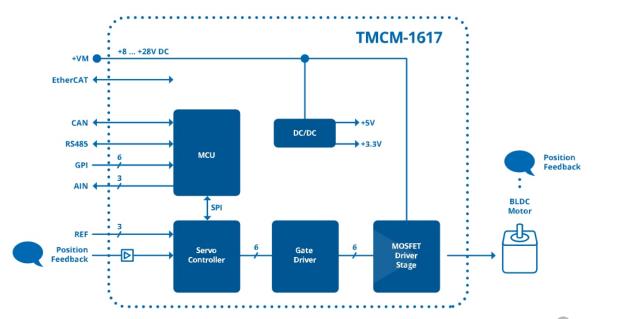
TMCM-1617 Hardware Manual

HW Version V1.2 | Document Revision V1.01 • 2021-Feb-28

The TMCM-1617 is a low-weight miniaturized single axis servo drive for 3-phase BLDC motors with up to 18A RMS motor current and +24V supply. With CAN, RS485, and EtherCAT® it offers various communication options. TMCM-1617 supports incremental encoders and digital hall sensors as position feedback. Customization and different housing options are possible.



Applications

- Robotics
- Laboratory Automation
- Manufacturing
- Factory Automation

- Features
- Servo drive for BLDC motors
- +8...28V DC supply voltage
- Up to 18A RMS max. motor current
- RS485, CAN & EtherCAT® interfaces
- Incremental encoder feedback
- Digital HALL sensor feedback
- Reference switch inputs
- · Cooling via aluminum housing
- L/W/H: 36.8mm x 26.8mm x 11.1mm
- Weight: ca. 24g
- Customization options
 - Servo Drives
 - Low Inductance Motors

Simplified Block Diagram

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at: www.trinamic.com

Contents

1	Features	4
2	Order Codes	5
3	3.2 Board Mounting Considerations 3.2.1 Soldering the Module onto a Baseboard 3.2.2 Plugging the Module onto a Baseboard 3.2.3 TMCM-1617 Baseboard	6 6 6 7 7 8 9
4	Connectors and Signals	10
	4.1.1 Motor & Supply Connectors J301J305 1 4.1.2 Low Voltage & I/O connector J315 1 4.1.3 Low Voltage & I/O connector J316 1 4.1.4 Low Voltage & I/O connector J317 1 4.1.5 Low Voltage & I/O connector J318 1 4.1.6 Low Voltage & I/O connector J319 1 4.1.7 Low Voltage & I/O connector J320 1 4.1.8 LED Signals 1 4.2 TMCM-1617 EtherCAT Version 1 4.2.1 Motor & Supply Connector J315 1 4.2.3 Low Voltage & I/O connector J316 1 4.2.4 Low Voltage & I/O connector J315 1 4.2.5 Low Voltage & I/O connector J316 1	
5	5.1 RS485 2 5.2 CAN 2	
6	Operational Ratings and Characteristics26.1Absolute Maximum Ratings26.2Digital I/O Ratings (Ambient Temperature 25°C)26.3CAN Communication Interface (Ambient Temperature 25°C)26.4Analog Inputs Interface (Ambient Temperature 25°C)26.5Other Requirements2	24 25 25
7	Figures Index	26
8	Tables Index	27
9		

9.5 9.6	Target User 2 Disclaimer: Life Support Systems 2 Disclaimer: Intended Use 2 Collateral Documents & Tools 2	28 28
10.1	ision History 3 Hardware Revision 3 Document Revision 3	30

1 Features

The TMCM-1617is a low-weight miniaturized single axis servo drive for 3-phase BLDC motors with up to 18A RMS motor current (short time peak) and +24V supply. With CAN, RS485, and EtherCAT® it offers various interfaces for communication. TMCM-1617supports incremental encoders and digital hall sensors as position feedback. Customization and different housing options are possible.

Controller & Driver

- Motor current: up to 18A RMS short time peak (depends on duty cycle, temperature, and cooling)
- Motor current: 4A RMS continuous at room temperature without forced cooling
- Supply voltage: +8...+28V DC, (+24V nominal)
- Field Oriented Control in hardware with up to 100kHz PWM and current control loop
- Temperature rating: -30...+60° (standard version)

Position Feedback

- Incremental encoder (ABN)
- Digital Hall sensors
- +5V supply for sensors and feedback systems

10

- 2x general purpose digital inputs (0...+3.3V input range)
- 4x general purpose digital ouputs (0...+3.3V input range)
- 3x analog inputs (0...+3.3V input range)
- 3x reference switch inputs (0...+3.3V input range, left/right/home)
- +3.3V provided for signal conditioning on a base board or as reference

Interfaces

- Digital RS485 interface with up-to 1Mbit/s (external transceiver needed on base board)
- Digital CAN interface with up-to 1Mbit/s (external transceiver needed on base board)
- EtherCAT interface (100Mbit Ethernet PHYs included in the module) with EtherCAT LED indicator outputs

Mechanical data

- Max. dimension: 36.8mm x 26.8mm x 11.1mm (L/W/H)
- Weight: ca. 24g
- 2 mounting holes for M2.5 screws
- · Forced cooling via housing, mount heat sink to bottom side
- Optional no housing and no potting, bare PCB stack
 - Weight: ca. 14g
 - Max. dimension: 35.9mm x 25.9mm x 11.1mm (L/W/H)
 - Forced cooling via bottom side PCB

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.com

Software

- TMCL[™] remote (direct mode) and standalone operation (memory for up to 1024 TMCL[™] commands), fully supported by TMCL-IDE (PC based integrated development environment). Further information given in the TMCM-1617 TMCL firmware manual.
- CANopen firmware with CANopen standard protocol stack for the CAN interface. Further information given in the TMCM-1617 CANopen firmware manual.
- CANopen-over-EtherCAT (COE) with DS402 standard protocol stack. Please see TMCM-1617 COE firmware manual for more details.

2 Order Codes

Order Code	Description	Size (LxWxH)
TMCM-1617-TMCL	Miniaturized Servo Drive, TMCL firmware, housing & potted, standard temperature rating	36.8mm x 26.8mm x 11.1mm
TMCM-1617-CANOPEN	Miniaturized Servo Drive, CANopen firmware, housing & potted, standard temperature rating	36.8mm x 26.8mm x 11.1mm
TMCM-1617-COE	Miniaturized Servo Drive, CANopen-over- EtherCAT firmware, housing & potted, stan- dard temperature rating	36.8mm x 26.8mm x 11.1mm
ТМСМ-1617-ВВ	TMCM-1617 base board, white	130mm x 85mm

Table 1: TMCM-1617 Order Codes

3 Mechanical and Electrical Interfacing

3.1 Module Size

The TMCM-1617 comes potted inside an aluminum housing with an overall size of 36.8mm (length) x 26.8mm (width) x 11.1mm (height). The module has 2 additional mounting holes for M2.5 screws to screw it to a carrier board.

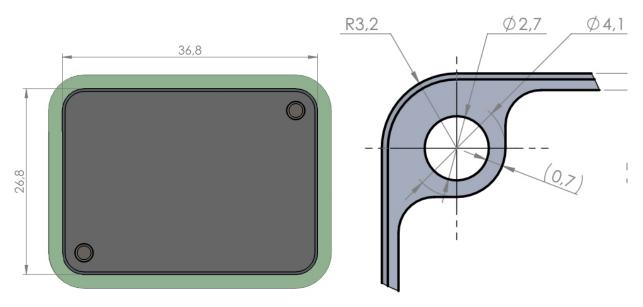


Figure 1: Board dimensions and position of mounting holes (all values in mm)

3.2 Board Mounting Considerations

3.2.1 Soldering the Module onto a Baseboard

The TMCM-1617 is intended to be soldered onto a base PCB via its THT connectors. For easy integration into own designs a PCB library including symbol and footprint is provided for selected CAD tools (Mentor PADS, KiCAD).

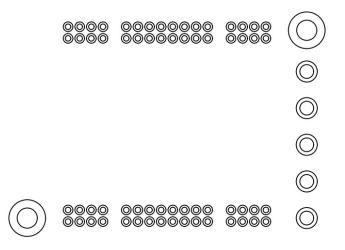


Figure 2: TMCM-1617 PCB footprint as seen on the top side of a base/carrier PCB

©2021 TRINAMIC Motion Control GmbH & Co. KG, Hamburg, Germany Terms of delivery and rights to technical change reserved. Download newest version at www.trinamic.com

3.2.2 Plugging the Module onto a Baseboard

If required, the TMCM-1617 can also be plugged onto a base PCB using special mating connectors. Thereby, the module is replaceable. The mating connectors fit into the same PCB footprint as shown in the previous section.

The following table show the mating connector types required for plugging the module. The images show the top view of Trinamic's baseboard for the TMCM-1617 and the positions of the respective mating connectors.

Connector #	Connector Type	Sourcing (example)
J301J305	Mill-Max 9354-0-15-15-18-27-10-0 or Mill-Max 9357-0-15-80-18-27-10-0	DigiKey ED1047-ND or DigiKey ED10171-ND0
J315, J317, J318, J320	Mill-Max 853-41-008-10-001000	Mouser 575-8534100810001000
J316, J319	Mill-Max 853-41-016-10-001000	Mouser 575-8534101610001000

Table 2: TMCM-1617 mating connectors for plugging onto a baseboard

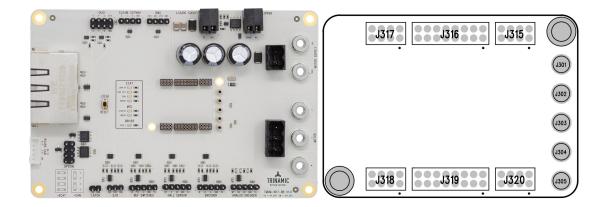


Figure 3: TMCM-1617 baseboard mating connector positions

NOTICE

Please note that when plugged into the mating connectors the maximum power rating of the connection between TMCM-1617 power input and motor phase outputs and PCB might be lower compared to soldering TMCM-1617 directly into a PCB.

3.2.3 TMCM-1617 Baseboard

The TMCM-1617 baseboard is an additional product that can be used for evaluation of the TMCM-1617. The full CAD data (Mentor PADS) and Gerber files for the TMCM-1617 baseboard is available as reference and can be used for own designs.

The CAD data and additional information can be downloaded from Trinamic's website www.trinamic.com.

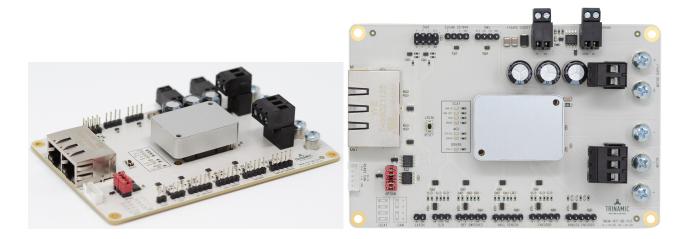


Figure 4: Side and top view on TMCM-1617 baseboard complete with TMCM-1617 module and mating connectors

3.2.4 Mounting a Heat Sink

The aluminum housing of TMCM-1617 has 2 mounting holes for M2.5 screws/bolts to be able to further fixate it to a baseboard. These mounting holes also allow for mounting a heat sink connected to the bottom side of the housing.

A thermal gap pad (electrically isolating) is recommended between the housing and the heat sink for proper heat transfer.

The heat sink requires M2.5 threaded screw holes at the same positions as highlighted in Section 3.1

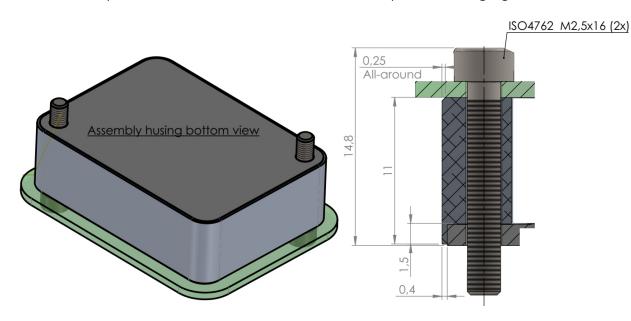


Figure 5: Heat sink mounting

3.3 Supply Buffering

TMCM-1617 includes only limited onboard capacitance. For high current applications additional capacitors must be placed close to the module power input to stabilize power supply. In addition, a regulated power supply is highly recommended.

NOTICE	Depending on your application make sure to add sufficient capacitors to the driver input to stabilize supply.
	Low ESR electrolyte caps are recommended.
	It is recommended to connect electrolytic capacitors of significant size to
	the power supply lines next to the TMCM-1617 !
	Rule of thumb for size of electrolytic capacitor: $C = 1000 \frac{\mu F}{A} * I_{SUPPLY}$
	The capacitors should be selected with regard to high ripple current rating.
	In addition to power stabilization (buffer) and filtering this added capaci-
	tor will also reduce any voltage spikes which might otherwise occur from
	a combination of high inductance power supply wires and the ceramic ca-
	pacitors. In addition it will limit slew-rate of power supply voltage at the
	module. The low ESR of ceramic-only filter capacitors may cause stability
	problems with some switching power supplies.

4 Connectors and Signals

The TMCM-1617 has 11 connectors altogether. There are 6 low voltage & I/O connectors (J315...J320) and 5 motor & supply connectors (J301...J305). The black dots in the image below are pin 1 marks.

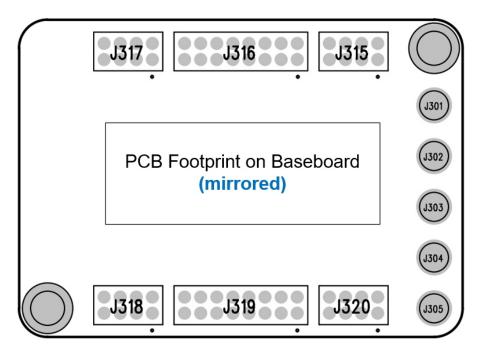
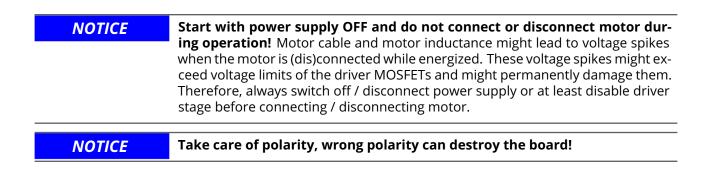
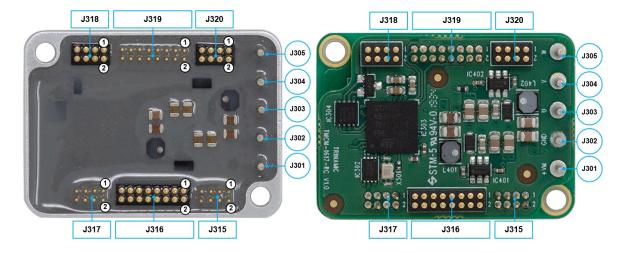




Figure 6: TMCM-1617 connectors as seen on the baseboard footprint (mirrored compared to top side of TMCM-1617 itself)

4.1 TMCM-1617 TMCL and CANopen Version

Figure 7: TMCM-1617 connectors and signals for TMCL/CANopen version (potted and open module)

4.1.1 Motor & Supply Connectors J301...J305

Connector	Signal	Description
J301	+VM	Motor supply voltage, +24V
J302	GND	Signal and supply ground
J303	U	Motor phase U
J304	V	Motor phase V
J305	W	Motor phase W

Table 3: Motor & supply connectors J301...J305

NOTICE	The TMCM-1617 does not contain a suppressor diode or other over-voltage
	protection at the supply input. On the baseboard a proper suppressor dio must be provided for protection if required. For example a suppressor type SMBJ26A.
NOTICE	The TMCM-1617 only contains minimum onboard capacitance to stabilize
	the supply voltage and minimize current ripple.
	Depending on your application make sure to add sufficient capacitors to the driver input. Low ESR electrolyte caps are recommended, especially for higher current applications. See Section 3.3 for more information.

4.1.2 Low Voltage & I/O connector J315

Pin	Signal	Description
1	+3.3V_OUT	+3.3V output rail for used on the baseboard, 50mA max.
2	GND	Common system supply and signal ground
3	REF_R	Right reference switch input, +3.3V level
4	-dnc-	do not connect
5	REF_H	Home reference switch input, +3.3V level
6	-dnc-	do not connect, reserved for future use
7	REF_L	Left reference switch input, +3.3V level
8	-dnc-	do not connect, reserved for future use

Table 4: Low voltage & I/O connector J315

4.1.3 Low Voltage & I/O connector J316

Pin	Signal	Description
1	-dnc-	do not connect
2	GND	Common system supply and signal ground
3	-dnc-	do not connect
4	GND	Common system supply and signal ground
5	-dnc-	do not connect
6	GND	Common system supply and signal ground
7	-dnc-	do not connect
8	AIN0	Analog input 0, 0+3.3V
9	-dnc-	do not connect
10	AIN1	Analog input 1, 0+3.3V
11	-dnc-	do not connect
12	AIN2	Analog input 2, 0+3.3V
13	-dnc-	do not connect
14	GND	Common system supply and signal ground
15	-dnc-	do not connect
16	GND	Common system supply and signal ground

Table 5: Low voltage & I/O connector J315

4.1.4 Low Voltage & I/O connector J317

Pin	Signal	Description
1	-dnc-	do not connect
2	-dnc-	do not connect
3	-dnc-	do not connect
4	nRESET	external reset line, low active, +3.3V level
5	-dnc-	do not connect
6	GND	Common system supply and signal ground
7	-dnc-	do not connect
8	-dnc-	do not connect

Table 6: Low voltage & I/O connector J317

4.1.5 Low Voltage & I/O connector J318

Pin	Signal	Description
1	-dnc-	do not connect
2	RS485_RX	RS485 interface digital RX line, +3.3V level, connect to external transceiver
3	RUN_LED	Control signal for MCU/CANopen status LED, +3.3V level
4	RS485_TX	RS485 interface digital TX line, +3.3V level, connect to external transceiver
5	ERR_LED	Control signal for MCU/CANopen error LED, +3.3V level
6	RS485_DIR	RS485 interface direction control line, +3.3V level, connect to external transceiver
7	CAN_H	CAN physical bus interface, positive line from internal transceiver
8	CAN_L	CAN physical bus interface, negative line from internal transceiver

Table 7: Low voltage & I/O connector J318

4.1.6 Low Voltage & I/O connector J319

Pin	Signal	Description
1	-dnc-	do not connect, reserved for future use
2	-dnc-	do not connect, reserved for future use
3	-dnc-	do not connect, reserved for future use
4	BRAKE	Digital PWM brake chopper output, +3.3V level
5	+5V_OUT	+5V output rail from TMCM-1617 to be used for sensor/encoder supply and/or external signal conditioning, 100mA max.
6	ENC_N	Digital quadrature/incremental encoder input, index channel, +3.3V level
7	GND	Common system supply and signal ground
8	ENC_B	Digital quadrature/incremental encoder input, B channel, +3.3V level
9	GPIO_1	Dedicated general purpose input 1, +3.3V level
10	ENC_A	Digital quadrature/incremental encoder input, A channel, +3.3V level
11	GPIO_2	Dedicated general purpose output 2, +3.3V level
12	HALL_WY	Digital Hall sensor input, +3.3V level
13	DRV_FAULT	Driver stage fault indicator
14	HALL_V	Digital Hall sensor input, +3.3V level
15	-dnc-	do not connect
16	HALL_UX	Digital Hall sensor input, +3.3V level

Table 8: Low voltage & I/O connector J319

4.1.7 Low Voltage & I/O connector J320

Pin	Signal	Description		
1	GND	Common system supply and signal ground		
2	+VS	Digital and logic supply input, +24V, can be combined with +VM		
3	-dnc-	do not connect		
4	GPIO_2	Dedicated general purpose output 2, +3.3V level		
5	-dnc-	do not connect		
6	GPIO_3	Dedicated general purpose output 3, +3.3V level		
7	GPIO_0	Dedicated general purpose input 0, +3.3V level		
8	GPIO_5	Dedicated general purpose output 5, +3.3V level		

Table 9: Low voltage & I/O connector J320

4.1.8 LED Signals

The TMCM-1617 has no on-boards LEDs due to the way it is mounted. Nevertheless it has dedicated digital outputs to drive LEDs located on the baseboard. The following table summarizes these driver signals and gives baseboard recommendations.

All LED control signals are +3.3V level outputs.

(Connector & pin numbers when looking onto the TMCM-1617 from top / see Sections 4.1 and 4.2.)

Signal Name	Connector (Pin)	Description	Comment
RUN_LED	J318 (3)	MCU/CANopen status LED	use a green LED
ERR_LED	J318 (5)	MCU/CANopen error LED	use a red LED

Table 10: TMCM-1617 digital LED output signals

J318 J319 J320 J318 J319 J320 J305 J305 J304 J304 J303 J303 J302 J302 J301 J301 J317 J316 J315 J317 J316 J315

4.2 TMCM-1617 EtherCAT Version

Figure 8: TMCM-1617 connectors and signals for CoE version (potted and open module)

4.2.1 Motor & Supply Connectors J301...J305

Connector	Signal	Description	
J301	+VM	Motor supply voltage, +24V	
J302	GND	Common system supply and signal ground	
J303	U	Motor phase U	
J304	V	Motor phase V	
J305	W	Motor phase W	

Table 11: Motor & supply connectors J301...J305

NOTICE	The TMCM-1617 does not contain a suppressor diode or other over-voltage protection at the supply input. On the baseboard a proper suppressor diode must be provided for protection if required. For example a suppressor of type SMBJ26A.		
NOTICE	The TMCM-1617 only contains minimum onboard capacitance to stabilize		
	the supply voltage and minimize current ripple. Depending on your application make sure to add sufficient capacitors to		
	the driver input. Low ESR electrolyte caps are recommended, especially for		
	higher current applications. See Section 3.3 for more information.		

4.2.2 Low Voltage & I/O connector J315

Pin	Signal	Description	
1	+3.3V_OUT	+3.3V output rail for used on the baseboard, 50mA max.	
2	GND	Common system supply and signal ground	
3	REF_R	Right reference switch input, +3.3V level	
4	-dnc-	do not connect	
5	REF_H	Home reference switch input, +3.3V level	
6	-dnc-	do not connect, reserved for future use	
7	REF_L	Left reference switch input, +3.3V level	
8	-dnc-	do not connect, reserved for future use	

Table 12: Low voltage & I/O connector J315

4.2.3 Low Voltage & I/O connector J316

Pin	Signal	Description	
1	ECAT_TP_OUT	EtherCAT OUT port physical interface TX	
2	ECAT_LINK_IN_LED	Control signal for EtherCAT link IN status and activity LED, +3.3V level	
3	ECAT_TN_OUT	EtherCAT OUT port physical interface TX	
4	ECAT_LINK_OUT_LED	Control signal for EtherCAT link OUT status and activity LED, +3.3V level	
5	ECAT_RP_OUT	EtherCAT OUT port physical interface RX	
6	GND	Common system supply and signal ground	
7	ECAT_RN_OUT	EtherCAT OUT port physical interface RX	
8	AIN0	Analog input 0, 0+3.3V	
9	ECAT_TP_IN	EtherCAT IN port physical interface TX	
10	AIN1	Analog input 1, 0+3.3V	
11	ECAT_TN_IN	EtherCAT IN port physical interface TX	
12	AIN2	Analog input 2, 0+3.3V	
13	ECAT_RP_IN	EtherCAT IN port physical interface RX	
14	ECAT_RUN_LED	Control signal for EtherCAT state machine RUN LED, +3.3V level	
15	ECAT_RN_IN	EtherCAT IN port physical interface RX	
16	ECAT_ERR_LED	Control signal for EtherCAT state machine ERR LED, +3.3V level	

Table 13: Low voltage & I/O connector J315

4.2.4 Low Voltage & I/O connector J317

Pin	Signal	Description	
1	-dnc-	do not connect	
2	-dnc-	do not connect	
3	-dnc-	do not connect	
4	nRESET	external reset line, low active, +3.3V level	
5	-dnc-	do not connect	
6	GND	Common system supply and signal ground	
7	-dnc-	do not connect	
8	-dnc-	do not connect	

Table 14: Low voltage & I/O connector J	317
---	-----

4.2.5 Low Voltage & I/O connector J318

Pin	Signal	Description
1	ECAT_LATCH0	EtherCAT external DC latch input 0, +3.3V level, apply appropriate external filter to avoid noise and glitches
2	RS485_RX	RS485 interface digital RX line, +3.3V level, connect to external transceiver
3	RUN_LED	Control signal for MCU/CANopen status LED, +3.3V level
4	RS485_TX	RS485 interface digital TX line, +3.3V level, connect to external transceiver
5	ERR_LED	Control signal for MCU/CANopen error LED, +3.3V level
6	RS485_DIR	RS485 interface direction control line, +3.3V level, connect to external transceiver
7	CAN_TX	CAN interface digital TX line, +3.3V level, connect to external transceiver
8	CAN_RX	CAN interface digital RX line, +3.3V level, connect to external transceiver

Table 15: Low voltage & I/O connector J318

4.2.6 Low Voltage & I/O connector J319

Pin	Signal	Description		
1	-dnc-	do not connect, reserved for future use		
2	-dnc-	do not connect, reserved for future use		
3	-dnc-	do not connect, reserved for future use		
4	BRAKE	Digital PWM brake chopper output, +3.3V level		
5	+5V_OUT	+5V output rail from TMCM-1617 to be used for sensor/encoder supply and/or external signal conditioning, 100mA max.		
6	ENC_N	Digital quadrature/incremental encoder input, index channel, +3.3V level		
7	GND	Common system supply and signal ground		
8	ENC_B	Digital quadrature/incremental encoder input, B channel, +3.3V level		
9	GPIO_1	Dedicated general purpose input 1, +3.3V level		
10	ENC_A	Digital quadrature/incremental encoder input, A channel, +3.3V level		
11	GPIO_2	Dedicated general purpose output 2, +3.3V level		
12	HALL_WY	Digital Hall sensor input, +3.3V level		
13	DRV_FAULT	Driver stage fault indicator		
14	HALL_V	Digital Hall sensor input, +3.3V level		
15	-dnc-	do not connect		
16	HALL_UX	Digital Hall sensor input, +3.3V level		

Table 16: Low voltage & I/O connector J319

4.2.7 Low Voltage & I/O connector J320

Pin	Signal	Description		
1	GND	Common system supply and signal ground		
2	+VS	Digital and logic supply input, +24V, can be combined with +VM		
3	-dnc-	do not connect		
4	GPIO_3	Dedicated general purpose output 3, +3.3V level		
5	-dnc-	do not connect		
6	GPIO_4	Dedicated general purpose output 4, +3.3V level		
7	GPIO_0	Dedicated general purpose input 0, +3.3V level		
8	GPIO_5	Dedicated general purpose output 5, +3.3V level		

Table 17: Low voltage & I/O connector J320

4.2.8 LEDs Signals

The TMCM-1617 has no on-boards LEDs due to the way it is mounted. Nevertheless it has dedicated digital outputs to drive LEDs located on the baseboard. The following table summarizes these driver signals and gives baseboard recommendations.

All LED control signals are +3.3V level outputs.

(Connector & pin numbers when looking onto the TMCM-1617 from top / see Sections 4.1 and 4.2.)

Signal Name	Connector (Pin)	Description	Comment
RUN_LED	J318 (3)	MCU status LED	use a green LED
ERR_LED	J318 (5)	MCU error LED	use a red LED
ECAT_LINK_IN_LED	J316 (2)	EtherCAT link IN status and ac- tivity	use a green LED, close to IN port
ECAT_LINK_OUT_LED	J316 (4)	EtherCAT link OUT status and activity	use a green LED, close to OUT port
ECAT_RUN_LED	J316 (14)	EtherCAT state machine RUN LED	use a green LED, do not mix up with MCU RUN LED, mark ac- cordingly
ECAT_ERR_LED	J316 (16)	EtherCAT state machine ERR LED	use a red LED, do not mix up with MCU ERR LED, mark ac- cordingly

Table 18: TMCM-1617 digital LED output signals

5 Communication

The following sections give some guidelines and best practices when setting up the different communication bus systems supported by TMCM-1617.

5.1 RS485

For remote control and communication with a host system the TMCM-1617 provides a digital interface to RS485 bus transceivers on a baseboard. For proper operation the following items should be taken into account when setting up an RS485 network:

1. BUS STRUCTURE:

The network topology should follow a bus structure as closely as possible. That is, the connection between each node and the bus itself should be as short as possible. Basically, it should be short compared to the length of the bus.

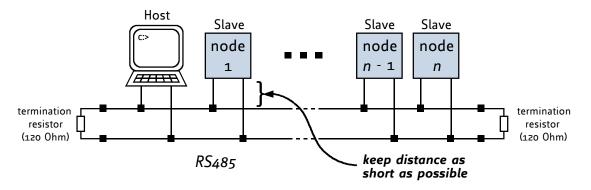


Figure 9: RS485 bus structure with termination resistors

2. BUS TERMINATION:

Especially for longer buses and/or multiple nodes connected to the bus and/or high communication speeds, the bus should be properly terminated at both ends. The TMCM-1617 does not integrate any termination resistor. Therefore, 120 Ohm termination resistors at both ends of the bus have to be added externally.

3. NUMBER OF NODES:

The RS485 electrical interface standard (EIA-485) allows up to 32 nodes to be connected to a single bus. The bus transceiver used on the baseboard of TMCM-1617 (SN65HVD1781D) offers a significantly reduced bus load compared to the standard and allows a maximum of 255 units to be connected to a single RS485 bus using standard TMCL firmware. *Please note: usually it cannot be expected to get reliable communication with the maximum number of nodes connected to one bus and maximum supported communication speed at the same time. Instead, a compromise has to be found between bus cable length, communication speed and number of nodes.*

4. COMMUNICATION SPEED:

The maximum RS485 communication speed supported by the TMCM-1617 hardware is 1Mbit/s. Factory default is 9600 bit/s. Please see separate TMCM-1617 TMCL firmware manual for information regarding other possible communication speeds below the upper hardware limit.

5. NO FLOATING BUS LINES:

Avoid floating bus lines while neither the host/master nor one of the slaves along the bus line is transmitting data (all bus nodes switched to receive mode). Floating bus lines may lead to communication errors. In order to ensure valid signals on the bus it is recommended to use a resistor network connecting both bus lines to well defined logic levels.

There are actually two options which can be recommended: Add resistor (bias) network on one side of the bus, only (120R termination resistor still at both ends):

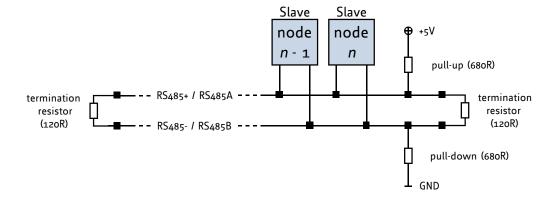


Figure 10: RS485 bus lines with resistor (bias) network on one side, only

Or add resistor network at both ends of the bus (like Profibus[™] termination):

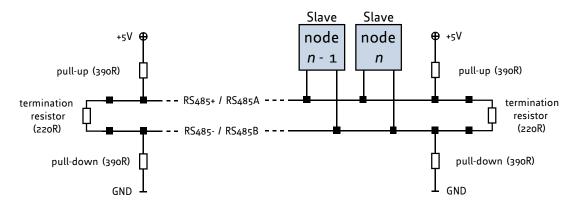


Figure 11: RS485 bus lines with Profibus™recommended line termination

5.2 CAN

For remote control and communication with a host system the TMCM-1617 provides a CAN bus interface. TMCM-1617-CANOPEN and TMCM-1617-TMCL have the CAN transceiver integrated. TMCM-1617-COE only provides the digital CAN interface and requires an external CAN transceiver on a baseboard if this interface is required as well.

For proper operation the following items should be taken into account when setting up a CAN network:

1. BUS STRUCTURE:

The network topology should follow a bus structure as closely as possible. That is, the connection between each node and the bus itself should be as short as possible. Basically, it should be short compared to the length of the bus.

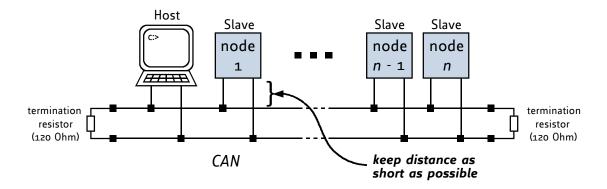


Figure 12: CAN bus structure with termination resistors

2. BUS TERMINATION:

Especially for longer buses and/or multiple nodes connected to the bus and/or high communication speeds, the bus should be properly terminated at both ends. The TMCM-1617 does not integrate any termination resistor. Therefore, 120 Ohm termination resistors at both ends of the bus have to be added externally.

3. BUS TERMINATION:

The bus transceiver used on the TMCM-1617-TMCL/-CANOPEN units or on the base board (TJA1051TK/3) supports at least 110 nodes under optimum conditions. Practically achievable number of nodes per CAN bus highly depend on bus length (longer bus -> less nodes) and communication speed (higher speed -> less nodes).

5.3 EtherCAT

For remote control and communication with an EtherCAT master system the TMCM-1617COE provides an EtherCAT bus interface. The required Ethernet PHYs and the EtherCAT Slave Controller are integrated on the TMCM-1617 -COE. Only the transformer circuit, line protection, and physical connector's need to be integrated on the baseboard.

For more information on EtherCAT and how it works please check our website: https://www.trinamic.com/technology/architecture/interfaces/ethercat/

24/30

6 Operational Ratings and Characteristics

6.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Abs. Max	Unit
Motor Supply voltage	+VM	+8	+28	V
Digital Supply voltage	+VS	+8	+28	V
Motor phase current RMS (phase peak)	$I_{phase,MAX}$		18.0 (25.0) ¹	А
Working temperature	T_A	-30	+60	° C
Max current at +5V_OUT	IOUT _{+5V,MAX}		100	mA
Max current at +3.3V_OUT	IOUT _{+3.3V,MAX}		50	mA

NOTICE

Stresses above those listed under "'Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

6.2 Digital I/O Ratings (Ambient Temperature 25°C)

The digital I/O ratings refer to the following pin groups/functions: Incremental encoder inputs (ENCx), HALL sensor inputs (HALLx), General purpose inputs (GPIx), Drive fault indicator output (DRV_FAULT), Reference switch inputs (REFx), all LED control outputs (xLED), RS485 digital interface (RS485x), Brake control output (BRAKE), Reset input (nRESET).

Information on the CAN interface signals is given in the next subsection.

Parameter	Symbol	Min	Тур	Max	Unit
I/O Voltage	VCCIO		3.3		V
Input voltage for digital inputs and reference switch inputs	V _{IN}	0	+3.3	+3.6	V
Low level voltage for digital inputs and reference switch inputs	V_L	0		+0.8	V
High level voltage for digital inputs and reference switch inputs	V_H	+2			V
Voltage range for the analog inputs	V _{AIN}	0		+3.3	V

Table 20: Digital I/O ratings

¹ This is the maximum current rating. This is not for continuous operation but depends on duty cycle, ambient temperature, and cooling.

6.3 CAN Communication Interface (Ambient Temperature 25°C)

Both hardware versions of TMCM-1617 (CAN/TMCL and EtherCAT) support a CAN interface.

While the TMCM-1617-TMCL/CAN includes an on-board CAN transceiver, the TMCM-1617-COE does not include the CAN transceiver. The TMCM-1617-COE requires an additional external CAN transceiver on the base board (only if CAN should be used as well with that model). Thus, the interface specification is different.

For the CAN interface pins on the TMCM-1617-COE follow the I/O ratings as defined in Section 6.2. For the CAN interface pins on the TMCM-1617-CAN/TMCL follow the I/O ratings given in the table below:

Parameter	Symbol	Min	Тур	Max	Unit
Voltage on pin CANH	VCANH			+24	V
Voltage on pin CANL	V _{CANL}			+24	V

Table 21: TMCM-1617-CAN/TMCL CAN interface I/O ratings

6.4 Analog Inputs Interface (Ambient Temperature 25°C)

These ratings are valid for the analog inputs pins AIN0, AIN1, and AIN2.

Parameter	Symbol	Min	Тур	Max	Unit
Voltage on pins AINx	V _{AIN}	0		+3.3	V

Table 22: Analog input ratings

6.5 Other Requirements

Specifications Description or Value	
Cooling Free air or heat sink mounted depending on use case and required power	
Working environment	Avoid dust, water, oil mist and corrosive gases, no condensation, no frosting
Working temperature	-30° C to +60° C (standard version)

Table 23: Other Requirements and Characteristics

7 Figures Index

6
6
7
8
8
10
•

7	TMCM-1617 connectors and signals for TMCL/CANopen version (potted	
-	and open module)	11
8	TMCM-1617 connectors and signals for CoE version (potted and open	
	module)	16
9	RS485 bus structure with termination	
	resistors	21
10	RS485 bus lines with resistor (bias)	
	network on one side, only	22
11	RS485 bus lines with Profibus™recomm	ended
	line termination	22
12	CAN bus structure with termination	
	resistors	23

8 Tables Index

1	TMCM-1617 Order Codes	5
2	TMCM-1617 mating connectors for	
	plugging onto a baseboard	7
3	Motor & supply connectors J301J305	11
4	Low voltage & I/O connector J315	12
5	Low voltage & I/O connector J315	12
6	Low voltage & I/O connector J317	13
7	Low voltage & I/O connector J318	13
8	Low voltage & I/O connector J319	14
9	Low voltage & I/O connector J320	14
10	TMCM-1617 digital LED output signals	15
11	Motor & supply connectors J301J305	16
12	Low voltage & I/O connector J315	17
13	Low voltage & I/O connector J315	17

14	Low voltage & I/O connector J317	18
15	Low voltage & I/O connector J318	18
16	Low voltage & I/O connector J319	19
17	Low voltage & I/O connector J320	19
18	TMCM-1617 digital LED output signals	20
20	Digital I/O ratings	24
21	TMCM-1617-CAN/TMCL CAN inter-	
	face I/O ratings	25
22	Analog input ratings	25
23	Other Requirements and Characteris-	
	tics	25
24	Hardware Revision	30
25	Document Revision	30

28 / 30

9 Supplemental Directives

9.1 **Producer Information**

9.2 Copyright

TRINAMIC owns the content of this user manual in its entirety, including but not limited to pictures, logos, trademarks, and resources. © Copyright 2021 TRINAMIC. All rights reserved. Electronically published by TRINAMIC, Germany.

Redistributions of source or derived format (for example, Portable Document Format or Hypertext Markup Language) must retain the above copyright notice, and the complete Datasheet User Manual documentation of this product including associated Application Notes; and a reference to other available product-related documentation.

9.3 Trademark Designations and Symbols

Trademark designations and symbols used in this documentation indicate that a product or feature is owned and registered as trademark and/or patent either by TRINAMIC or by other manufacturers, whose products are used or referred to in combination with TRINAMIC's products and TRINAMIC's product documentation.

This Hardware Manual is a non-commercial publication that seeks to provide concise scientific and technical user information to the target user. Thus, trademark designations and symbols are only entered in the Short Spec of this document that introduces the product at a quick glance. The trademark designation /symbol is also entered when the product or feature name occurs for the first time in the document. All trademarks and brand names used are property of their respective owners.

9.4 Target User

The documentation provided here, is for programmers and engineers only, who are equipped with the necessary skills and have been trained to work with this type of product.

The Target User knows how to responsibly make use of this product without causing harm to himself or others, and without causing damage to systems or devices, in which the user incorporates the product.

9.5 Disclaimer: Life Support Systems

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this document is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. Specifications are subject to change without notice.

9.6 Disclaimer: Intended Use

The data specified in this user manual is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose

or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given.

In particular, this also applies to the stated possible applications or areas of applications of the product. TRINAMIC products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (safety-Critical Applications) without TRINAMIC's specific written consent.

TRINAMIC products are not designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by TRINAMIC. TRINAMIC conveys no patent, copyright, mask work right or other trade mark right to this product. TRINAMIC assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

9.7 Collateral Documents & Tools

This product documentation is related and/or associated with additional tool kits, firmware and other items, as provided on the product page at: www.trinamic.com.

10 Revision History

10.1 Hardware Revision

Version	Date	Author	Description
V1.20	2019-10-22	MM/SK	V1.2 ES Samples

Table 24: Hardware Revision

10.2 Document Revision

Version	Date	Author	Description
V1.00	2020-02-27	SK	First version.
V1.01	2021-02-28	SK	Removed analog encoder option.

Table 25: Document Revision

