

# High Isolation, Nonreflective, GaAs, SPDT Switch, 100 MHz to 4 GHz

HMC349ALP4CE **Data Sheet** 

#### **FEATURES**

Nonreflective, 50  $\Omega$  design High isolation: 62 dB to 2 GHz Low insertion loss: 1.0 dB to 2 GHz

**High input linearity** 

1 dB power compression (P1dB): 34 dBm (typical) Third-order intercept (IP3): 53 dBm (typical)

**High power handling** 

33.5 dBm through path,  $V_{DD} = 5 \text{ V}$ 26.5 dBm terminated path

Single, positive supply: 3 V to 5 V CMOS-/TTL-compatible control

All off state control

16-lead, 4 mm × 4 mm LFCSP

Pin-compatible with the HMC8038

#### **APPLICATIONS**

Wireless infrastructure **Mobile radios Test equipment** 

#### **GENERAL DESCRIPTION**

The HMC349ALP4CE is a gallium arsenide (GaAs), single-pole, double throw (SPDT) switch, specified from 100 MHz to 4 GHz.

The HMC349ALP4CE is well suited for wireless infrastructure applications by yielding high isolation of 62 dB, low insertion loss of 1.0 dB, high input IP3 of 53 dBm, and high input P1dB of 34 dBm.

#### **FUNCTIONAL BLOCK DIAGRAM**

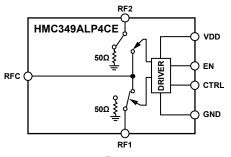



Figure 1.

The HMC349ALP4CE operates with a single, positive supply voltage from 3 V to 5 V and provides a CMOS-/TTL-compatible control interface.

The HMC349ALP4CE comes in a 16-lead, 4 mm × 4 mm, RoHS compliant, lead frame chip scale package (LFCSP).

Trademarks and registered trademarks are the property of their respective owners.

## **TABLE OF CONTENTS**

| Features                                                                                   | Interface Schematics                                  | 5        |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------|----------|
| Applications                                                                               | Typical Performance Characterics                      | 6        |
| Functional Block Diagram                                                                   | Insertion Loss, Isolation, and Return Loss            | 6        |
| General Description                                                                        | Input Power Compression and Input Third-Order In      | ntercept |
| Revision History                                                                           | (IP3)                                                 |          |
| Specifications                                                                             | Theory of Operation                                   | 10       |
| Absolute Maximum Ratings 4                                                                 | Applications Information                              |          |
| Thermal Resistance                                                                         | Evaluation Board                                      | 11       |
| Power Derating Curve4                                                                      | Outline Dimensions                                    | 12       |
| ESD Caution4                                                                               | Ordering Guide                                        | 12       |
| Pin Configuration and Function Descriptions5                                               |                                                       |          |
| <b>REVISION HISTORY</b> This Hittite Microwave Products data sheet has been reformatted to | Added Figure 12                                       | 7        |
| meet the styles and standards of Analog Devices, Inc.                                      | Changes to Figure 13                                  |          |
| 1/2019—v02.0315 to Rev. B                                                                  | Added Input Power Compression and Third-Order In      | -        |
| Updated FormatUniversal                                                                    | Section                                               |          |
| Changes to Product Title, Features Section, Applications                                   | Changes to Figure 14, Figure 15, and Figure 16        |          |
| Section, General Description Section, and Figure 1                                         | Added Figure 20, Figure 21, Figure 22, and Figure 23. |          |
| Changes to Table 1                                                                         | Added Theory of Operation Section                     |          |
| Deleted Bias Voltage Table and Control Voltage Table                                       | Changes to Table 5                                    |          |
| Changes to Table 2                                                                         | Added Applications Information Section                |          |
| Added Thermal Resistance Section, Power Derating Section, and Figure 2                     | Changes to Evaluation Board Section, Figure 24, and   |          |
| Added Figure 3                                                                             | Table 6                                               | 11       |
| Changes to Table 4                                                                         | Added Figure 25                                       | 11       |
| Added Interface Schematics Section                                                         | Updated Outline Dimensions                            |          |
| Added Insertion Loss, Isolation, and Return Loss Section 6                                 | Changes to Ordering Guide                             |          |
|                                                                                            |                                                       |          |
| Changes to Figure 6, Figure 7, and Figure 8                                                |                                                       |          |

## **SPECIFICATIONS**

Supply voltage  $(V_{DD}) = 3 \text{ V}$  to 5 V, control voltage  $(V_{CTRL}) = 0 \text{ V}$  or  $V_{DD}$ , enable voltage  $(V_{EN}) = 0 \text{ V}$ , case temperature  $(T_{CASE}) = 25^{\circ}\text{C}$ , 50  $\Omega$  system, unless otherwise noted.

Table 1.

| Parameter                      | Symbol                                | Test Conditions/Comments                      | Min | Тур | Max             | Unit |
|--------------------------------|---------------------------------------|-----------------------------------------------|-----|-----|-----------------|------|
| FREQUENCY RANGE                |                                       |                                               | 0.1 |     | 4               | GHz  |
| INSERTION LOSS                 |                                       |                                               |     |     |                 |      |
| Between RFC and RF1/RF2        |                                       | 0.1 GHz to 1 GHz                              |     | 0.9 | 1.2             | dB   |
|                                |                                       | 0.1 GHz to 2 GHz                              |     | 1.0 | 1.3             | dB   |
|                                |                                       | 0.1 GHz to 3 GHz                              |     | 1.1 | 1.5             | dB   |
|                                |                                       | 0.1 GHz to 4 GHz                              |     | 1.2 | 1.7             | dB   |
| ISOLATION                      |                                       |                                               |     |     |                 |      |
| Between RFC and RF1/RF2        |                                       | 0.1 GHz to 1 GHz                              | 60  | 65  |                 | dB   |
|                                |                                       | 0.1 GHz to 2 GHz                              | 55  | 62  |                 | dB   |
|                                |                                       | 0.1 GHz to 3 GHz                              | 50  | 57  |                 | dB   |
|                                |                                       | 0.1 GHz to 4 GHz                              | 50  | 57  |                 | dB   |
| Between RF1 and RF2            |                                       | 0.1 GHz to 1 GHz                              |     | 57  |                 | dB   |
|                                |                                       | 0.1 GHz to 2 GHz                              |     | 53  |                 | dB   |
|                                |                                       | 0.1 GHz to 3 GHz                              |     | 49  |                 | dB   |
|                                |                                       | 0.1 GHz to 4 GHz                              |     | 46  |                 | dB   |
| RETURN LOSS                    |                                       |                                               |     |     |                 |      |
| RFC                            |                                       | 0.1 GHz to 1 GHz                              |     | 21  |                 | dB   |
|                                |                                       | 0.1 GHz to 2 GHz                              |     | 21  |                 | dB   |
|                                |                                       | 0.1 GHz to 3 GHz                              |     | 17  |                 | dB   |
|                                |                                       | 0.1 GHz to 4 GHz                              |     | 15  |                 | dB   |
| RF1/RF2                        |                                       |                                               |     |     |                 |      |
| On                             |                                       | 0.1 GHz to 1 GHz                              |     | 21  |                 | dB   |
|                                |                                       | 0.1 GHz to 2 GHz                              |     | 21  |                 | dB   |
|                                |                                       | 0.1 GHz to 3 GHz                              |     | 19  |                 | dB   |
|                                |                                       | 0.1 GHz to 4 GHz                              |     | 19  |                 | dB   |
| Off                            |                                       | 0.5 GHz to 1 GHz                              |     | 20  |                 | dB   |
|                                |                                       | 0.5 GHz to 2 GHz                              |     | 20  |                 | dB   |
|                                |                                       | 0.5 GHz to 3 GHz                              |     | 17  |                 | dB   |
|                                |                                       | 0.5 GHz to 4 GHz                              |     | 15  |                 | dB   |
| SWITCHING                      |                                       |                                               |     |     |                 |      |
| Rise and Fall Time             | t <sub>RISE</sub> , t <sub>FALL</sub> | 10% to 90% of radio frequency (RF) output     |     | 60  |                 | ns   |
| On and Off Time                | t <sub>ON</sub> , t <sub>OFF</sub>    | 50% V <sub>CTRL</sub> to 90% of RF output     |     | 150 |                 | ns   |
| INPUT LINEARITY <sup>1</sup>   |                                       | 300 MHz to 4 GHz                              |     |     |                 |      |
| Input 0.1 dB Power Compression | P0.1dB                                | $V_{DD} = 3 \text{ V}$                        |     | 25  |                 | dBm  |
|                                |                                       | $V_{DD} = 5 \text{ V}$                        |     | 31  |                 | dBm  |
| Input 1 dB Power Compression   | P1dB                                  | $V_{DD} = 3 \text{ V}$                        |     | 28  |                 | dBm  |
|                                |                                       | $V_{DD} = 5 \text{ V}$                        | 30  | 34  |                 | dBm  |
| Input Third-Order Intercept    | IP3                                   | Input power = 10 dBm/tone, $\Delta f = 1$ MHz |     |     |                 |      |
|                                |                                       | $V_{DD} = 3 \text{ V}$                        |     | 52  |                 | dBm  |
|                                |                                       | $V_{DD} = 5 \text{ V}$                        |     | 53  |                 | dBm  |
| SUPPLY INPUT                   |                                       | VDD pin                                       |     |     |                 |      |
| Voltage                        | $V_{\text{DD}}$                       |                                               | 3   |     | 5               | V    |
| Current                        | $I_{DD}$                              |                                               |     | 1   | 3.5             | mA   |
| DIGITAL INPUTS                 |                                       | CTRL, EN pins                                 |     |     |                 |      |
| Low Voltage                    | V <sub>INL</sub>                      |                                               | 0   |     | 8.0             | V    |
| High Voltage                   | V <sub>INH</sub>                      |                                               | 2   |     | $V_{\text{DD}}$ | V    |
| Low Current                    | I <sub>INL</sub>                      |                                               |     | <1  |                 | μΑ   |
| High Current                   | I <sub>INH</sub>                      |                                               |     | 35  |                 | μΑ   |

 $<sup>^{\</sup>rm 1}$  For input linearity performance over frequency, see Figure 14 to Figure 23.

### **ABSOLUTE MAXIMUM RATINGS**

Table 2.

| 14016 2.                                                                               |                                        |  |  |  |  |  |
|----------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|
| Parameter                                                                              | Rating                                 |  |  |  |  |  |
| Supply Voltage                                                                         | 7 V                                    |  |  |  |  |  |
| Digital Control Inputs                                                                 |                                        |  |  |  |  |  |
| Voltage                                                                                | $-1 \text{ V to V}_{DD} + 1 \text{ V}$ |  |  |  |  |  |
| Current                                                                                | 3 mA                                   |  |  |  |  |  |
| RF Input Power <sup>1, 2, 3</sup> (f = 300 MHz to 4 GHz,<br>$T_{CASF} = 85^{\circ}C$ ) |                                        |  |  |  |  |  |
| Through Path                                                                           |                                        |  |  |  |  |  |
| $V_{DD} = 3 \text{ V}$                                                                 | 31.5 dBm                               |  |  |  |  |  |
| $V_{DD} = 5 V$                                                                         | 33.5 dBm                               |  |  |  |  |  |
| Terminated Path                                                                        |                                        |  |  |  |  |  |
| $V_{DD} = 3 V \text{ to } 5 V$                                                         | 26.5 dBm                               |  |  |  |  |  |
| Hot Switching                                                                          |                                        |  |  |  |  |  |
| $V_{DD} = 3 V \text{ to } 5 V$                                                         | 30 dBm                                 |  |  |  |  |  |
| Temperature                                                                            |                                        |  |  |  |  |  |
| Junction (T <sub>J</sub> )                                                             | 150°C                                  |  |  |  |  |  |
| Storage                                                                                | −65°C to +150°C                        |  |  |  |  |  |
| Reflow                                                                                 | 260°C                                  |  |  |  |  |  |
| Electrostatic Discharge (ESD) Sensitivity                                              |                                        |  |  |  |  |  |
| Human Body Model (HBM)                                                                 |                                        |  |  |  |  |  |
| All Pins                                                                               | 250 V (Class 1A)                       |  |  |  |  |  |
| Supply Pin                                                                             | 350 V                                  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> For power derating at frequencies less than 300 MHz, see Figure 2.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.

#### THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{\text{JC}}$  is the junction to case bottom (channel to package bottom) thermal resistance.

**Table 3. Thermal Resistance** 

| Package Type    | <b>Ө</b> лс | Unit |
|-----------------|-------------|------|
| CP-16-40        |             |      |
| Through Path    | 67.1        | °C/W |
| Terminated Path | 144.2       | °C/W |

#### **POWER DERATING CURVE**

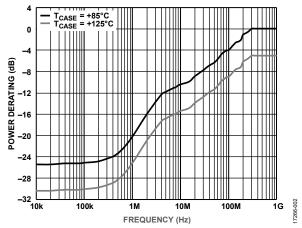
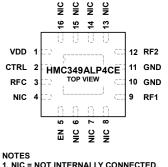



Figure 2. RF Input Power Derating

#### **ESD CAUTION**




**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

<sup>&</sup>lt;sup>2</sup> In all off state, the RFC input power handling degrades by 6 dB from through path specification.

<sup>&</sup>lt;sup>3</sup> When the supply and control voltages are not powered up, RFC input power handling degrades by 6 dB from through path specification and RF1/RF2 input power handling degrades by 6 dB from terminated path specification.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



NOTES
1. NIC = NOT INTERNALLY CONNECTED.
2. EXPOSED PAD. THE EXPOSED PAD MUST BE CONNECTED TO THE RF/DC GROUND OF THE PCB.

Figure 3. Pin Configuration

**Table 4. Pin Function Descriptions** 

| Pin No.             | Mnemonic | Description                                                                                                                     |
|---------------------|----------|---------------------------------------------------------------------------------------------------------------------------------|
| 1                   | VDD      | Supply Voltage.                                                                                                                 |
| 2                   | CTRL     | Logic Control Input. See Table 5.                                                                                               |
| 3                   | RFC      | RF Common Port. This pin is dc-coupled and matched to 50 $\Omega$ . An external dc blocking capacitor is required on this pin.  |
| 4, 6 to 8, 13 to 16 | NIC      | Not Internally Connected. These pins are not connected internally.                                                              |
| 5                   | EN       | Logic Enable Input. See Table 5.                                                                                                |
| 9                   | RF1      | RF Throw Port 1. This pin is dc-coupled and matched to 50 $\Omega$ . An external dc blocking capacitor is required on this pin. |
| 10, 11              | GND      | Ground. These pins must be connected to the RF/dc ground of the PCB.                                                            |
| 12                  | RF2      | RF Throw Port 2. This pin is dc-coupled and matched to 50 $\Omega$ . An external dc blocking capacitor is required on this pin. |
|                     | EPAD     | Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.                                              |

#### **INTERFACE SCHEMATICS**



Figure 4. RFC, RF1, and RF2 Interface Schematic

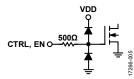



Figure 5. Digital Pins (CTRL and EN) Interface Schematic

# TYPICAL PERFORMANCE CHARACTERICS

### INSERTION LOSS, ISOLATION, AND RETURN LOSS

 $V_{DD}$  = 5 V,  $V_{CTRL}$  = 0 V or  $V_{DD}$ ,  $V_{EN}$  = 0 V or  $V_{DD}$ , and  $T_{CASE}$  = 25°C, 50  $\Omega$  system, unless otherwise noted. Measured on the evaluation board. The board loss is subtracted for insertion loss and isolation. However, return loss includes the board effects.

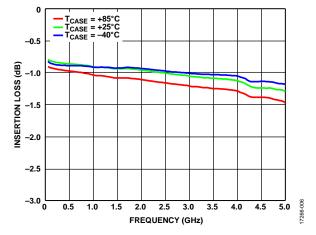



Figure 6. Insertion Loss Between RFC and RF1 vs. Frequency over Temperature

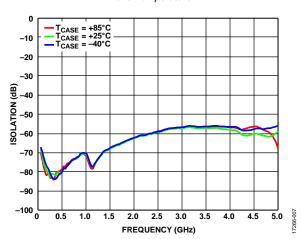



Figure 7. Isolation Between RFC and RF1 vs. Frequency over Temperature

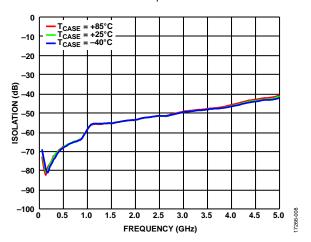



Figure 8. Isolation Between RF1 and RF2 vs. Frequency over Temperature

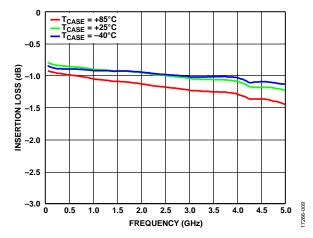



Figure 9. Insertion Loss Between RFC and RF2 vs. Frequency over Temperature

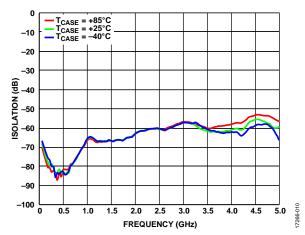



Figure 10. Isolation Between RFC and RF2 vs. Frequency over Temperature

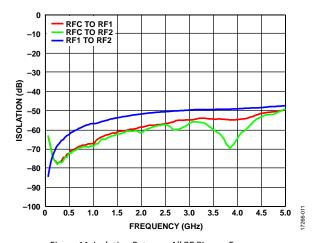



Figure 11. Isolation Between All RF Pins vs. Frequency in All Off State (EN =  $V_{DD}$ )

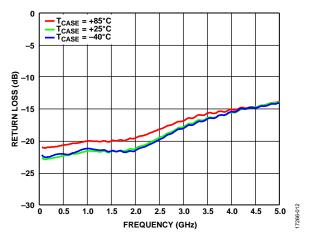



Figure 12. Return Loss for RFC vs. Frequency over Temperature

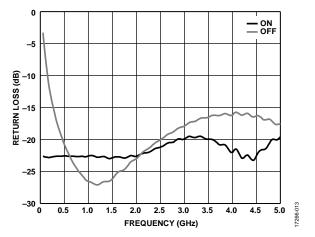



Figure 13. Return Loss for RF1 and RF2 vs. Frequency

#### INPUT POWER COMPRESSION AND INPUT THIRD-ORDER INTERCEPT (IP3)

 $V_{DD} = 3 \text{ V or } 5 \text{ V}, V_{CTRL} = 0 \text{ V or } V_{DD}, V_{EN} = V_{DD}, \text{ and } T_{CASE} = 25^{\circ}\text{C}, 50 \Omega \text{ system, unless otherwise noted. Measured on the evaluation board.}$ 



Figure 14. Input 0.1 dB Power Compression (P0.1dB) vs. Frequency over Temperature,  $V_{DD} = 5 \text{ V}$ 

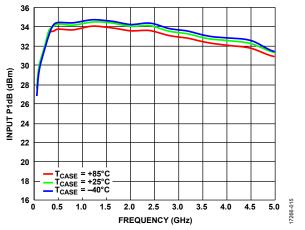



Figure 15. Input 1 dB Power Compression (P1dB) vs. Frequency over Temperature,  $V_{DD} = 5 \text{ V}$ 

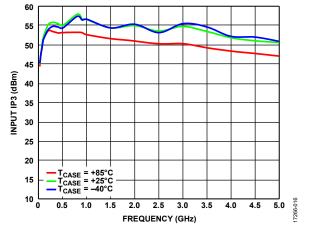



Figure 16. Input IP3 vs. Frequency over Temperature,  $V_{DD} = 5 V$ 

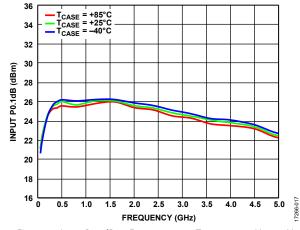



Figure 17. Input P0.1dB vs. Frequency over Temperature,  $V_{DD} = 3 V$ 

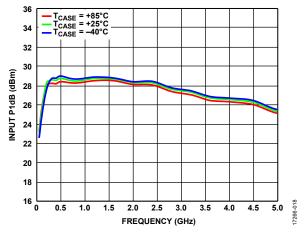



Figure 18. Input P1dB vs. Frequency over Temperature,  $V_{DD} = 3 V$ 

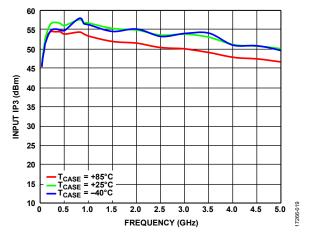



Figure 19. Input IP3 vs. Frequency over Temperature,  $V_{DD} = 3 \text{ V}$ 

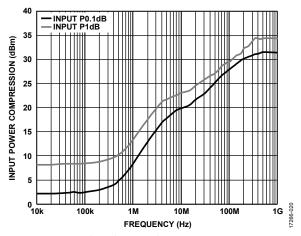



Figure 20. Input P0.1dB and Input P1dB vs. Frequency over Temperature,  $V_{DD}=5\,V$ , Low Frequency Detail

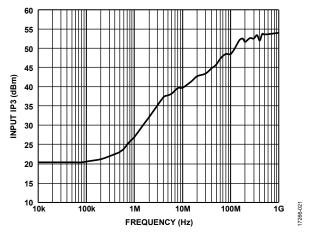



Figure 21. Input IP3 vs. Frequency over Temperature,  $V_{DD} = 5 V$ , Low Frequency Detail

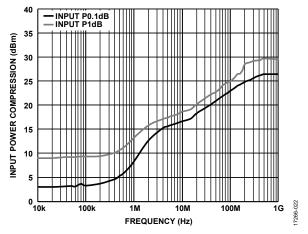



Figure 22. Input P0.1dB and Input P1dB vs. Frequency over Temperature,  $V_{DD} = 3 V$ , Low Frequency Detail

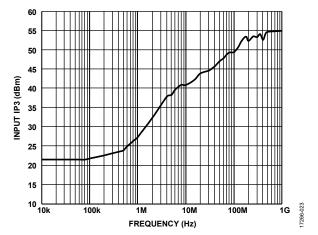



Figure 23. Input IP3 vs. Frequency over Temperature,  $V_{DD} = 3 V$ , Low Frequency Detail

### THEORY OF OPERATION

The HMC349ALP4CE requires a positive supply voltage applied to the VDD pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.

The HMC349ALP4CE is internally matched to 50  $\Omega$  at the RF common port (RFC) and the RF throw ports (RF1 and RF2). Therefore, no external matching components are required. All RF ports are dc-coupled, and dc blocking capacitors are required at the RF ports.

The HMC349ALP4CE incorporates a driver to perform logic functions internally and to provide the user with the advantage of a simplified control interface. The driver features two digital control input pins, CTRL and EN, which control the state of the RF paths.

When the EN pin is logic low, the logic level applied to the CTRL pin determines which RF path is in the insertion loss state while the other path is in the isolation state. The insertion loss path conducts the RF signal between the selected RF throw port and the RF common port. The isolation path provides high loss between the insertion loss path and the unselected RF throw port that is terminated to an internal 50  $\Omega$  resistor.

When the EN pin is logic high, the switch is in the all off state, and both RF paths are in the isolation state regardless of the logic level applied to the CTRL. In the all off state, the RF1 and RF2 ports are terminated to internal 50  $\Omega$  resistors, and RFC becomes open reflective.

The switch design is bidirectional. The through path has same power handling whether the RF input signal is applied to the RFC port or the selected RF throw port. An RF signal can also be applied to the terminated path that has lower power handling than the through path (see Table 2).

The ideal power-up sequence is as follows:

- VDD.
- 2. CTRL and EN (the relative order is not important).
- 3. RF input signal.

The ideal power-down sequence is the reverse order of the power-up sequence.

**Table 5. Control Voltage Truth Table** 

| Digital Control Input |      |                     | RF Paths            |  |
|-----------------------|------|---------------------|---------------------|--|
| EN                    | CTRL | RF1 to RFC          | RF2 to RFC          |  |
| Low                   | Low  | Isolation (off)     | Insertion loss (on) |  |
| Low                   | High | Insertion loss (on) | Isolation (off)     |  |
| High                  | Low  | Isolation (off)     | Isolation (off)     |  |
| High                  | High | Isolation (off)     | Isolation (off)     |  |

# APPLICATIONS INFORMATION EVALUATION BOARD

The HMC349ALP4CE uses a 4-layer evaluation board. The copper thickness is 0.5 oz (0.7 mil) on each layer. The top dielectric material is 10 mil Rogers RO4350, which offers good high frequency performance, and the middle and bottom dielectric materials are FR-4 type materials to achieve an overall board thickness of 62 mil. All RF and dc traces are routed on the top copper layer and the inner and bottom layers are grounded planes that provide a solid ground for the RF transmission lines. The RF transmission lines are designed using a coplanar waveguide (CPWG) model with a width of 13 mil and ground spacing of 10 mil for a characteristic impedance of 50  $\Omega$ . For good RF and thermal grounding, as many plated through vias as possible are arranged around transmission lines and under the exposed pad of the package.

Figure 24 shows the top view of the populated EV1HMC349ALP4CE evaluation board. The package ground pins are connected directly to the ground plane which is connected to the GND dc pins (J6 and J7). A single power supply port is connected to the dc pin labeled VDD (J5). An unpopulated bypass capacitor position is available to filter high frequency noise on the supply trace. Two control ports are connected to the CTRL and EN dc pins (J4 and J8). The RF ports are connected to the RFC, RF1, and RF2 connectors (J1, J3, and J2) that are PC mount subminiature version A (SMA) RF connectors. Additionally, 100 pF dc blocking capacitors (C1, C2, and C3) are used on RF transmission lines. A through transmission line that connects unpopulated RF connectors (J4 and J5) is also available to measure and remove the loss of the PCB.

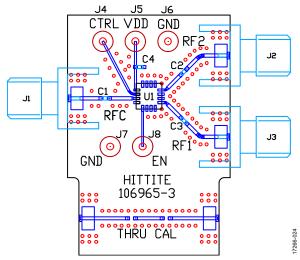



Figure 24. Populated Evaluation Board

Figure 25 and Table 6 are the evaluation board schematic and bill of materials, respectively.

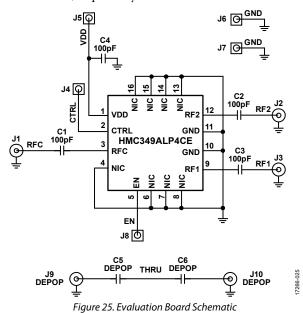



Table 6. Bill of Materials, Evaluation Board Components

| Component | Description                                   |
|-----------|-----------------------------------------------|
| J1 to J3  | PC mount SMA connectors                       |
| J4 to J8  | DC pins                                       |
| J9, J10   | PC mount SMA connectors, do not install (DNI) |
| C1 to C4  | Capacitors, 0402 package, 100 pF              |
| C5, C6    | Capacitors, 0402 package, DNI                 |
| U1        | HMC349ALP4CE SPDT switch                      |
| PCB       | 106965-3 evaluation PCB                       |

### **OUTLINE DIMENSIONS**

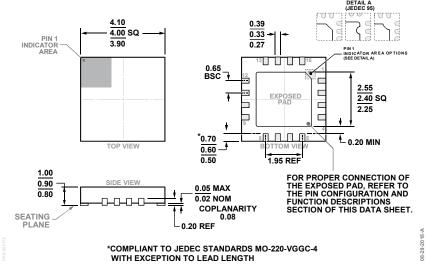



Figure 26. 16-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.90 mm Package Height (CP-16-40) Dimensions shown in millimeters

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description                           | Package Option |
|--------------------|-------------------|-----------------------------------------------|----------------|
| HMC349ALP4CE       | −40°C to +85°C    | 16-Lead Lead Frame Chip Scale Package [LFCSP] | CP-16-40       |
| HMC349ALP4CETR     | -40°C to +85°C    | 16-Lead Lead Frame Chip Scale Package [LFCSP] | CP-16-40       |
| EV1HMC349ALP4C     |                   | Evaluation Board                              |                |

<sup>&</sup>lt;sup>1</sup> The HMC349ALP4CE, the HMC349ALP4CETR, and the EV1HMC349ALP4C are RoHS compliant parts.