

MH251 Hall-effect sensor is a temperature stable, stress-resistant, Low Tolerance of Sensitivity micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH251 is special made for low operation voltage, 1.65V, to active the chip which is includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, CMOS output driver. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries. This device requires the presence of omni-polar magnetic fields for operation.

The package type is in a Halogen Free version has been verified by third party Lab.

#### Features and Benefits

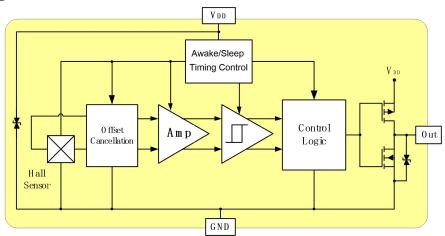
- CMOS Hall IC Technology
- Strong RF noise protection
- 1.65 to 3.5V for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 1.65V, Micro power consumption
- High Sensitivity for reed switch replacement applications
- Multi Small Size option
- Low sensitivity drift in crossing of Temp. range
- Ultra Low power consumption at 5uA (Avg)
- High ESD Protection, HMB >  $\pm 4$ KV(min)
- Totem-pole output
- RoHS compliant 2011/65/EU and Halogen Free.

#### **Applications**

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications
- Water Meter
- Floating Meter
- PDVD
- NB



#### **Ordering Information**


| MI<br>Par<br>Sorting Code<br>Package type<br>Ten<br>Temperature Code<br>Part number<br>UA<br>Company Name and product Category<br>SS<br>Sor | ompany Name and Product Category<br>IH:MST Hall Effect/MP:MST Power IC<br>rt number<br>81,182,183,184,185,248,249,276,477,381,381F,381R,382<br>Part # is just 3 digits, the forth digit will be omitted.<br>mperature range<br>: 85 °C, I: 105 °C, K: 125 °C, L: 150 °C<br>ckage type<br>A:TO-92S,VK:TO-92S(4pin),VF:TO-92S(5pin),SO:SOT-23,<br>Q:QFN-3,ST:TSOT-23,SN:SOT-553,SF:SOT-89(5pin),<br>S:TSOT-26,SD:DFN-6<br>rting<br>.β,Blank |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Part No. | Temperature Suffix                          | Package Type  |
|----------|---------------------------------------------|---------------|
| MH251EST | E (-40°C to $+$ 85°C)                       | ST (TSOT-23)  |
| MH251EUA | E (-40°C to $+$ 85°C)                       | UA (TO-92S)   |
| MH251ESQ | E (-40°C to $+$ 85°C)                       | SQ (SQ2020-3) |
| MH251ESP | $E (-40^{\circ}C \text{ to} + 85^{\circ}C)$ | SP (PSOT-23)  |

*Custom sensitivity selection is available by MST sorting technology* 

## **Functional Diagram**

5



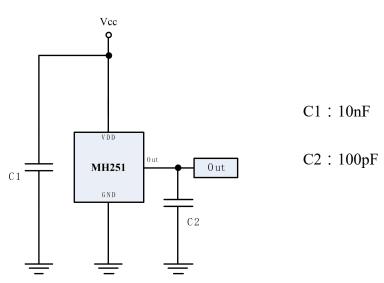
*Note*: Static sensitive device; please observe ESD precautions. Reverse  $V_{DD}$  protection is not included. For reverse voltage protection, a  $100\Omega$  resistor in series with  $V_{DD}$  is recommended. MH 251, HBM > ±4KV which is verified by third party lab.



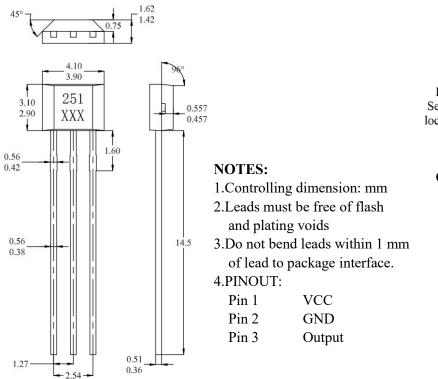
# **Absolute Maximum Ratings** At(Ta=25°C)

| Characteristics                                |                             | Values                | Unit  |  |
|------------------------------------------------|-----------------------------|-----------------------|-------|--|
| Supply voltage,(V <sub>DD</sub> )              |                             | 4.5                   | V     |  |
| Output Voltage,(Vout)                          |                             | 4.5                   | V     |  |
| Reverse Voltage, (VDD) (VOUT)                  |                             | -0.3                  | V     |  |
| Magnetic flux density                          |                             | Unlimited             | Gauss |  |
| Output current,( <i>Iour</i> )                 |                             | 1                     | mA    |  |
| Operating temperature range, ( <i>Ta</i> )     |                             | -40 to +85            | °C    |  |
| Storage temperature range, ( <i>Ts</i> )       |                             | -65 to +150           | °C    |  |
| Maximum Junction Temp,( <i>Tj</i> )            |                             | 150                   | °C    |  |
| Thermal Resistance                             | $(\theta_{JA})$ ST/UA/SQ/SP | 310 / 206 / 543 / 625 | °C/W  |  |
|                                                | $(\theta_{JC})$ ST/UA/SQ/SP | 223 / 148 / 410/ 116  | °C/W  |  |
| Package Power Dissipation, $(P_D)$ ST/UA/SQ/SP |                             | 400 / 230 / 606 / 230 | mW    |  |

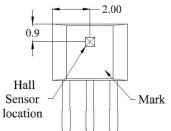
*Note:* Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


# Electrical Specifications

DC Operating Parameters: Ta=25°C, VDD=1.8V

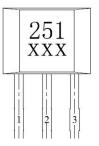

| Paramete                                    | ers          | Test Conditions                     | Min     | Тур | Max | Units |
|---------------------------------------------|--------------|-------------------------------------|---------|-----|-----|-------|
| Supply Voltage,(V <sub>DD</sub> ) Operating |              | 1.65                                |         | 3.5 | V   |       |
| Supply Current,( <i>I</i> <sub>DD</sub> )   |              | Awake State                         |         | 1.4 | 3   | mA    |
|                                             |              | Sleep State                         |         | 3.6 | 7   | μA    |
|                                             |              | Average                             |         | 5   | 10  | μΑ    |
| Output Leakage                              |              | Output off                          |         |     | 1   | uA    |
| Output High                                 |              | I <sub>OUT</sub> =0.5mA(Source)     | VDD-0.2 |     |     | V     |
| Output Low                                  |              | I <sub>OUT</sub> =0.5mA(Sink)       |         |     | 0.2 | V     |
| Awake mode tim                              | ne,(Taw)     | Operating                           |         | 40  | 80  | uS    |
| Sleep mode time                             | $e,(T_{SL})$ | Operating                           |         | 40  | 80  | mS    |
| Duty Cycle,(D,C                             | <u>,</u>     |                                     |         | 0.1 |     | %     |
| Electro-Static D                            | ischarge     | HBM                                 | 4       |     |     | KV    |
| Operate Point,                              | $(B_{OPS})$  | S pole to branded side, $B > BOP$ , |         | 30  | 55  | Gauss |
|                                             | $(B_{OPN})$  | N pole to branded side, $B > BOP$ , | -55     | -30 |     |       |
| Release Point                               | $(B_{RPS})$  | S pole to branded side, B < BRP,    | 10      | 20  |     | Gauss |
|                                             | $(B_{RPN})$  | N pole to branded side, B < BRP,    |         | -20 | -10 |       |
| Hysteresis, (B <sub>HYS</sub>               | )            | BOPx - BRPx                         |         | 10  |     | Gauss |




# Typical Application circuit



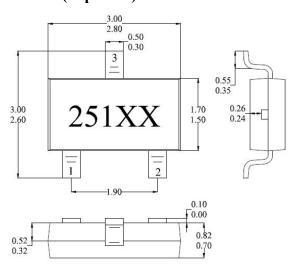
# Sensor Location, package dimension and marking UA Package




#### Hall Chip location

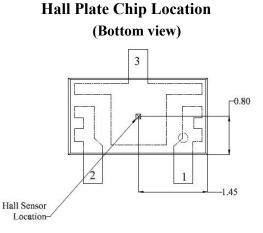


#### **Output Pin Assignment**

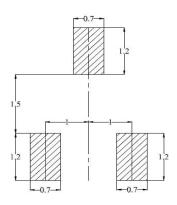

(Top view)



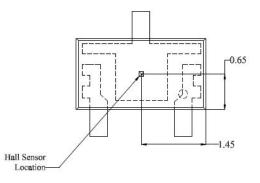



## *MH251 Specifications* Micropower CMOS Output Hall Effect Switch

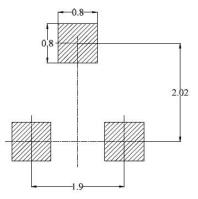
Package (TSOT-23) (Top View)




#### NOTES:

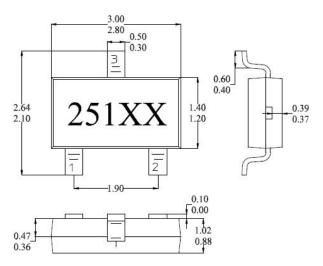

- 1. PINOUT (See Top View at left :)
  - Pin 1 V<sub>DD</sub>
  - Pin 2 Output
  - Pin 3 GND
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum




#### (For reference only)Land Pattern



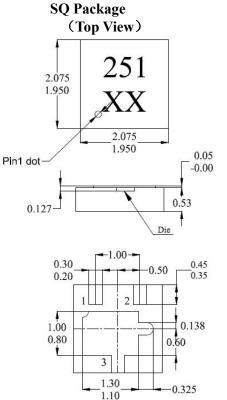
# Hall Plate Chip Location (Bottom view)




#### (For reference only)Land Pattern



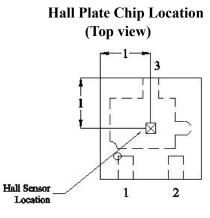
# Package (PSOT-23)


(Top View)

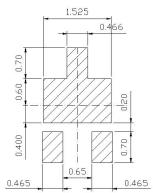


# NOTES:

- 1. PINOUT (See Top View at left :)
  - Pin 1 V<sub>DD</sub>
  - Pin 2 Output
  - Pin 3 GND
- 2. Controlling dimension: mm
- Lead thickness after solder plating will be 0.254mm maximum







Bottom View

NOTES:

- 1. PINOUT (See Top View at left)
  - Pin 1 VDD
  - Pin 2 Output
  - Pin 3 GND
- 2. Controlling dimension: mm;
- 3. Chip rubbing will be 10mil
- maximum;
- 4. Chip must be in PKG. center.



#### (For reference only)Land Pattern

