFN2*2-6L)

KUA spec is using in industrial and automotive application. Special Hot Testing is utilized.

Functional Diagram

Absolute Maximum Ratings At (Ta=25°C)

Characteristics			Values	Unit
Supply voltage, (VDD)			28	V
Output Voltage,(Vout)			28	V
Reverse voltage, (V_{DD})			-28/-0.3	V
Output current, (Iout)			50	mA
O 1 T 1 D	(T.)	"E" version	-40 to +85	°C
Operating Temperature Range	e, (<i>1a</i>)	"K" version	-40 to +125	°C
Storage temperature range, (<i>Ts</i>)			-65 to +150	°C
Maximum Junction Temp,(<i>Tj</i>)			150	°C
Thermal Resistance	(θ_i)	a) UA / SO	206 / 543	°C/W
	(θ_{jc}) UA / SO		148 / 410	°C/W
Package Power Dissipation, (P_D) UA / SO		606 / 230	mW	

Note: Do not apply reverse voltage to V_{DD} and V_{OUT} Pin, It may be caused for Miss function or damaged device.

Electrical Specifications

DC Operating Parameters: $T_A = +25 \, \text{C}$, $V_{DD} = 12 V$

Parameters	Test Conditions	Min	Тур	Max	Units
Supply Voltage, (V_{DD})	Operating	2.5		26.0	V
Supply Current, (<i>I_{DD}</i>)	B <bop< td=""><td></td><td></td><td>5.0</td><td>mA</td></bop<>			5.0	mA
Output Saturation Voltage, (Vsat)	Iout=20mA,B>B _{OP}			400.0	mV
Output Leakage Current, (Ioff)	I_{OFF} B <b<sub>RP, V_{OUT} = 12V</b<sub>			10.0	uA
Power-On Time, (T_{PO})	Power-On		0.05	0.10	uS
Output Response Time, (T_{RES})	Operating		0.30	0.65	mS
Output Switch Frequency, (F_{SW})	Operating	3			kHz
Output Rise Time, (T_R)	RL=1K Ω , CL =20pF		0.12	0.35	uS
Output Fall Time, (T_F)	RL=1KΩ; CL =20pF		0.05	0.15	uS
Electro-Static Discharge	HBM	4			KV
Operate Point, (B_{OP})	UA、SD (SO)	5(-25)		25(-5)	Gauss
Release Point, (B_{RP})	UA、SD (SO)	-25(5)		-5(25)	Gauss
Hysteresis, (B_{HYS})			30		Gauss

Typical application circuit

Sensor Location, Package Dimension and Marking

MAR A

Package (SOT-23) (Top View)

NOTES:

- 1. PINOUT (See Top View at left :)
 Pin 1 :V_{DD}; Pin 2: Output ; Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum

0.060

0.005 0.80 0.70

4. XX: Date Code, Refer to DC table

Hall Plate Chip Location (Bottom view)

(For reference only) Land Pattern

SD Package

0.15

NOTES:

- 1. Controlling dimension: mm
- 2. Leads must be free of flash and plating voids
- 3. Lead thickness after solder plating will be 0.254mm maximum

4. PINOUT:

Pin No.	Pin Name	Function
1	$V_{ m DD}$	Power Supply
2	N.C	N.C
3	Vout	Output
4	N.C	N.C
5	V_{SS}	Ground
6	N.C	N.C
7	N.C	N.C

5. (For reference only) Land pattern

