

HDMI 1.4B 1:2 Active Splitter/Demux for 3.4Gbps Data Rate with Equalization and Pre-emphasis

Description

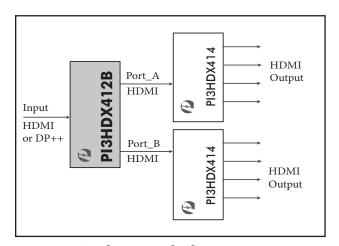
PI3HDX412BD, active-drive switch solution is targeted for high-resolution video networks that are based on HDMI $^{\rm TM}$ /DVI standards, and TMDS signal processing.

The PI3HDX412BD is an active single TMDS channel to two TMDS channel Splitter and DeMux with Hi-Z outputs. The device drives differential signals to multiple video display units.

It provides controllable output swing levels that can be controlled through pin control or I2C control, depending on the mode select pin. This solution also provides a unique advanced pre-emphasis technique to increase rise and fall times.

The maximum HDMITM/DVI data rate of 3.4Gbps provides 1920x1080 @60Hz resolution or 4K @30Hz required for 4K HDTV and PC graphics products. Due to its active uni-directional feature, this switch is designed for usage only for the video driver's side. For PC graphics application, the device sits at the driver's side to switch between multiple display units, such as PC LCD monitor, projector, TV, etc.

PI3HDX412BD ensures transmitting high bandwidth video streams from PC graphics source to end display units. It will also provide enhanced robust ESD/EOS protection, which is required by many consumer video networks today.


Features

- Support up to 3.4Gbps TMDS Serial Link Compliant with HDMI 1.4b requirement
- Data rate per channel support 4096 x 2160 pixel resolution, color 8-bit YCbCr 4:2:0 format.
- HDMI 1:2 Splitter-mode or 1:2 DeMux-mode with Equalization & Pre-emphasis up to 340 MHz Clock
- AC or DC-coupled Differential Signal Input for TMDS and DP++
- Configurable TMDS Output Signal with Port Selection, Pre-emphasis, Voltage Swing, Slew Rate Control with I2C control mode
- Support TMDS power-down Squelch Mode with Built-in Clock detector
- Control Status Register controlled by Pin strap or I²C mode programming
- ESD Protection on I/O pins to connector: 8KV Contact per IEC6100-4-2 and 2KV HBM

- Supply Voltage: 3.3V
- Industrial Temperature Range: -40°C to 85°C
- Packaging (Pb-free & Green): 56-contact TQFN (ZB56)

Applications

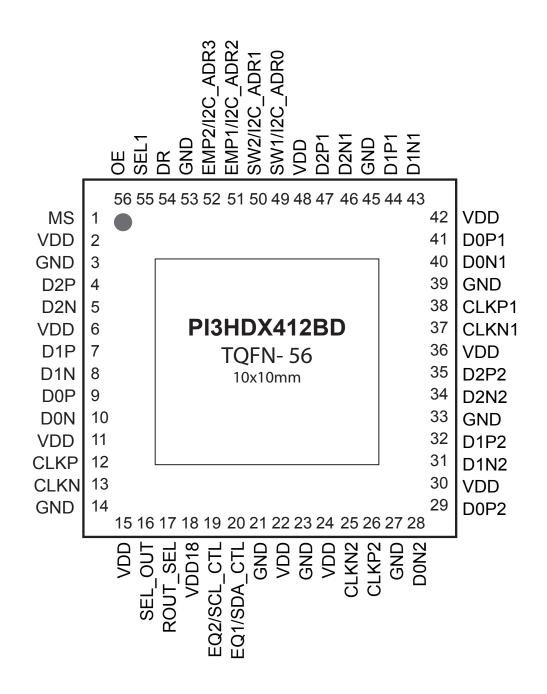
- Display Peripheral Box
- Digital Signage Display
- Video Processing Devices

Application Block Diagram

Ordering Information

Ordering Code	Package Code	Package Description
PI3HDX412BD	ZB	56-pin, Pb-free & Green TQFN,
ZBEX		Tape/Reel Type

Suffix: E = Pb-free and Green, X = Tape/Reel Type



Revision History

Version	Changes
Feb 2014	Release
Oct 2016	Add Diodes company logo and Disclaimer

Package Pin-out

PI3HDX412BD Package & Pinout

TMDS In/Out Pin Assignment

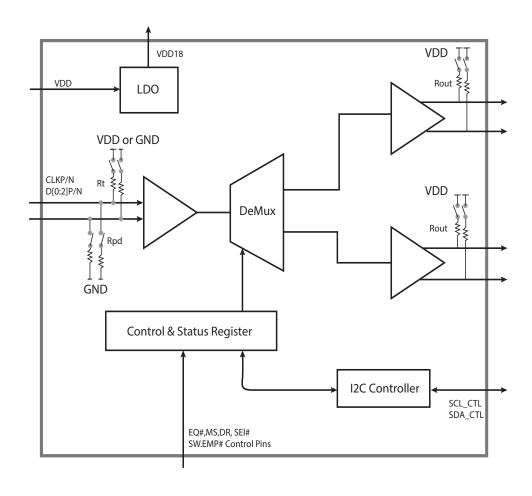
Pin #	Pin Name	Type	Description
4	D2P	I	
5	D2N	I	
7	D1P	I	
8	DIN	I	Input Port. TMDS Clock and Data Input pins. When Input Termination Resistor (Rt = 50 Ohm) tied to VDD or GND, Rpd=200 kOhm shall be "OFF" state.
9	D0P	I	I2C registers can control Rt and Rpd ON/OFF state.
10	D0N	I	120 registers can control it and topa on one state.
12	CLKP	I	
13	CLKN	I	
25	CLKN2	О	
26	CLKP2	О	
28	D0N2	О	
29	D0P2	О	Output Port 2. TMDS Clock and Data Output pins. ROUT_SEL pin enables Output
31	D1N2	О	Termination Resistor (Rout=50 Ohm).
32	D1P2	О	
34	D2N2	О	
35	D2P2	О	
37	CLKN1	О	
38	CLKP1	О	
40	D0N1	О	
41	D0P1	О	Output Port 1. TMDS Clock and Data Output pins. ROUT_SEL pin enables Output
43	D1N1	О	Termination Resistor (Rout=50 Ohm).
44	D1P1	О	
46	D2N1	О	
47	D2P1	О	

Note: In TMDS Data and Clock Differential Pair, the polarity +/- (or P/N) of each pair can use interchangeably. When input TMDS Input Clock polarity +/- pin swaps, output TMDS Clock of port 1 and port 2 shall swapped accordingly.

Control Pins

Pin #	Pin Name	Type	Description				
		I	Mode Selection Pin. Internal pull-up at 100K Ohm.				
1	MS		"High": I ² C Control Mode Selection				
			"Low": Pin Cont	rol Mode Selectio	n		
		specification, up Pin#1 MS sets "H Pin#1 MS sets "L Internally Pull-U		gns to SCL_CTL p ns to EQ2 pin d Pull-Down at 10	00 Kohm.	C-Bus	
	EO2/SCI CTI			EQ2	EQ1	Equalization Setting	
19 20	EQ2/SCL_CTL EQ1/SDA_CTL	IO		(Pin# 19) 0	(Pin# 20) M	(dB) 2.5	
				0	0	5	
			Pin#1 MS = "Low"	M	0	7.5	
				0	1	10	
				M	М	12.5	
				1	0	15	
				1	М	17.5	
				1	1	20	
49 SW1/I2C_ADR0 50 SW2/I2C_ADR1	I	Shared Pin. SW or EMP or I2C_ADR pins. When Pin#1 MS="High": These Shared Pins assign to I2C_ADR[3:0] When Pin#1 MS="Low": These Shared Pins assign to SW1/2 and EMP1/2 These SW2 and SW1 pins control output voltage swing adjustment as following table. These SW pins have internal Pull-Up 100K Ohm.					
51 52	_		SW2 (Pin#50)	SW1 (Pin#49)	Output Voltage	e Swing	
EMIL 2/12C_NDR3		0	0	500 mV			
			0	1	-10 %		
			1	0	+10 %		
			1	1	+20 %		

Pin#	Pin Name	Type	pe Description				
			EMP2 and EMP1 pins control output voltage pre-emphasis. These pins have internally Pull-Up 100 Kohm.				
49			EMP2 (Pin#52)	EMP1 (Pin#51)	Pre-emphasis Setting (dB)		
50	50 51 (Continued)	I	0	0	0		
			0	1	1.5		
52			1	0	2.5		
			1	1	3.5		
56	OE	I	Output Enable Control pin. Internally pull-up at 100 Kohm. "High": Output Port Enable "Low": Turn off Rout and Rt(termination resistor). TMDS Receiver and TMDS Output Drivers are "OFF" state.				
54	DR	I	Direction Control pin "High": All ports are Active at same time "Low": Output Ports are controlled by SEL1 (Pin#55) control				
55	SEL1	I	Port 1 or Port 2 O "High": Enable O "Low": Enable Ov	utput Port 2	ction pin. Internal pull-up at 100 Kc	hm.	
16	SEL_OUT	0	Offset 0x00 Bit[5]	="1" : Enable Out	0x00 Bit[5] can control this pin statu put Port 1 Output put Port 1 Output	is.	
17	ROUT_SEL	I	"High" : Source Te	ermination Outpu	t (Rout) Resistor is "ON", connect to (Rout) Resistor is "OFF". Open-Dra	-	


Power/Ground Pins

Pin #	Pin Name	Type	Description
18	VDD18	Power	LDO Output Pin for internal core supplier. Add external 4.7 uF capacitor to GND
3,14,21,23, 27,33,39,45, 53, ePad	GND	Ground	Ground Pins
2,6,11,15, 22,24,30,36, 42,48	VDD	Power	3.3V Power Supply

Block Diagram

Functional Description

Squelch Mode:

Output Disable (Squelch) Mode uses TMDS Clock channel signal detection. When low voltage levels on the TMDS input clock signals are detected, Squelch state enables and TMDS output port signals shall disable; when the TMDS clock input signal levels are above a pre-determined threshold voltage, output ports shall return to the normal voltage swing levels.

When enable Squelch mode, input termination resistor will be enabled together. When Squelch is disabled through I2C register programming RX_SET[1]="1" and no TMDS input signal condition, TMDS D[0:2]P/N will be undetermined status. In Squelch state, TMDS output is high impedance state or TMDS output port shall 50 Ohm pull-up at source termination output.

Function Control Table

OE	MS	DR	SEL2	SEL1	HDMI Outputs	HPD_SRC Function (with external 1 Kohm Pull-up resistor)
0	X	X	X	X	All Port Disable	0
Pin Cotro	ol Mode					
1	0	1	X	X	All Ports Enable	(HPD1+HPD2+HPD3+HPD4)
1	0	0	0	0	Enable Port 1	HPD1
1	0	0	0	1	Enable Port 2	HPD2
I2C Cont	trol Mode					
1	1	X	X	x	I2C Programming Mode	(HPD1 * Port1 EN + HPD2 * Port2 EN)

HPD Control Mode

TMDS Selection (Input)	HPDx(Input)	Description	Notes
Port[x] Select	1	Port[x] is enabled	
Port[x] Select	0	Port[x] is Disabled	1) x=1, 2. x is consistent for one port.

I²C Register Control Programming

I2C Register Control

Pin Name	I/O	Description	
SCL_CTL	I	I2C Clock, compatible with I2C-bus specification, up to 400 kb/s	
SDA_CTL	IO	I2C Data, compatible with I2C-bus specification, up to 400 kb/s	
I2C_ADR[3:0]	I	I2C Control Address Setting	
Byte output : 0x00 - 0x07	О	I2C Control registers output	

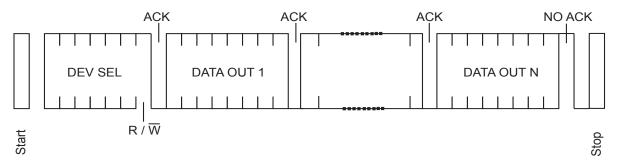
I²C Address Byte

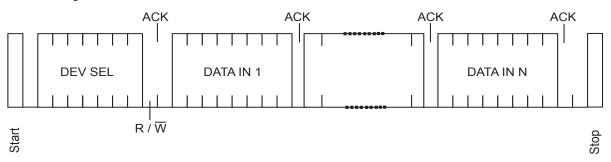
	b[7] MSB	b[6]	b[5]	b[4]	b[3]	b[2]	b[1]	b[0] (R/W)
Address Byte	1	0	1	A3	A2	A1	A0	1/0*

Note: Read "1", Write "0"

Offset	Name	Description	Power Up Condition	Type
0x00	CONFIG[7:0]	 [7] Enable TMDS Standby mode. In standby mode, TMDS equalizer and output driver shall power down. "0": Standby mode "1": Normal mode [6] Reserved [5] Output TMDS Port 1 Select "0": Disable "1": Enable [4] Output TMDS Port 2 Selected "0": Disable "1": Enable [3] Reserved [2:0] Reserved 	0xFF	R/W
		TMDS Receiver Equalization Setting Registers [7] Disable Input Port input termination resistors "0": Enable Rpd connection "1": Disable Rpd connection [6] TMDS Input termination V-bias selection "0": Connect to GND "1": Connect to VDD [5] V-bias register selection enable "0": bit[6] control disable "1": bit[6] control enable [4:2] EQ programmable setting		
		b[4:2] EQ Setting (dB)		
0.03	Day Chillie of	000 2.5		D /IAI
0x01	RX_SET[7:0]	001 5	0x00	R/W
		010 7.5		
		011 10		
		100 12.5		
		101 15		
		110 17.5		
		111 20 [1] Squelch Control Bit		
		"0": Squeich Control Bit "0": Squeich enable		
		"1": Squelch disable		
		[0] Reserved		
	Reserved	[7:0] Reserved	0x00	R/W

Offset	Name	Description	Power Up Condition	Type
0x03	TX_SET[7:0] for port1	TMDS Port 1 Output setting [7] TMDS output control "0": Open drain "1": Double termination [6:4] TMDS output Pre-emphasis control "000": 0 dB "001": 1.5 dB "010": 2.5 dB "011": 3.5 dB "1xx": 6 dB (750 mVpp swing) [3:2] Reserved by test only TMDS output swing setting "00": 500 mV as default "01": -10% "10": +10% "11": +20% [1:0] Reserved by test adjust TMDS output slew rate setting "00": as default "00": as default "01" / "10": +5% "11": +10%	0x00	R/W
0x04	TX_SET[7:0] for port2	TMDS Port 2 Output setting [7] TMDS output control "0": Open drain "1": Double termination [6:4] TMDS output Pre-emphasis control "000": 0 dB "001": 1.5 dB "010": 2.5 dB "011": 3.5 dB "1xx": 6 dB (750 mVpp swing) [3:2] Reserved by test only TMDS output swing setting "00": 500 mV as default setting "01": -10% "10": +10% "11": +20% [1:0] Reserved by test adjust TMDS output slew rate setting "00": Default setting	0x00	R/W
0x05	Reserved	"01" / "10" : +5% "11" : +10% [7:0] Reserved	0x00	R/W
0x06	Reserved	[7:0] Reserved	0x0F	R/W
0x07	Reserved	[7:0] Reserved	0x00	R/W


12



I²C Data Transfer

1. Read Sequence

2. Write Sequence

Absolute Maximum Ratings

Supply Voltage to Ground Potential	4.5V
DC SIG Voltage	\dots -0.5V to V_{DD} +0.5V
Storage Temperature	65°C to +150°C
Operating Temperature	40 to +85°C

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Thermal Characteristics

Symbol	Parameter	Ratings	Units
T_{Jmax}	Junction Temperature	125	°C
$R_{ heta JC}$	Thermal Resistance, Junction to Case	5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	24	

Electrical Characteristics $T_J=25$ °C unless otherwise noted

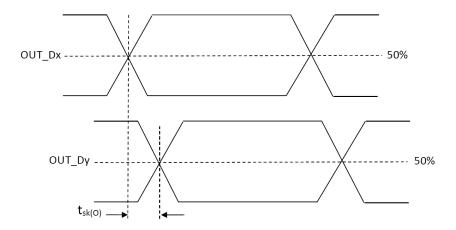
DC Specifications

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{DD}	Operation Voltage		3.0	3.3	3.6	V
I_{DD}	VDD Supply Current			250	290	mA
I_{DDQ}	VDD Quiescent Current	OE = 1, No input signal		50	80	mA
I _{STB}	Standby mode	OE = 0		1	5	mA
TMDS Diffe	erential Pins					
V _{OH}	Single-ended high level output voltage	VDD = 3.3 V, Rout=50 Ω	VDD-10		VDD+10	mV
VOL	Single-ended low level output voltage		VDD-600		VDD-400	mV
Vswing	Single-ended output swing voltage		400		600	mV
VOD(O)	Overshoot of output differential voltage				180	mV
VOD(U)	Undershoot of output differential voltage		200		200	mV
VOC(SS) Change in steady-state common- mode output voltage between logic states					5	mV
IOS	Short Circuit output current		-12		12	mA
IOS	Short Circuit output current at double termination mode		24	mA		
VI(open)	Single-ended input voltage under high impedance input or open input	IL = 10 uA	VDD-10		VDD+10	mV

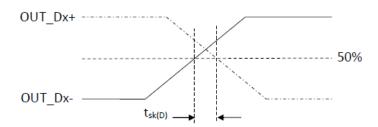
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
RT	Input termination resistance	VIN = 2.9 V	45	50	55	Ohm
IOZ	Leakage current with Hi-Z I/O	VDD = 3.6 V, OE = 0		30	100	μΑ
Control pins	Control pins (OE, SEL1, EMP2, EMP1, SW2, SW1, MS)					
I_{IH}	High level digital input current	V _{IH} =V _{DD}	-10		10	μΑ
I _{IL}	Low level digital input current	$V_{IL} = GND$	-50		10	μΑ
V_{IH}	High level digital input voltage		2.4			V
$V_{\rm IL}$	Low level digital input voltage		0		0.8	V

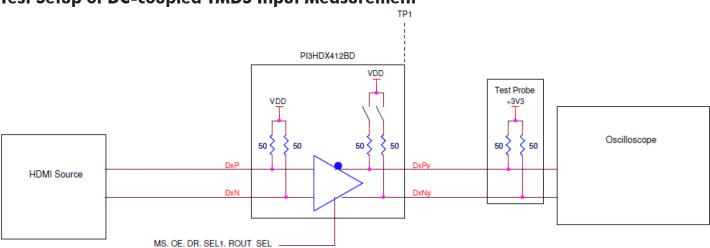
AC Specifications

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
tpd	Propagation delay				2000	ps
t _r	Differential output signal rise time (20% - 80%), 0 dB / Open drain	VDD=3.3V, ROUT=50 ohm		117		ps
t_{f}	Differential output signal fall time (20% - 80%), 0 dB / Open drain			117		ps
t _{sk(p)}	Pulse skew			15	50	ps
$t_{sk(D)}$	Intra-pair differential skew			25	50	ps
t _{sk(O)}	Inter-pair differential skew				100	ps
t_{sx}	Select to switch output				550	ns
t _{en}	Enable time			1	10	us
t _{dis}	Disable time				50	ns
tjit_clk(pp)	Peak-to-peak output jitter CLK residual jitter	Data: 3.4 Gbps data pattern		10		ps
tjit_data(pp)	Peak-to-peak output jitter Date residual jitter	Clock: 340 MHz		28		ps


15

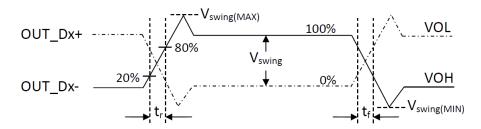
^{1.} Overshoot of output differential voltage $V_{OD(O)}$ = $(V_{SWING(MAX)}$ *2) * 15% 2. Undershoot of output differential voltage $V_{OD(O)}$ = $(V_{SWING(MIN)}$ *2) * 25%



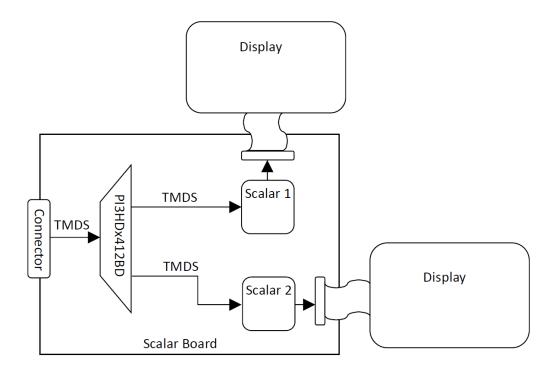

Inter-pair Skew Definition

Intra-pair Skew Definition

Test Setup of DC-coupled TMDS Input Measurement

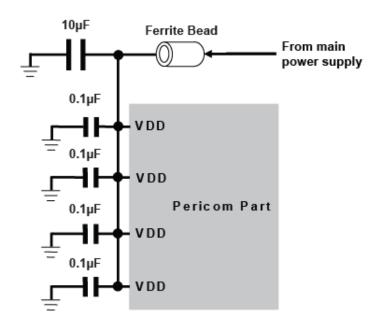


16



Rise/Fall Time and Single-ended Swing Voltage

Typical Splitter Application

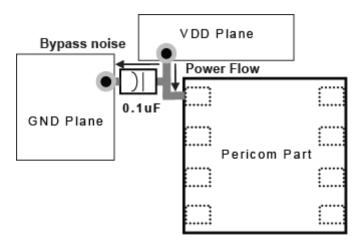


Power Supply Decoupling Circuit

It is recommended to put $0.1~\mu F$ decoupling capacitors on each VDD pins of our part, there are four $0.1~\mu F$ decoupling capacitors are put in Figure 1 with an assumption of only four VDD pins on our part, if there is more or less VDD pins on our Pericom parts, the number of $0.1~\mu F$ decoupling capacitors should be adjusted according to the actual number of VDD pins. On top of $0.1~\mu F$ decoupling capacitors on each VDD pins, it is recommended to put a $10~\mu F$ decoupling capacitor near our part's VDD, it is for stabilizing the power supply for our part. Ferrite bead is also recommended for isolating the power supply for our part and other power supplies in other parts of the circuit. But, it is optional and depends on the power supply conditions of other circuits.

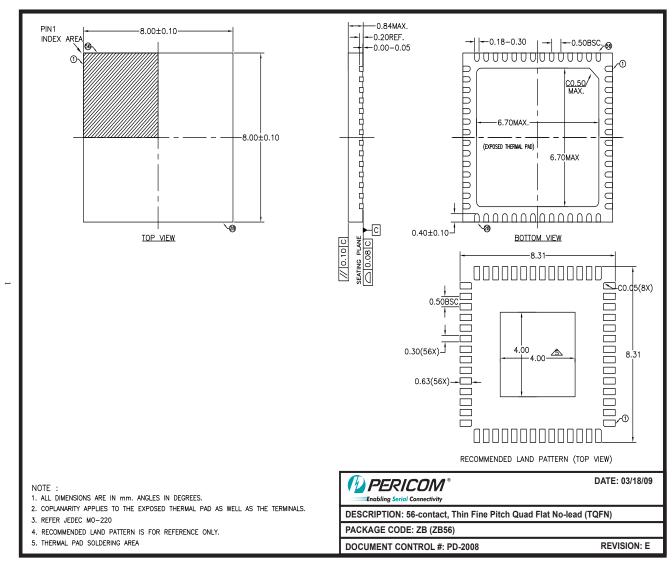
Recommended Power Supply Decoupling Capacitor Diagram

Requirements on the De-coupling Capacitors


There is no special requirement on the material of the capacitors. Ceramic capacitors are generally being used with typically materials of X5R or X7R.

Layout and Decoupling Capacitor Placement Consideration

- Each 0.1 µF decoupling capacitor should be placed as close as possible to each VDD pin.
- VDD and GND planes should be used to provide a low impedance path for power and ground.
- Via holes should be placed to connect to VDD and GND planes directly.
- Trace should be as wide as possible
- Trace should be as short as possible.
- The placement of decoupling capacitor and the way of routing trace should consider the power flowing criteria.
- 10 µF Capacitor should also be placed closed to our part and should be placed in the middle location of 0.1 µF capacitors.
- Avoid the large current circuit placed close to our part; especially when it is shared the same VDD and GND planes. Since large current flowing on our VDD or GND planes will generate a potential variation on the VDD or GND of our part.



Decoupling Capacitor Placement Diagram

Package Mechanical: 56-pin TQFN (ZB56)

Note:

For latest package info, please check: http://www.pericom.com/products/packaging

Related Products Information

Part Number	Product Description	
PI3HDX414	HDMI 1.4b 3.4Gbps Splitter 1:4 with Signal Conditioning	
PI3HDX1204	HDMI 2.0 Redriver for 6Gbps Application	
PI3HDS20412	Wide Voltage Range DisplayPort & HDMI 2.0 Video Switch	
PI3HDX511A	HDMI 1.4b 3.4Gbps Redriver and DP++ Level Shifter	
PI3EQXDP1201	DisplayPort 1.2 Re-driver with Built-in AUX Listener	
PI3VDP1430	Dual Mode DisplayPort to HDMI Level Shifter and Re-driver	
PI3VDP3212	2-Lane DisplayPort1.2 Compliant Passive Switch	
PI3VDP12412	4-Lane DisplayPort1.2 Compliant Passive Switch	
PI3HDMI521	HDMI 1.4b 3.4Gbps 2:1 Switch/Re-driver with built-in ARC and Fast Switching support	
PI3HDMI336	Active HDMI 3:1 Switch/Re-driver with I ² C control and ARC Transmitter	

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advanced Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Diodes Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Diodes Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Diodes Semiconductor. The datasheet is for reference information only.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
- 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

 Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com