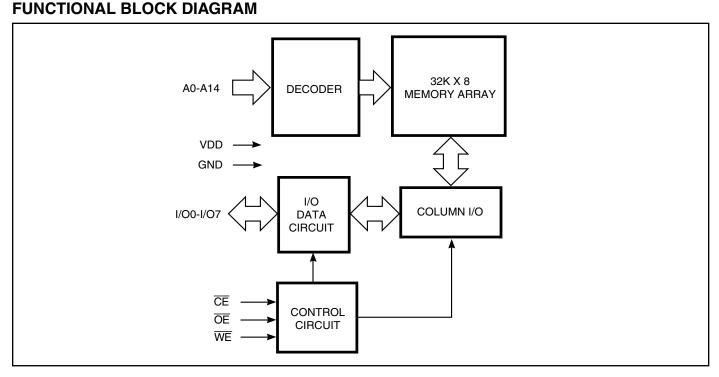
IS61LV256AL

32K x 8 LOW VOLTAGE CMOS STATIC RAM

MARCH 2020

FEATURES

- High-speed access times: — 10 ns
- · Automatic power-down when chip is deselected
- CMOS low power operation
 - 60 µW (typical) CMOS standby
 - 65 mW (typical) operating
- TTL compatible interface levels
- Single 3.3V power supply
- Fully static operation: no clock or refresh required
- Three-state outputs
- Lead-free available


DESCRIPTION

The *ISSI* IS61LV256AL is a very high-speed, low power, 32,768-word by 8-bit static RAM. It is fabricated using *ISSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 8 ns maximum.

When \overline{CE} is HIGH (deselected), the device assumes a standby mode at which the power dissipation is reduced to 150 μ W (typical) with CMOS input levels.

Easy memory expansion is provided by using an active LOW Chip Enable (\overline{CE}). The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

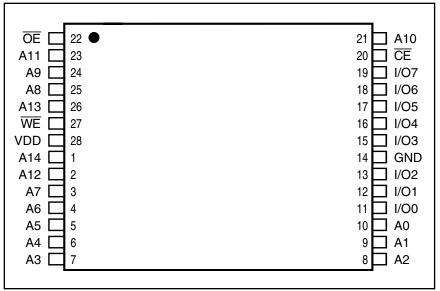
The IS61LV256AL is available in the JEDEC standard 28-pin, 300-mil SOJ and the 450-mil TSOP (Type I) packages.

Copyright © 2020 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:

a.) the risk of injury or damage has been minimized;

b.) the user assume all such risks; and


c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances

PIN CONFIGURATION 28-Pin SOJ

A14 [28 🗌 VDD
A12 [2	27 🗍 🚾
A7 [3	26 🗌 A13
A6 [4	25 🗌 A8
A5 [5	24 🗌 A9
A4 [6	23 🗍 A11
АЗ [7	22 🗍 🖸
A2 [8	21 🗌 A10
A1 [9	20 🗌 🔁
A0 [10	19 🗌 I/O7
I/O0 [11	18 🗌 I/O6
I/O1 [12	17 🗌 I/O5
1/02	13	16 🗌 I/O4
GND [14	15 🗍 I/O3

PIN CONFIGURATION 28-Pin TSOP (Type I)

PIN DESCRIPTIONS

A0-A14	Address Inputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O	7 Input/Output
Vdd	Power
GND	Ground

TRUTH TABLE

WE	CE	ŌĒ	I/O Operation	VDD Current
Х	Н	Х	High-Z	ISB1, ISB2
Н	L	Н	High-Z	lcc
Н	L	L	Dout	lcc
L	L	Х	Din	lcc
	X	X H H L	х н х н L н	XHXHigh-ZHLHHigh-ZHLLDout

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
Vdd	Power Supply Voltage Relative to GND	-0.5 to +4.6	V
VTERM	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Тѕтс	Storage Temperature	–65 to +150	°C
PD	Power Dissipation	1	W
Ιουτ	DC Output Current	±20	mA

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Speed (ns)	V DD ⁽¹⁾
Commercial	0°C to +70°C	10	3.3V, +10%, -5%
Industrial	–40°C to +85°C	10	3.3V + 10%, -5%

Note: 1. If operated at 12ns, VDD range is 3.3V ± 10%.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vdd = Min., Iон = -2.0 mA		2.4	_	V
Vol	Output LOW Voltage	$V_{DD} = Min., I_{OL} = 4.0 mA$			0.4	V
VIH	Input HIGH Voltage			2.2	Vdd + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
LI	Input Leakage	$GND \leq V_{IN} \leq V_{DD}$	Com.	-1	1	μA
			Ind.	-2	2	
Ilo	Output Leakage	$GND \le V_{OUT} \le V_{DD}$, Outputs Disabled	Com.	-1	1	μA
			Ind.	-2	2	

Notes:

1. VIL (min.) = –0.3V (DC); VIL (min.) = –2.0V (pulse width \leq 2.0 ns).

VIH (max.) = VDD + 0.5V (DC); VIH (max.) = VDD + 2.0V (pulse width \leq 2.0 ns). 2. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

		-10 ns				
Sym.	Parameter	Test Conditions		Min.	Max.	Unit
lcc1	Vod Operating Supply Current	Vdd = Max., CE = Vi∟ Iout = 0 mA, f = 1 MHz	Com. Ind.	_	20 25	mA
lcc2	VDD Dynamic Operating Supply Current	$V_{DD} = Max., \overline{CE} = V_{IL}$ IOUT = 0 mA, f = fMAX	Com. Ind. typ. ⁽²⁾	2	30 35 20	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \\ V_{IN} = V_{IH} \mbox{ or } V_{IL} \\ \overline{CE} \geq V_{IH}, \mbox{ f} = 0 \end{array}$	Com. Ind.	_	1 1	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:VDD} \begin{array}{l} V_{DD} = Max., \\ \hline \overline{CE} \geq V_{DD} - 0.2V, \\ V_{IN} \geq V_{DD} - 0.2V, \text{ or} \\ V_{IN} \leq 0.2V, \ f = 0 \end{array}$	Com. Ind. typ. ⁽²⁾	_	40 50 2	μΑ

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Notes:

1. At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

2. Typical values are measured at VDD = 3.3V, TA = 25°C and not 100% tested.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Output Capacitance	VOUT = 0V	5	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

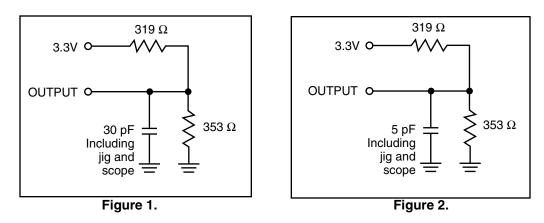
2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 3.3V$.

READ CYCLE SWITCHING CHARACTERISTICS ⁽¹⁾	(Over Operating Range)
READ CICLE SWITCHING CHARACTERISTICS	(Over Operating Range)

		-10	ns	-12	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	10		12	_	ns
taa	Address Access Time	—	10	—	12	ns
tона	Output Hold Time	2	_	2	—	ns
t ACE	CE Access Time		10		12	ns
t doe	OE Access Time	—	5	—	5	ns
tlzoe ⁽²⁾	OE to Low-Z Output	0	_	0	—	ns
thzoe ⁽²⁾	OE to High-Z Output	—	5	—	5	ns
tlzce ⁽²⁾	CE to Low-Z Output	3		3		ns
tHZCE ⁽²⁾	CE to High-Z Output		5		6	ns
t PU ⁽³⁾	CE to Power-Up	0		0		ns
t PD ⁽³⁾	CE to Power-Down		10	_	12	ns

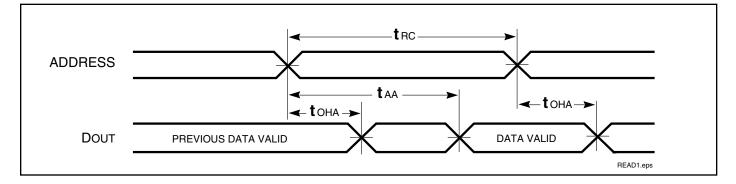
Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

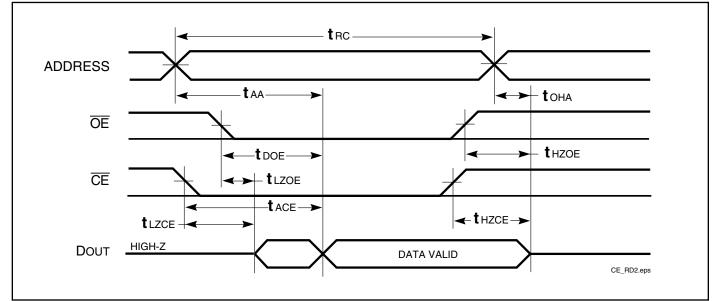

2. Tested with the load in Figure 2. Transition is measured ±200 mV from steady-state voltage. Not 100% tested.

3. Not 100% tested.

ACTEST CONDITIONS


Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5V
Output Load	See Figures 1 and 2

AC TEST LOADS



AC WAVEFORMS

READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

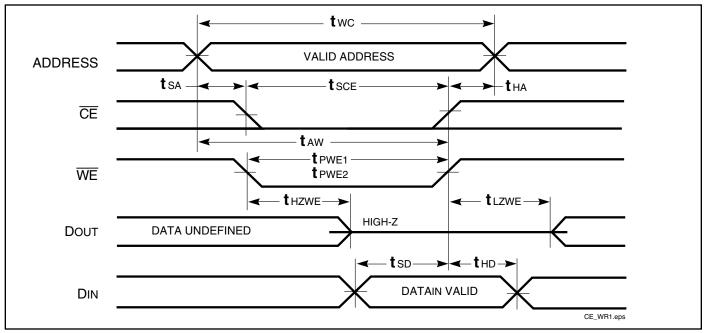
Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CE}}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS ^(1,2)	(Over Operating Range)
--	------------------------

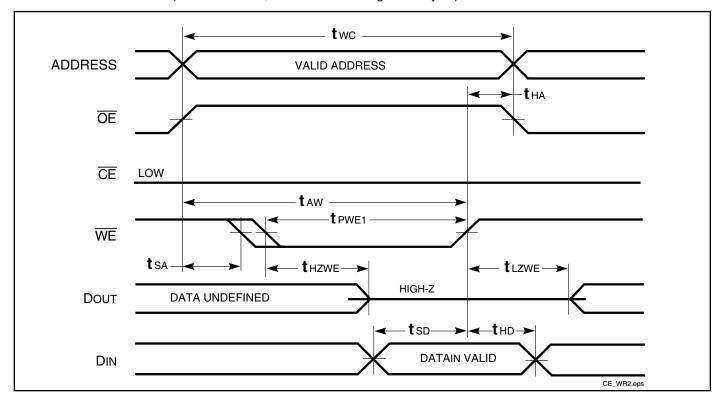
Symbol	Parameter	-10 Min.	ns Max.	-12 Min.		Unit
twc	Write Cycle Time	10	_	12	_	ns
t SCE	CE to Write End	8	_	8	_	ns
taw	Address Setup Time to Write End	8	—	8	—	ns
tна	Address Hold from Write End	0	—	0	—	ns
t sa	Address Setup Time	0	_	0	_	ns
tpwe1	WE Pulse Width (OE HIGH)	7	_	8	_	ns
tpwe2	WE Pulse Width (OE LOW)	10	_	12	_	ns
tsd	Data Setup to Write End	6.5	_	7	_	ns
tнd	Data Hold from Write End	0	_	0	_	ns
tHZWE ⁽³⁾	WE LOW to High-Z Output		3.5	_	5	ns
tlzwe ⁽³⁾	WE HIGH to Low-Z Output	0	_	0	_	ns

Notes:

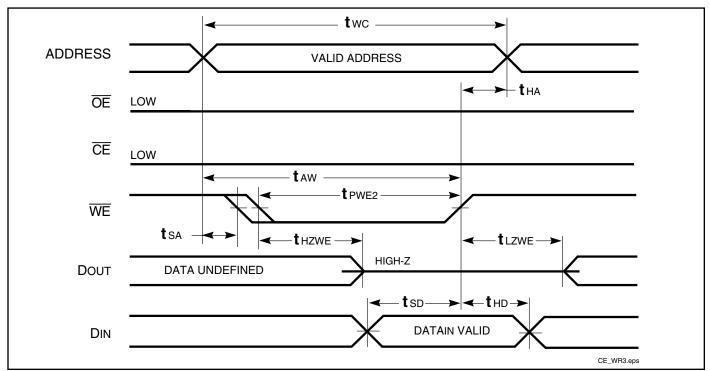

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.

 The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.


AC WAVEFORMS

WRITE CYCLE NO. 1 (CE Controlled, OE is HIGH or LOW) (1)



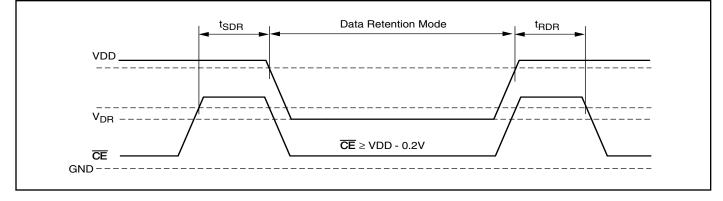
WRITE CYCLE NO. 2 (WE Controlled, OE is HIGH During Write Cycle) (1,2)

WRITE CYCLE NO. 3 (WE Controlled, OE is LOW During Write Cycle) (1)

Notes:

1. The internal write time is defined by the overlap of CE LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.

2. I/O will assume the High-Z state if $\overline{OE} > V_{IH}$.


DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform		2.0		3.6	V
Idr	Data Retention Current	$ \begin{array}{l} V_{DD} = 2.0V, \ \overline{CE} \geq V_{DD} - 0.2V \\ V_{IN} \geq V_{DD} - 0.2V, \ \text{or} \ V_{IN} \leq V_{SS} + 0.2V \end{array} $	Com. Ind.		2	40 50	μA
t sdr	Data Retention Setup Time	See Data Retention Waveform		0		_	ns
t RDR	Recovery Time	See Data Retention Waveform		trc		_	ns
Noto:							

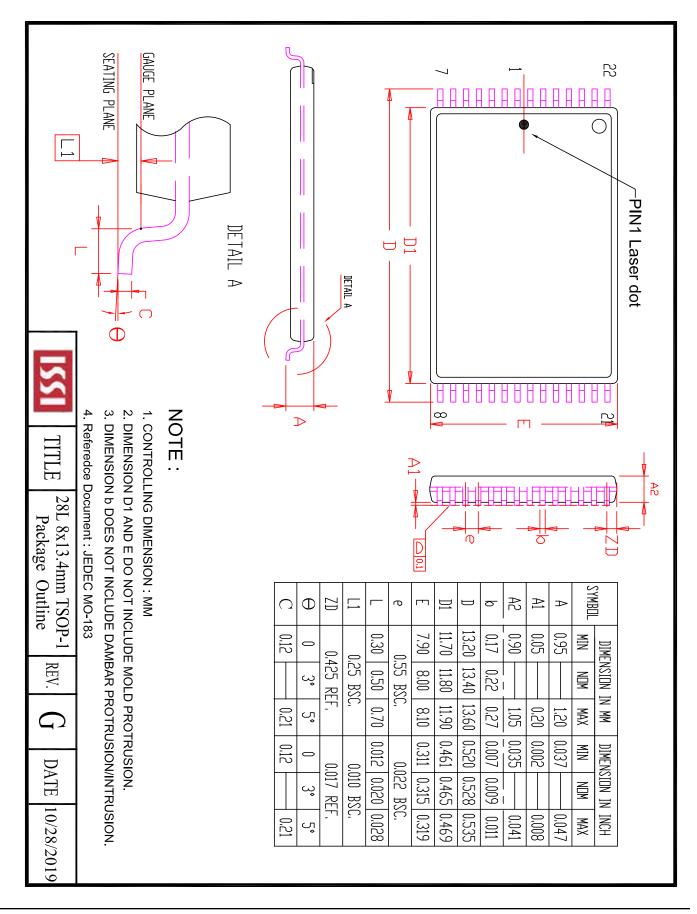
Note:

1. Typical Values are measured at $V_{DD} = 3.3V$, TA = 25°C and not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)

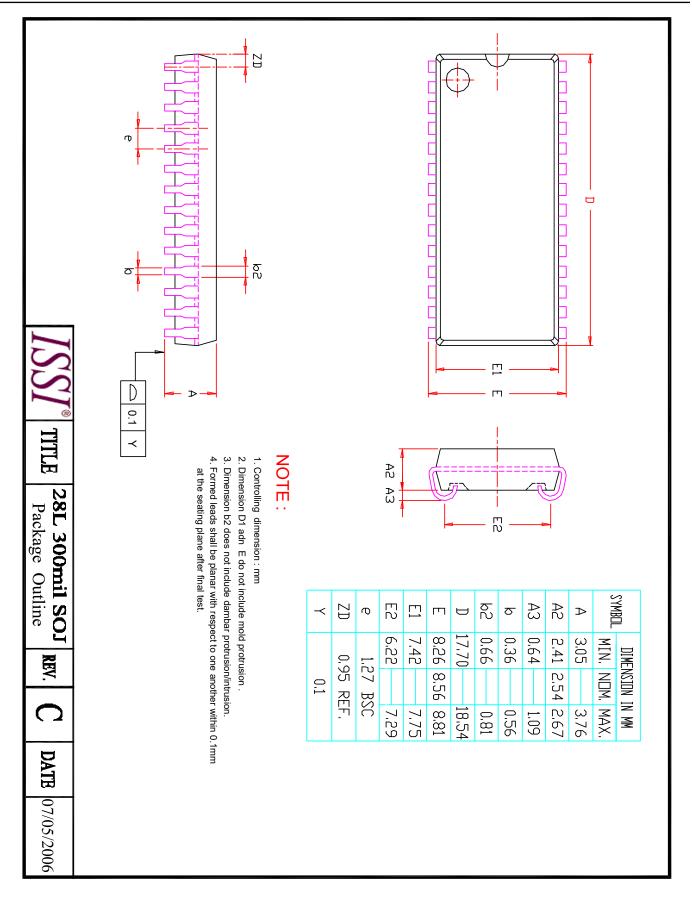
ORDERING INFORMATION

Commercial Range: 0°C to +70°C


Speed (ns)	Order Part No.	Package
10	IS61LV256AL-10TL	TSOP - Type I, Lead-free
	IS61LV256AL-10JL	300-mil Plastic SOJ, Lead-free

ORDERING INFORMATION

Industrial Range: -40°C to +85°C


Speed (ns)	Order Part No.	Package
10	IS61LV256AL-10TLI	TSOP - Type I, Lead-free
	IS61LV256AL-10JLI	300-mil Plastic SOJ, Lead-free

IS61LV256AL

