

EMC1413/14

Multiple Channel, 1°C Accuracy Temperature Sensors with Beta Compensation

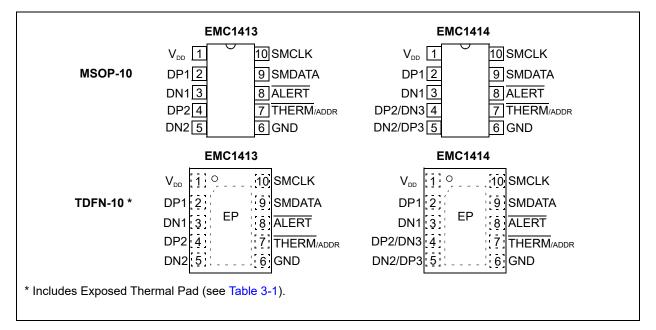
Features

- Programmable SMBus Address
- Support for Diodes Requiring the BJT/Transistor Model, Including Advanced Processor Geometries
- Automatically Determines External Diode Type and Optimal Settings
- Resistance Error Correction
- Up-To 3 External Temperature Monitors
 - ±1°C Max accuracy
 - (+20°C < T_{DIODE} < +110°C)
 - 0.125°C Resolution
 - Supports up-to 2.2 nF diode filter capacitor
 - Anti-Parallel diodes for extra diode support (EMC1414 only)
- Internal Temperature Monitor
 - ±1°C Accuracy
 - 0.125°C Resolution
- 3.3V Supply Voltage
- Programmable Temperature Limits for ALERT
- Available in These RoHS Compliant Packages
 - 10-Pin, 3 mm × 3 mm DFN
 - 10-Pin MSOP

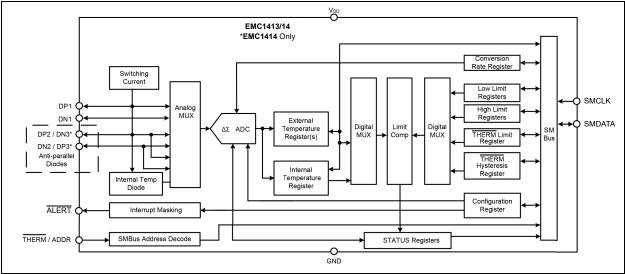
Applications

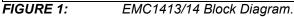
- Notebook Computers
- Desktop Computers
- Industrial
- Embedded applications

General Description


The Microchip EMC1413 and EMC1414 are high accuracy, low-cost, System Management Bus (SMBus) temperature sensors. Advanced features such as Resistance Error Correction (REC), Beta Compensation (to support CPU diodes requiring the BJT/transistor model) and automatic diode type detection combine to provide a robust solution for complex environmental monitoring applications.

The EMC1413 monitors three temperature channels and the EMC1414 monitors four temperature channels. The devices provide $\pm 1^{\circ}$ C accuracy for both external and internal diode temperatures.


REC automatically eliminates the temperature error caused by series resistance, allowing greater flexibility in routing thermal diodes. Beta Compensation eliminates temperature errors caused by low, variable beta transistors common in today's fine geometry processors. The automatic beta detection feature monitors each external diode/transistor and determines the optimum sensor settings for accurate temperature measurements regardless of processor technology. This frees the user from providing unique sensor configurations for each temperature monitoring application. These advanced features and the ±1°C measurement accuracy provide a low-cost, highly flexible and accurate solution for critical temperature monitoring applications.


EMC1413/14

Package Types

Block Diagram

Delta

Functional Delta from EMC1413/14 rev. A to rev. B:

- Updated revision number to 04h.

1.0 ELECTRICAL SPECIFICATIONS

1.1 Absolute Maximum Ratings

Supply Voltage (V _{DD})	-0.3V to 4.0V
Voltage on 5V Tolerant Pins (V _{5VT_pin})	-0.3V to 5.5V
Voltage on 5V Tolerant Pins (V _{5VT_pin} - V _{DD})(See Note 1)	
Voltage on Any Other Pin to Ground	0.3V to V _{DD} + 0.3V
Operating Temperature Range	40°C to +125°C
Storage Temperature Range	55°C to +150°C
Lead Temperature Range	Refer to JEDEC Spec. J-STD-020
Lead Temperature Range Package Thermal Characteristics for MSOP-10	Refer to JEDEC Spec. J-STD-020
Package Thermal Characteristics for MSOP-10	
Package Thermal Characteristics for MSOP-10 Thermal Resistance (θ_{JA})	132.2°C/W
Package Thermal Characteristics for MSOP-10 Thermal Resistance (θ _{JA}) Package Thermal Characteristics for DFN-10	

Note 1: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM, and ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

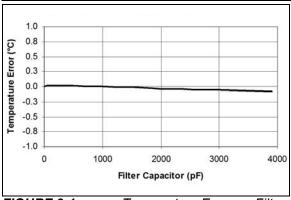
1.2 Electrical Specifications

TABLE 1-1: ELECTRICAL SPECIFICATIONS

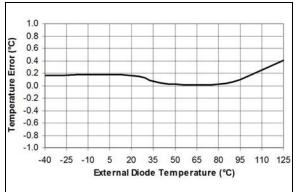
Electrical Specifications: Unless otherwise specified, all parameters apply for V_{DD} = 3.0V to 3.6V, T_A = -40°C to +125°C, all typical values at T_A = 27°C.

+125°C, all typical values	$a \Gamma_A - 27$	U.	1		1	1
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
DC Power						
Supply Voltage	V _{DD}	3.0	3.3	3.6	V	
Supply Current	I _{DD}	_	430	850	μA	One conversion per second, dynamic averaging disabled
		—	930	1200	μA	Four conversions per second, dynamic averaging enabled
		—	1120		μA	≥ 16 Conversions per second, dynamic averaging enabled
Standby Supply Current	I _{DD}	_	170	230	μA	Device in Standb <u>y mode</u> , no SMBus communications, ALERT and THERM pins not asserted
Internal Temperature Mo	nitor					
Temperature Accuracy	_		±0.25	±1	°C	-5°C < T _A < 100°C
				±2	°C	-40°C < T _A < 125°C
Temperature Resolution	—	_	0.125	_	°C	
External Temperature Me	onitor					
Temperature Accuracy	_	_	±0.25	±1	°C	+20°C < T _{DIODE} < +110°C
			±0.5	±2	°C	-40°C < T _{DIODE} < +127°C
Temperature Resolution	—	_	0.125	_	°C	
Conversion Time (All Channels)	t _{CONV}	_	150	_	ms	Default settings
Capacitive Filter	C _{FILTER}		2.2	2.7	nF	Connected across external diode
ALERT and THERM Pins					•	
Output Low Voltage	V _{OL}	0.4			V	I _{SINK} = 8 mA
Leakage Current	I _{LEAK}	_	_	±5	μΑ	ALERT and THERM pinsDevice powered or unpowered $T_A < 85^{\circ}C$ Pull-Up voltage $\leq 3.6V$

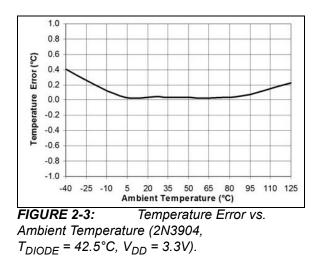
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
SMBus Interface						
Input High Voltage	V _{IH}	2.0	—	V _{DD}	V	5V Tolerant
Input Low Voltage	V _{IL}	-0.3	—	0.8	V	5V Tolerant
Leakage Current	I _{LEAK}	_	—	±5	μA	Powered or unpowered T _A < 85°C
Hysteresis	—	_	420	—	mV	
Input Capacitance	C _{IN}	_	5	—	pF	
Output Low Sink Current	I _{OL}	8.2	_	15	mA	SMDATA = 0.4V
SMBus Timing						
Clock Frequency	f _{SMB}	10	_	400	kHz	
Spike Suppression	t _{SP}	_	—	50	ns	
Bus Free Time Stop to Start	t _{BUF}	1.3	—	_	μs	
Hold Time: Start	t _{HD:STA}	0.6	—	—	μs	
Setup Time: Start	t _{SU:STA}	0.6	_	_	μs	
Setup Time: Stop	t _{SU:STO}	0.6	_	—	μs	
Data Hold Time	t _{HD:DAT}	0	—	—	μs	When transmitting to the host
		0.3	—	—	μs	When receiving from the host
Data Setup Time	t _{SU:DAT}	100	—	—	ns	
Clock Low Period	t _{LOW}	1.3	_	—	μs	
Clock High Period	t _{HIGH}	0.6	_	—	μs	
Clock/Data Fall Time	t _{FALL}	_		300	ns	Min. = 20 + 0.1C _{LOAD} ns
Clock/Data Rise Time	t _{RISE}	_		300	ns	Min. = 20 + 0.1C _{LOAD} ns
Capacitive Load	C _{LOAD}	—		400	pF	Per bus line


TABLE 1-2: SMBUS ELECTRICAL SPECIFICATIONS

EMC1413/14


NOTES:

2.0 TYPICAL OPERATING CURVES


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

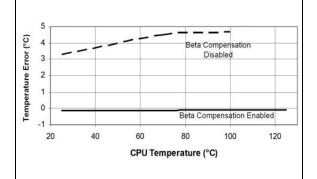


FIGURE 2-1: Temperature Error vs. Filter Capacitor (2N3904, $T_A = 27^{\circ}C$, $V_{DD} = 3.3V$).

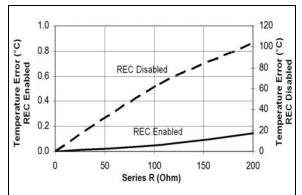
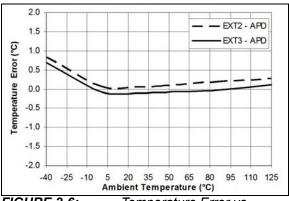
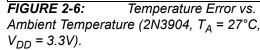


FIGURE 2-2: Temperature Error vs. External Diode Temperature (2N3904, $T_A = 42.5^{\circ}$ C, $V_{DD} = 3.3V$).





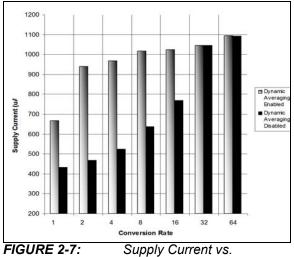

FIGURE 2-4: Temperature Error vs. CPU Temperature; Typical 65 nm CPU from Major Vendor ($T_A = 27^{\circ}$ C, $V_{DD} = 3.3$ V, BETA = 011, $C_{FILTER} = 470 \text{ pF}$).

FIGURE 2-5: Temperature Error vs. Series Resistance.

Conversion Rate.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are shown in Table 3-1.

Pin Number	Pin Name	Pin Type	Description
1	V _{DD}	Power	Power Supply
2	DP1	AIO	External diode 1 positive (anode) connection
3	DN1	AIO	External diode 1 negative (cathode) connection
4	DP2/DN3	AIO	External diode 2 positive (anode) connection/External Diode 3 negative (cath- ode) connection for anti-parallel diodes (EMC1414 only)
5	DN2/DP3	AIO	External diode 2 negative (cathode) connection/External Diode 3 positive (anode) connection for anti-parallel diodes (EMC1414 only)
6	GND	Power	Ground pin
7	THERM/ADDR	OD (5V)	THERM - Critical THERM output signal. Requires pull-up resistor.
			ADDR - Selects SMBus address based on pull-up resistor.
8	ALERT	OD (5V)	Active low digital ALERT output signal. Requires pull-up resistor.
9	SMDATA	DIOD (5V)	SMBus Data input/output. Requires pull-up resistor.
10	SMCLK	DI (5V)	SMBus Clock input. Requires pull-up resistor.
11	EP	_	Exposed Thermal Pad. Not internally connected. Grounding is recommended.

TABLE 3-1: PIN FUNCTION TABLE (Note 1)

Note 1: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, THERM and ALERT), the voltage difference between V_{DD} and the pull-up voltage must never exceed 3.6V.

3.1 Power Pins (V_{DD} and GND)

These pins are used to supply power to or ground the device.

3.2 Analog Input/Output (AIO) Pins (DP1, DN1, DP2/DN3 and DN2/DP3)

These pins are used as inputs/outputs for analog signals.

3.3 Digital Input (DI) Pin (SMCLK)

This pin is used as a digital input. This pin is 5V tolerant (see Note 1).

3.4 Digital Input/Open-Drain Output (DIOD) Pin (SMDATA)

This pin is used as a digital input/output. When used as an output, it is open-drain and requires a pull-up resistor. This pin is 5V tolerant (see Note 1).

3.5 Open-<u>Drain D</u>igital O<u>utput (O</u>D) Pins (THERM/ADDR, ALERT)

These pins are used as digital outputs. They are opendrain pins and require a pull-up resistor. These pins are 5V tolerant (see Note 1).

EMC1413/14

NOTES:

4.0 SYSTEM MANAGEMENT BUS (SMBUS) INTERFACE PROTOCOL

4.1 Communications Protocol

The EMC1413/14 communicates with a host controller, such as a Microchip SIO, through the SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its peripheral devices. A detailed timing diagram is shown in Figure 4-1.

Note: For the first 15 ms after power-up, the device may not respond to SMBus communications.

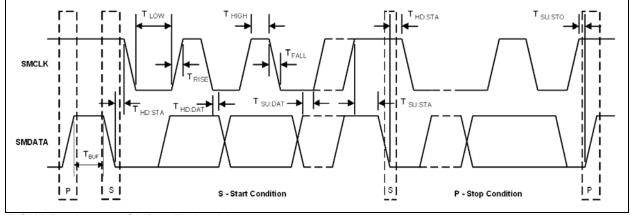


FIGURE 4-1: SMBus Timing Diagram.

4.1.1 SMBUS START BIT

The SMBus Start bit is defined as a transition of the SMBus Data line from a logic '1' state to a logic '0' state while the SMBus Clock line is in a logic '1' state.

4.1.2 SMBUS ADDRESS AND RD/WR BIT

The SMBus Address byte consists of the 7-bit client address followed by the RD/WR indicator bit. If the RD/WR bit is a logic '0', the SMBus Host is writing data to the client device. If the RD/WR bit is a logic '1', the SMBus Host is reading data from the client device.

The EMC1413-A and EMC1414-A SMBus client address is determined by the pull-up resistor on the THERM pin as shown in Table 4-1.

The address decode is performed by pulling known currents from the V_{DD} pin through the external resistor, causing the pin voltage to drop based on the respective current/resistor relationship. This pin voltage is compared against a threshold that determines the value of the pull-up resistor.

TABLE 4-1: SMBUS ADDRESS DECODE

Pull-Up Resistor on THERM Pin (±5%)	SMBus Address
4.7 kΩ	1111_100(r/w)b
6.8 kΩ	1011_100(r/ w)b
10 kΩ	1001_100(r/ w)b
15 kΩ	1101_100(r/ w)b
22 kΩ	0011_100(r/ w)b
33 kΩ	0111_100(r/w)b

The EMC1413-1 SMBus address is hard-coded to 1001_100(r/w).

The EMC1413-3 SMBus address is hard-coded to 0011_000(r/w).

The EMC1414-1 SMBus address is hard-coded to $1001_100(r/w)$.

The EMC1414-3 SMBus address is hard-coded to 0011_000(r/w).

4.1.3 THERM PIN CONSIDERATIONS

Because of the decode method used to determine the SMBus Address, it is important that the pull-up resistance on the THERM pin be within the tolerances shown in Table 4-1. Additionally, the pull-up resistor on the THERM pin must be connected to the same 3.3V supply that drives the V_{DD} pin.

For 15 ms after power-up, the THERM pin must not be pulled low or the SMBus address will not be decoded properly. If the system requirements do not permit these conditions, the THERM pin must be isolated from its hard-wired OR'd bus during this time.

One method of isolating this pin is shown in Figure 4-2.

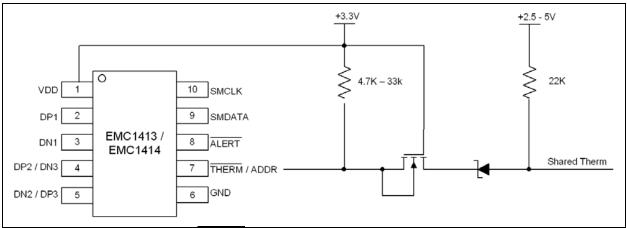


FIGURE 4-2: Isolating the THERM Pin.

4.1.4 SMBUS DATA BYTES

All SMBus Data bytes are sent most significant bit first and are composed of 8 bits of information.

4.1.5 SMBUS ACK AND NACK BITS

The SMBus client will acknowledge (ACK) all data bytes that it receives. This is done by the client device pulling the SMBus data line low after the 8th bit of each byte that is transmitted. This applies to the Write Byte protocol.

The host will not acknowledge (NACK) the last data byte to be received from the client by holding the SMBus data line high after the 8th data bit has been sent.

4.1.6 SMBUS STOP BIT

The SMBus Stop bit is defined as a transition of the SMBus Data line from a logic '0' state to a logic '1' state while the SMBus clock line is in a logic '1' state. When the device detects an SMBus Stop bit and it has been communicating with the SMBus protocol, it will reset its client interface and prepare to receive further communications.

4.1.7 SMBUS TIMEOUT

The EMC1413/14 supports SMBus Timeout. If the clock line is held low for longer than 30 ms, the device will reset its SMBus protocol. This feature can be enabled by setting the TIMEOUT bit in the Consecutive Alert Register (see Section 6.12 "Consecutive ALERT Register").

4.1.8 SMBUS AND I²C COMPATIBILITY

The EMC1413/14 is compatible with both SMBus and I²C. This section will highlight the major differences between SMBus and I²C devices. For more information, refer to the SMBus 2.0 and I²C specifications. For information on using the EMC1413/14 in an I²C system, refer to AN 14.0 Dedicated Slave Devices in I²C Systems.

- The EMC1413/14 supports I²C fast mode at 400 kHz. This covers the SMBus max. time of 100 kHz.
- 2. The minimum frequency for SMBus communications is 10 kHz.
- The SMBus client protocol will reset if the clock is held at a logic '0' for longer than 30 ms. This timeout functionality is disabled by default in the EMC1413/14 and can be enabled by writing to the TIMEOUT bit in the Consecutive Alerg Register. I²C does not have a timeout function.
- I2C devices do not support the Alert Response Address functionality (which is optional for SMBus).

Attempting to communicate with the EMC1413/14 SMBus interface with an invalid client address or invalid protocol will result in no response from the device and will not affect its register contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control the timing.

4.2 SMBus Protocols

The device supports Send Byte, Read Byte, Write Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below.

All of the protocols shown use the convention in Table 4-2.

TABLE 4-2:PROTOCOL FORMAT

Data Sent to Device	Data Sent to Host
# of bits sent	# of bits sent

4.2.1 WRITE BYTE

The Write Byte is used to write one byte of data to the registers, as shown in Table 4-3.

TABLE 4-3: WRITE BYTE PROTOCOL

START	CLIENT ADDRESS	WR	ACK	Register Address	АСК	Register Data	АСК	STOP
$1 \rightarrow 0$	YYYY_YYY	0	0	XXh	0	XXh	0	$0 \rightarrow 1$

4.2.2 READ BYTE

The Read Byte protocol is used to read one byte of data from the registers, as shown in Table 4-4.

TABLE 4-4: READ BYTE PROTOCOL

START	CLIENT ADDRESS	WR	ACK	Register Address	АСК	START	CLIENT ADDRESS	RD	АСК	Register Data	NACK	STOP
$1 \rightarrow 0$	YYYY_YYY	0	0	XXh	0	$1 \rightarrow 0$	YYYY_YYY	1	0	XX	1	$0 \rightarrow 1$

4.2.3 SEND BYTE

The Send Byte protocol is used to set the internal address register pointer to the correct address location. No data is transferred during the Send Byte protocol, as shown in Table 4-5.

TABLE 4-5: SEND BYTE PROTOCOL

START	Client Address	WR	ACK	Register Address	ACK	STOP
$1 \rightarrow 0$	YYYY_YYY	0	0	XXh	0	$0 \rightarrow 1$

4.2.4 RECEIVE BYTE

The Receive Byte protocol is used to read data from a register when the internal register address pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads of the same register, as shown in Table 4-6.

TABLE 4-6: RECEIVE BYTE PROTOCOL

START	Client Address	RD	ACK	Register Data	NACK	STOP
$1 \rightarrow 0$	YYYY_YYY	1	0	XXh	1	$0 \rightarrow 1$

4.2.5 ALERT RESPONSE ADDRESS

The $\overline{\text{ALERT}}$ output can be used as a processor interrupt or as an SMBus Alert.

When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA) to the general address of 0001_100xb. All devices with active interrupts will respond with their client address, as shown in Table 4-7.

TABLE 4-7: ALERT RESPONSE ADDRESS PROTOCOL

START	Alert Response Address	RD	ACK	Device Address	NACK	STOP
$1 \rightarrow 0$	0001_100	1	0	YYYY_YYY	1	$0 \rightarrow 1$

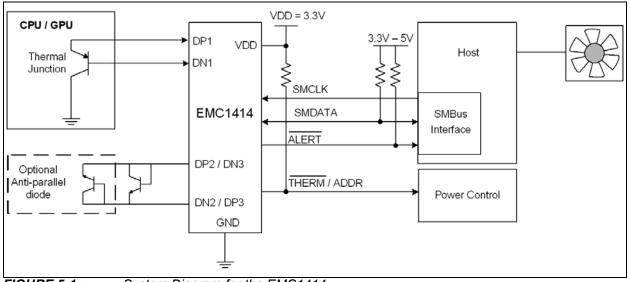
The EMC1413/14 will respond to the ARA as follows:

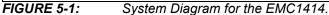
- 1. Send the Client Address and verify that the full client address was sent (i.e. the SMBus communication from the device was not prematurely stopped due to a bus contention event).
- 2. Set the MASK bit to clear the ALERT pin.

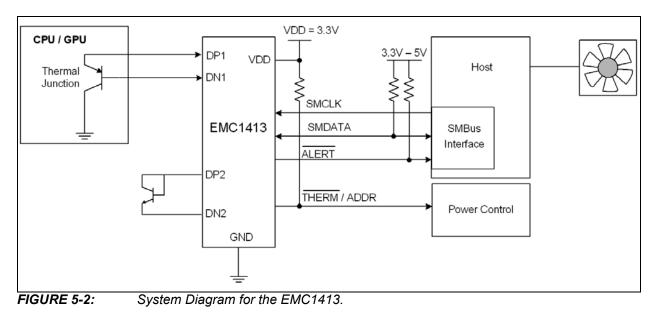
Note:	The ARA does not clear the Status
	Register and if the MASK bit is cleared
	prior to the Status Register being cleared,
	the ALERT pin will be reasserted.

5.0 PRODUCT DESCRIPTION

The EMC1413/14 is an SMBus temperature sensor. The EMC1413 and EMC1414 monitor one internal diode and up to two (EMC1413) or three (EMC1414) externally connected temperature diodes.


Thermal management is performed in cooperation with a host device. This consists of the host reading the temperature data of both the external and internal temperature diodes of the EMC1413/14 and using that data to control the speed of one or more fans.


The EMC1413 and EMC1414 have two levels of monitoring. The first level provides a maskable ALERT signal to the host when the measured temperatures exceed the limits programmed by the user. This allows


the EMC1413 and EMC1414 to be used as an independent thermal watchdog to warn the host of temperature hot spots without direct control by the host. The second level of monitoring provides a non-maskable interrupt on the THERM pin if the measured temperatures meet or exceed a second programmable limit.

For the EMC1414, External Diode channels 2 and 3 are only compatible with general purpose diodes (such as a 2N3904). For the EMC1413, the External Diode 2 channel is compatible with any diode type.

Figure 5-1 shows a system-level block diagram of the EMC1414 and Figure 5-2 shows a system-level block diagram of the EMC1413.

5.1 Modes of Operation

The EMC1413 and EMC1414 have two modes of operation.

- Active (Run) In this mode of operation, the ADC is converting on all temperature channels at the programmed conversion rate. The temperature data is updated at the end of every conversion and the limits are checked. In Active mode, writing to the one-shot register will do nothing.
- Standby (Stop) In this mode of operation, the majority of circuitry is powered down to reduce supply current. The temperature data is not updated and the limits are not checked. In this mode of operation, the SMBus is fully active and the part will return requested data. Writing to the one-shot register will enable the device to update all temperature channels. Once all the channels are updated, the device will return to the Standby mode.

5.1.1 CONVERSION RATES

The EMC1413/14 can be configured for different conversion rates based on the system requirements. The conversion rate is configured as described in **Section 6.5 "Conversion Rate Register**". The default conversion rate is four conversions per second. Other available conversion rates are shown in Register 6-3.

5.1.2 DYNAMIC AVERAGING

Dynamic averaging causes the EMC1413/14 to measure the external diode channels for an extended time based on the selected conversion rate. This functionality can be disabled for increased power savings at the lower conversion rates (see Section 6.4 "Configuration Register"). When dynamic averaging is enabled, the device will automatically adjust the sampling and measurement time for the external diode channels. This allows the device to average 2x or 16x longer than the normal 11-bit operation (nominally 21 ms per channel), while still maintaining the selected conversion rate. The benefits of dynamic averaging are improved noise rejection due to the longer integration time as well as less random variation of the temperature measurement.

When enabled, the dynamic averaging applies when a one-shot command is issued. The device will perform the desired averaging during the one-shot operation according to the selected conversion rate.

When enabled, the dynamic averaging will affect the average supply current based on the chosen conversion rate as shown in Table 5-1.

Conversion Rate	Average Supp	oly Current		Averaging Factor (based on 11-bit operation)		
	Enabled (default)	Disabled	Enabled (default)	Disabled		
1/16 seconds	660 µA	430 µA	16x	1x		
1/8 sec	660 µA	430 µA	16x	1x		
1/4 sec	660 µA	430 µA	16x	1x		
1/2 sec	660 µA	430 µA	16x	1x		
1/sec	660 µA	430 µA	8x	1x		
2/sec	930 µA	475 µA	4x	1x		
4/sec (default)	950 µA	510 µA	2x	1x		
8/sec	1010 µA	630 µA	1x	1x		
16/sec	1020 µA	775 µA	0.5x	0.5x		
32/sec	1050 µA	1050 µA	0.25x	0.25x		
64/sec	1100 µA	1100 µA	0.125x	0.125x		

TABLE 5-1: SUPPLY CURRENT VS. CONVERSION RATE FOR EMC1413/14

5.2 THERM Output

The THERM output is asserted independently of the ALERT output and cannot be masked. Whenever any of the measured temperatures exceeds the user-programmed Therm Limit values for the programmed number of consecutive measurements, the THERM output is asserted. Once it has been asserted, it will

remain asserted until all measured temperatures drop below the Therm Limit minus the Therm Hysteresis (also programmable).

When the THERM pin is asserted, the THERM status bits will likewise be set. Reading these bits will not clear them until the THERM pin is deasserted. Once the THERM pin is deasserted, the THERM status bits will be automatically cleared.

5.3 ALERT Output

The ALERT pin is an open-drain output. It requires a pull-up resistor to V_{DD} and has two modes of operation: Interrupt mode and Comparator mode. The mode of the ALERT output is selected via the ALERT/COMP bit in the Configuration Register (see Section 6.4 "Configuration Register").

5.3.1 ALERT PIN INTERRUPT MODE

When configured to operate in Interrupt mode, the ALERT pin asserts low when an out-of-limit measurement (≥ high limit or < low limit) is detected on any diode or when a diode fault is detected. The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are cleared.

The ALERT pin can be masked by setting the MASK_ALL bit. Once the ALERT pin has been masked, it will be deasserted and remain deasserted until the MASK_ALL bit is cleared by the user. Any interrupt conditions that occur while the ALERT pin is masked will update the Status Register normally. There are also individual channel masks (see Section 6.11 "Channel Mask Register").

The ALERT pin is used as an interrupt signal or as an SMBus Alert signal that allows an SMBus client to communicate an error condition to the host. One or more ALERT outputs can be hard-wired together.

5.3.2 ALERT PIN COMPARATOR MODE

When the ALERT pin is configured to operate in Comparator mode, it will be asserted if any of the measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until all temperatures drop below the corresponding high limit minus the Therm Hysteresis value.

When the ALERT pin is asserted in Comparator mode, the corresponding high limit status bits will be set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is deasserted, the status bits will be automatically cleared.

The MASK_ALL bit will not block the ALERT pin in this mode; however, the individual channel masks (see **Section 6.11 "Channel Mask Register"**) will prevent the respective channel from asserting the ALERT pin.

5.4 Temperature Measurement

The EMC1413/14 can monitor the temperature of up-to two/three externally-connected diodes. Each external diode channel is configured with Resistance Error Correction and Beta Compensation based on user settings and system requirements.

The device contains programmable High, Low, and Therm limits for all measured temperature channels. If the measured temperature goes below the Low limit or above the High limit, the ALERT pin can be asserted (based on user settings). If the measured temperature meets or exceeds the Therm Limit, the THERM pin is asserted unconditionally, providing two tiers of temperature detection.

5.4.1 BETA COMPENSATION

The EMC1413/14 is configured to monitor the temperature of basic diodes (e.g., 2N3904) or CPU thermal diodes. It automatically detects the type of external diode (CPU diode or diode-connected transistor) and determines the optimal setting to reduce temperature errors introduced by beta variation. Compensating for this error is also known as implementing the transistor or BJT model for temperature measurement.

For discrete transistors configured with the collector and base shorted together, the beta is generally sufficiently high that the percentage change in beta variation is very small. For example, a 10% variation in beta for two forced emitter currents with a transistor with an ideal beta of 50 would contribute approximately 0.25°C error at 100°C. However, for substrate transistors where the base-emitter junction is used for temperature measurement and the collector is tied to the substrate, the proportional beta variation will cause larger error. For example, a 10% variation in beta for two forced emitter currents with a transistor with an ideal beta of 0.5 would contribute approximately 8.25°C error at 100°C.

For the EMC1414, the External Diode 2 and External Diode 3 channels do not support Beta Compensation.

5.4.2 RESISTANCE ERROR CORRECTION (REC)

Parasitic resistance in series with the external diodes will limit the accuracy obtainable from temperature measurement devices. The voltage developed across this resistance by the switching diode currents cause the temperature measurement to read higher than the true temperature. Contributors to series resistance are PCB trace resistance, on-die (i.e. on the processor) metal resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error caused by series resistance is +0.7°C per ohm. The EMC1413/14 automatically corrects for up-to 100 ohms of series resistance.

5.4.3 PROGRAMMABLE EXTERNAL DIODE IDEALITY FACTOR

The EMC1413/14 is designed for external diodes with an ideality factor of 1.008. Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality factor introduces error in the temperature measurement which must be corrected for. This correction is typically done using programmable offset registers. Since an ideality factor mismatch introduces an error that is a function of

EMC1413/14

temperature, this correction is only accurate within a small range of temperatures. To provide maximum flexibility to the user, the EMC1413/14 provides a 6-bit register for each external diode where the ideality factor of the diode used is programmed to eliminate errors across all temperatures.

Note:	When monitoring a substrate transistor or				
	CPU diode and beta compensation is				
	enabled, the Ideality Factor should not be				
	adjusted. Beta Compensation automati-				
	cally corrects for most ideality errors.				

5.5 Diode Faults

The EMC1413/14 detects an open on the DP and DN pins, and a short across the DP and DN pins. For each temperature measurement made, the device checks for a diode fault on the external diode channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see Section 6.6) and the temperature data reads 00h in the MSB and LSB registers (the low limit will not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short from V_{DD} to DP, or a short from V_{DD} to DN.

If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature measurement of 0.000°C (-64°C in extended range) resulting in temperature data of 00h in the MSB and LSB registers.

If a short from DN to GND occurs (with a diode connected), temperature measurements will continue as normal with no alerts.

5.6 Consecutive Alerts

The EMC1413/14 contain multiple consecutive alert counters. One set of counters applies to the ALERT pin and the second set of counters applies to the THERM pin. Each temperature measurement channel has a <u>separate</u> consecutive alert counter for each of the ALERT and THERM pins. All counters are user-programmable and determine the number of consecutive measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the corresponding pin is asserted.

See Section 6.12 "Consecutive ALERT Register" for more information on the consecutive alert function.

5.7 Digital Filter

To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode 1 channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or Disabled (default) (see Section 6.18 "Filter Control Register"). The typical filter performance is shown in Figure 6.3 and Figure 6.4.

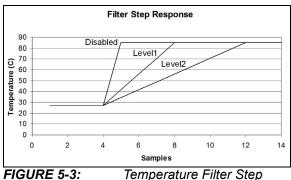
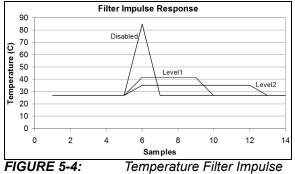



FIGURE 5-3: Temperature Filter Step Response.

Response.

5.8 Temperature Measurement Results and Data

The temperature measurement results are stored in the internal and external temperature registers. These are then compared with the values stored in the high and low limit registers. Both external and internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB positions of the low byte register. All other bits of the low byte register are set to '0'.

The EMC1413/14 has two selectable temperature ranges. The default range is from 0°C to +127°C and the temperature is represented as a binary number able to report a temperature from 0°C to +127.875°C in 0.125°C steps.

The extended range is an extended temperature range from -64°C to +191°C. The data format is a binary number offset by 64°C. The extended range is used to measure temperature diodes with a large known offset (such as AMD processor diodes) where the diode temperature plus the offset would be equivalent to a temperature higher than +127°C.

Table 6.2 shows the default and extended range formats.

TABLE 5-2:TEMPERATURE DATAFORMAT

Temperature (°C)	Default Range (0°C to +127°C)	Extended Range (-64°C to +191°C)
Diode Fault	000 0000 0000	000 0000 0000
-64	000 0000 0000	000 0000 0000
		(Note 2)
-1	000 0000 0000	001 1111 1000
0	000 0000 0000	010 0000 0000
	(Note 1)	
0.125	000 0000 0001	010 0000 0001
1	000 0000 1000	010 0000 1000
64	010 0000 0000	100 0000 0000
65	010 0000 1000	100 0000 1000
127	011 1111 1000	101 1111 1000
127.875	011 1111 1111	101 1111 1111
128	011 1111 1111	110 0000 0000
	(Note 3)	
190	011 1111 1111	111 1111 0000
191	011 1111 1111	111 1111 1000
≥ 191.875	011 1111 1111	111 1111 1111
		(Note 4)

- **Note 1:** For default range, all temperatures < 0°C will be reported as 0°C.
 - **2:** For extended range, all temperatures < -64°C will be reported as -64°C.
 - For default range, all temperatures > +127.875°C will be reported as +127.875°C.
 - For extended range, all temperatures
 +191.875°C will be reported as
 +191.875°C.

5.9 Anti-parallel Diode Connections

The EMC1414 supports reading two external diodes on the same set of pins (DP2, DN2). These diodes are connected as shown in Figure 5-1. Due to the antiparallel connection of these diodes, both diodes will be reverse biased by a V_{BE} voltage (approximately 0.7V). Because of this reverse bias, only discrete thermal diodes (such as a 2N3904) are recommended to be placed on these pins.

5.10 External Diode Connections

The EMC1413/14 can be configured to measure a CPU substrate transistor, a discrete 2N3904 thermal diode, or an AMD processor diode on the External Diode 1 channel only. For the EMC1414 the External Diode 2 and External Diode 3 channels are configured to measure a pair of discrete anti-parallel diodes (shared on pins DP2 and DN2). The supported configurations for the external diode channels are shown in Figure 5-5.

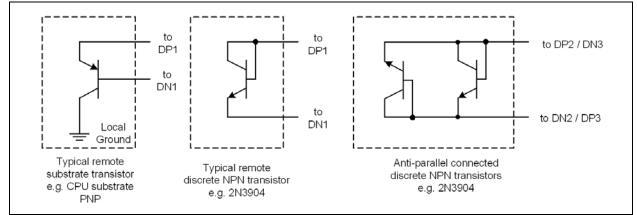


FIGURE 5-5:

Diode Configurations for External Diode Channels.

EMC1413/14

NOTES:

6.0 **REGISTER DESCRIPTION**

The registers shown in Table 6-1 are accessible through the SMBus. An entry of "-" indicates that the bit is not used and will always read '0'.

Register Address	R/W	Register Name	Function	Default Value	Page
		Internal Diode Data High Byte	Stores the integer data for the Internal Diode.	00h	
01h	R	External Diode 1 Data High Byte	Stores the integer data for External Diode 1.	00h	
02h	R	Status	Stores the status bits for the Internal Diode and External Diodes.	00h	
03h	R/W	Configuration	Controls the general operation of the device (mirrored at address 09h).	00h	
04h	R/W	Conversion Rate	Controls the conversion rate for updating temperature data (mirrored at address 0Ah).	06h (4/sec)	
05h	R/W	Internal Diode High Limit	Stores the 8-bit high limit for the Inter- nal Diode (mirrored at address 0Bh).	55h (+85°C)	
06h	R/W	Internal Diode Low Limit	Stores the 8-bit low limit for the Inter- nal Diode (mirrored at address 0Ch).	00h (0°C)	
07h	R/W	External Diode 1 High Limit High Byte	Stores the integer portion of the high limit for External Diode 1 (mirrored at register 0Dh).	55h (+85°C)	
08h	R/W	External Diode 1 Low Limit High Byte	Stores the integer portion of the low limit for External Diode 1 (mirrored at register 0Eh).	00h (0°C)	
09h	R/W	Configuration	Controls the general operation of the device (mirrored at address 03h).	00h	
0Ah	R/W	Conversion Rate	Controls the conversion rate for updating temperature data (mirrored at address 04h).	06h (4/sec)	
0Bh	R/W	Internal Diode High Limit	Stores the 8-bit high limit for the Inter- nal Diode (mirrored at address 05h).	55h (+85°C)	
0Ch	R/W	Internal Diode Low Limit	Stores the 8-bit low limit for the Inter- nal Diode (mirrored at address 06h).	00h (0°C)	
0Dh	R/W	External Diode 1 High Limit High Byte	Stores the integer portion of the high limit for External Diode 1 (mirrored at register 07h).	55h (+85°C)	
0Eh	R/W	External Diode 1 Low Limit High Byte	Stores the integer portion of the low limit for External Diode 1 (mirrored at register 08h).	00h (0°C)	
0Fh	W	One-Shot	A write to this register initiates a one-shot update.	00h	
10h	R	External Diode 1 Data Low Byte	Stores the fractional data for External Diode 1.	00h	
11h	R/W	Scratchpad	Scratchpad register for software compatibility.	00h	
12h	R/W	Scratchpad	Scratchpad register for software compatibility.	00h	

TABLE 6-1: REGISTER SET IN HEXADECIMAL ORDER

Register Address	R/W	Register Name	Function	Default Value	Page
13h	R/W	External Diode 1 High Limit Low Byte	Stores the fractional portion of the high limit for External Diode 1.	00h	
14h	R/W	External Diode 1 Low Limit Low Byte	Stores the fractional portion of the low limit for External Diode 1.	00h	
15h	R/W	External Diode 2 High Limit High Byte	Stores the integer portion of the high limit for External Diode 2.	55h (+85°C)	
16h	R/W	External Dlode 2 Low Limit High Byte	Stores the integer portion of the low limit for External Diode 2.	00h (0°C)	
17h	R/W	External Diode 2 High Limit Low Byte	Stores the fractional portion of the high limit External Diode 2.	00h	
18h	R/W	External Diode 2 Low Limit Low Byte	Stores the fractional portion of the low limit for External Diode 2.	00h	
19h	R/W	External Diode 1 Therm Limit	Stores the 8-bit critical temperature limit for External Diode 1.	55h (+85°C)	
1Ah	R/W	External Diode 2 Therm Limit	Stores the 8-bit critical temperature limit for External Diode 2.	55h (+85°C)	
1Bh	R-C	External Diode Fault	Stores status bits indicating which external diode detected a diode fault.	00h	
1Fh	R/W	Channel Mask Register	Controls the masking of individual channels.	00h	
20h	R/W	Internal Diode Therm Limit	Stores the 8-bit critical temperature limit for the Internal Diode.	55h (+85°C)	
21h	R/W	Therm Hysteresis	Stores the 8-bit hysteresis value that applies to all Therm limits.	0Ah (10°C)	
22h	R/W	Consecutive ALERT	Controls the number of out-of-limit conditions that must occur before an interrupt is asserted.	70h	
23h	R	External Diode 2 Data High Byte	Stores the integer data for External Diode 2.	00h	
24h	R	External Diode 2 Data Low Byte	Stores the fractional data for External Diode 2.	00h	
25h	R/W	External Diode Beta Configuration	Stores the Beta Compensation circuitry settings for External Diode 1.	08h	
26h	R/W	External Diode 2 Beta Configuration	Stores the Beta Compensation circuitry settings for External Diode 2.	08h for EMC1413, 07h for EMC1414	
27h	R/W	External Diode 1 Ideality Factor	Stores the ideality factor for External Diode 1.	12h (1.008)	
28h	R/W	External Diode 2 Ideality Factor	Stores the ideality factor for External Diode 2.	12h (1.008)	
29h	R	Internal Diode Data Low Byte	Stores the fractional data for the Internal Diode.	00h	
2Ah	R	External Diode 3 High Byte	Stores the integer data for External Diode 3.	00h	
2Bh	R	External Diode 3 Low Byte	Stores the fractional data for External Diode 3.	00h	

TABLE 6-1: REGISTER SET IN HEXADECIMAL ORDER (CONTINUED)

Register Address	R/W	Register Name	Function	Default Value	Page
2Ch	R/W	External Diode 3 High Limit High Byte	Stores the integer portion of the high limit for External Diode 3.	55h (+85°C)	
2Dh	R/W	External Diode 3 Low Limit High Byte	Stores the integer portion of the low limit for External Diode 3.	00h (0°C)	
2Eh	R/W	External Diode 3 High Limit Low Byte	Stores the fractional portion of the high limit for External Diode 3.	00h	
2Fh	R/W	External Diode 3 Low Limit Low Byte	Stores the fractional portion of the low limit for External Diode 3.	00h	
30h	R/W	External Diode 3 Therm Limit	Stores the 8-bit critical temperature limit for External Diode 3.	55h (+85°C)	
31h	R/W	External Diode 3 Ideality Factor	Stores the ideality factor for External Diode 3.	12h (1.008)	
35h	R-C	High Limit Status	Status bits for the High Limits.	00h	
36h	R-C	Low Limit Status	Status bits for the Low Limits.	00h	
37h	R	Therm Limit Status	Status bits for the Therm Limits.	00h	
40h	R/W	Filter Control	Controls the digital filter setting for the External Diode 1 channel.	00h	
FDh	R	Product ID (EMC1413)	Stores a fixed value that identifies the device.	21h	
FDh	R	Product ID (EMC1414)	Stores a fixed value that identifies the device.	25h	
FEh	R	Manufacturer ID	Stores a fixed value that represents Microchip.	5Dh	
FFh	R	Revision	Stores a fixed value that represents the revision number.	04h	

TABLE 6-1:	REGISTER SET IN HEXADECIMAL ORDER (CO	NTINUED)

6.1 Data Read Interlock

When any temperature channel high byte register is read, the corresponding low byte is copied into an internal "shadow" register. The user is free to read the low byte at any time and be guaranteed that it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading from the same high byte register again will automatically refresh this stored low byte data.

6.2 Temperature Data Registers

As shown in Table 6-2, all temperatures are stored as an 11-bit value with the high byte representing the integer value and the low byte representing the fractional value left justified to occupy the MSBits.

ADDR	R/W	Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
00h	R	Internal Diode High Byte	128	64	32	16	8	4	2	1	00h
29h	R	Internal Diode Low Byte	0.5	0.25	0.125	_	_		—	_	00h
01h	R	External Diode 1 High Byte	128	64	32	16	8	4	2	1	00h
10h	R	External Diode 1 Low Byte	0.5	0.25	0.125	_	_	_	—	_	00h
23h	R	External Diode 2 High Byte	128	64	32	16	8	4	2	1	00h
24h	R	External Diode 2 Low Byte	0.5	0.25	0.125		_	_	—	_	00h

TABLE 6-2: TEMPERATURE DATA REGISTERS

6.3 Status Register

The Status Register reports general error conditions. To identify specific channels, refer to:

- Section 6.10 "External Diode Fault Register"
- Section 6.15 "High Limit Status Register"
- Section 6.16 "Low Limit Status Register"
- Section 6.17 "Therm Limit Status Register".

REGISTER 6-1: STATUS REGISTER (ADDRESS 02H)

U-0 U-0 R-0 U-0 R-0 R-0 R-0 R-0 BUSY HIGH THERM LOW FAULT ____ ____ _ bit 7 bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	BUSY: This bit indicates that the ADC is currently converting. This bit does not cause either the ALERT or THERM pins to be asserted.
bit 6-5	Unimplemented bits always read as '0'.
bit 4	HIGH: This bit is set when any of the temperature channels exceeds its programmed high limit. See the High Limit Status Register for specific channel information (Section 6.15 "High Limit Status Register "). When set, this bit will assert the ALERT pin.
bit 3	LOW: This bit is set when any of the temperature channels drops below its programmed low limit. See the Low Limit Status Register for specific channel information (Section 6.16 "Low Limit Status Register "). When set, this bit will assert the ALERT pin.
bit 2	FAULT: This bit is asserted when a diode fault is detected on any of the external diode channels. See the External Diode Fault Register for specific channel information (Section 6.10 "External Diode Fault Register "). When set, this bit will assert the ALERT pin.
bit 1	THERM: This bit is set when the any of the temperature channels exceeds its programmed Therm Limit. See the Therm Limit Status Register for specific channel information (Section 6.17 "Therm Limit Status Register ").
bit 0	Unimplemented bits always read as '0'.

The individual Status Register bits are cleared when the appropriate High Limit, Low Limit, or Therm Limit register has been read or cleared.

6.4 Configuration Register

The Configuration Register controls the basic operation of the device. This register is fully accessible at addresses 03h and 09h.

REGISTER 6-2: CONFIGURATION REGISTER (ADDRESSES 03H AND 09H)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
MASK_ALL	RUN/STOP	ALERT/COMP	RECD1	RECD2	RANGE	DAVG_DIS	APDD
bit 7							bit 0

Legend:			
R = Readable	e bit W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at	POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	 MASK_ALL: Masks the ALERT fro 1 = The ALERT pin is not masked. asserted. 0 = The ALERT pin is masked. It w in comparator mode. The State 	. If any of the appropriate status	pt condition unless it is configured
bit 6	RUN/STOP: Controls Active/Stand 1 = The device is in Standby mode 0 = The device is in Active mode a	e and not converting.	his is the default setting.
bit 5	ALERT/COMP: Controls the opera 1 = The ALERT pin acts in compara Mode". In this mode the MASH 0 = The ALERT pin acts as describ	ator mode as described in <mark>Sectio</mark> K_ALL bit is ignored.	
bit 4	RECD1: Disables the Resistance E 1 = REC is disabled for External D 0 = REC is enabled for External D	liode 1.	
bit 3	RECD2: Disables REC for Externa 1 = REC is disabled for External D 0 = REC is enabled for External D	iode 2 and External Diode 3.	is is the default setting.
bit 2	 RANGE: Configures the measurem 1 = The temperature measuremen (see Table 5-2). 0 = The temperature measuremen the default setting. 	t range is -64°C to +191.875°C a	and the data format is offset binary
bit 1	 DAVG_DIS: Disables the dynamic 1 = The dynamic averaging feature maximum averaging factor of this averaging factor will be readed 0 = The dynamic averaging feature 	re is disabled. All temperature of 1x (equivalent to 11-bit convers duced as shown in Table 5-1 . e is enabled. All temperature cha	channels will be converted with a ion). For higher conversion rates,
bit 0	 APDD: EMC1414 Only. Disables th External Diodes 2 and 3 regardless register will be ignored. 1 = Anti-parallel diode mode is dis DN2 pins. 0 = Anti-parallel diode mode is ena pins. This is the default setting 	of APDD setting. In addition, Ex abled. Only one external diode abled. Two external diodes will b	ternal Diode 2 Beta Configuration will be measured on the DP2 and

6.5 Conversion Rate Register

The Conversion Rate Register controls how often the temperature measurement channels are updated and compared against the limits. This register is fully accessible at either address. Bits 3 to 0 determine the conversion rate.

REGISTER 6-3: CONVERSION RATE REGISTER (ADDRESSES 04H AND 0AH)

U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0
—	—	—	—		CON	V[3:0]	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented bits always read as '0'.

bit 3-0 **CONV[3:0]:** Determines the conversion rate.

0000 = 1/16 conversions per second

- 0001 = 1/8 conversions per second
- 0010 = 1/4 conversions per second
- 0011 = 1/2 conversions per second
- 0100 = one conversion per second
- 0101 = two conversions per second
- 0110 = four conversions per second (default)
- 0111 = eight conversions per second
- 1000 = 16 conversions per second
- 1001 = 32 conversions per second
- 1010 = 64 conversions per second

All other configurations set the device to one conversion per second.

6.6 Limit Registers

The device contains both high and low limits for all temperature channels. If the measured temperature exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted. Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status bit is set and the ALERT pin is asserted. The data format for the limits must match the selected data format for the temperature so that if the extended temperature range is used, the limits must be programmed in the extended data format.

The limit registers with multiple addresses are fully accessible at either address.

When the device is in Standby mode, updating the limit registers will have no effect until the next conversion cycle occurs. This can be initiated via a write to the One-Shot Register or by clearing the RUN/STOP bit in the Configuration Register (see Section 6.4 "Configuration Register").

Addr.	R/W	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
05h	R/W	Internal Diode High Limit	128	64	32	16	8	4	2	1	55h
0Bh											(+85°C)
06h	R/W	Internal Diode Low Limit	128	64	32	16	8	4	2	1	00h
0Ch											(0°C)
07h	R/W	External Diode 1 High Limit	128	64	32	16	8	4	2	1	55h
0Dh		High Byte									(+85°C)

TABLE 6-3: TEMPERATURE LIMIT REGISTERS

IABLE	0-3.	6-3: TEMPERATURE LIMIT REGISTERS (CONTINUED)									
Addr.	R/W	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
13h	R/W	External Diode 1 High Limit Low Byte	0.5	0.25	0.125						00h
08h	R/W	External Diode 1 Low Limit	128	64	32	16	8	4	2	1	00h
0Eh		High Byte									(0°C)
14h	R/W	External Diode 1 Low Limit Low Byte	0.5	0.25	0.125		_			_	00h
15h	R/W	External Diode 2 High Limit High Byte	128	64	32	16	8	4	2	1	55h (+85°C)
16h	R/W	External Diode 2 Low Limit High Byte	128	64	32	16	8	4	2	1	00h (0°C)
17h	R/W	External Diode 2 High Limit Low Byte	0.5	0.25	0.125		—			—	00h
18h	R/W	External Diode 2 Low Limit Low Byte	0.5	0.25	0.125		—			—	00h
2Ch	R/W	External Diode 3 High Limit High Byte	128	64	32	16	8	4	2	1	55h (+85°C)
2Dh	R/W	External Diode 3 Low Limit High Byte	128	64	32	16	8	4	2	1	00h (0°C)
2Eh	R/W	External Diode 3 High Limit Low Byte	0.5	0.25	0.125	_	—	_	_		00h
2Fh	R/W	External Diode 3 Low Limit Low Byte	0.5	0.25	0.125						00h

TABLE 6-3: TEMPERATURE LIMIT REGISTERS (CONTINUED)

6.7 Scratchpad Registers

The Scratchpad Registers are Read/Write registers that are used for place holders to be software compatible with legacy programs. Reading from the registers will return what is written to them.

TABLE 6-4: SCRATCHPAD REGISTERS

Addr.	R/W	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
11h	R/W	Scratchpad	7	6	5	4	3	2	1	0	00h
12h	R/W	Scratchpad	7	6	5	4	3	2	1	0	00h

6.8 One-Shot Register

The One-Shot Register is used to initiate a one-shot command. Writing to the one-shot register when the device is in Standby mode and the BUSY bit in the Status Register is '0' will immediately cause the ADC to update all temperature measurements. Writing to the One-Shot Register while the device is in Active mode will have no effect.

REGISTER 6-4: ONE-SHOT REGISTER (ADDRESS 0FH)

'1' = Bit is set

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			ONE_S	HOT[7:0]			
bit 7							bit 0
Legend:							
R = Readable bit	:	W = Writable bit		U = Unimpler	mented bit, read	as '0'	

bit 7-0 **ONE_SHOT[7:0]:** Writing to this register initiates a single conversion cycle. Data is not stored and always reads 00h.

'0' = Bit is cleared

6.9 Therm Limit Registers

-n = Value at POR

The Therm Limit Registers are used to determine whether a critical thermal event has occurred. If the measured temperature exceeds the Therm Limit, the THERM pin is asserted. The limit setting must match the chosen data format of the temperature reading registers.

Unlike the ALERT pin, the THERM pin cannot be masked. Additionally, the THERM pin will be released once the temperature drops below the corresponding threshold minus the Therm Hysteresis.

x = Bit is unknown

Addr.	R/W	Register Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default
19h	R/W	External Diode 1 Therm Limit	128	64	32	16	8	4	2	1	55h (+85°C)
1Ah	R/W	External Diode 2 Therm Limit	128	64	32	16	8	4	2	1	55h (+85°C)
20h	R/W	Internal Diode Therm Limit	128	64	32	16	8	4	2	1	55h (+85°C)
21h	R/W	Therm Hysteresis	128	64	32	16	8	4	2	1	0Ah (10°C)
30h	R/W	External Diode 3 Therm Limit	128	64	32	16	8	4	2	1	55h (+85°C)

TABLE 6-5: THERM LIMIT REGISTERS

6.10 External Diode Fault Register

The External Diode Fault Register indicates which of the external diodes caused the FAULT bit in the Status Register to be set. This register is cleared when it is read.

REGISTER 6-5: EXTERNAL DIODE FAULT REGISTER (ADDRESS 1BH)

U-0	U-0	U-0	U-0	R-C-0	R-C-0	R-C-0	U-0
—	_	—	—	E3FLT	E2FLT	E1FLT	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
R-C = Read then Clear bit			

bit 7-4	Unimplemented bits always read as '0'.
bit 3	E3FLT: EMC1414 only. This bit is set if the External Diode 3 channel reported a diode fault.
bit 2	E2FLT: This bit is set if the External Diode 2 channel reported a diode fault.
bit 1	E1FLT: This bit is set if the External Diode 1 channel reported a diode fault.
bit 0	Unimplemented bits always read as '0'.

6.11 Channel Mask Register

The Channel Mask Register controls individual channel masking. When a channel is masked, the ALERT pin will not be asserted when the masked channel reads a diode fault or <u>out-of-limit error</u>. The channel mask does not mask the THERM pin.

REGISTER 6-6: CHANNEL MASK REGISTER (ADDRESS 1FH)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	E3MASK	E2MASK	E1MASK	INTMASK
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented bits always read as '0'.

bit 3

E3MASK: EMC1414 only. Masks the ALERT pin from asserting when the External Diode 3 channel is out-of-limit or reports a diode fault.

- 1 = The External Diode 3 channel will not cause the ALERT pin to be asserted if it is out-of-limit or reports a diode fault.
- The External Diode 3 channel will cause the ALERT pin to be asserted if it is out-of-limit or reports a diode fault. This is the default setting.

REGISTER 6-6: CHANNEL MASK REGISTER (ADDRESS 1FH) (CONTINUED)

bit 2	E2MASK: Masks the ALERT pin from asserting when the External Diode 2 channel is out-of-limit or reports a diode fault.
	1 = The External Diode 2 channel will not cause the ALERT pin to be asserted if it is out-of-limit or reports a diode fault.
	0 = The External Diode 2 channel will cause the ALERT pin to be asserted if it is out-of-limit or reports a diode fault. This is the default setting.
bit 1	E1MASK: Masks the ALERT pin from asserting when the External Diode 1 channel is out-of-limit or reports a diode fault.
	1 = The External Diode 1 channel will not cause the ALERT pin to be asserted if it is out-of-limit or reports a diode fault.
	0 = The External Diode 1 channel will cause the ALERT pin to be asserted if it is out-of-limit or reports a diode fault. This is the default setting.
bit 0	INTMASK: Masks the ALERT pin from asserting when the Internal Diode temperature is out-of-limit.
	 1 = The Internal Diode channel will not cause the ALERT pin to be asserted if it is out-of-limit. 0 = The Internal Diode channel will cause the ALERT pin to be asserted if it is out-of-limit. This is the default setting.

6.12 Consecutive ALERT Register

The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must be detected in consecutive measurements before the ALERT pin or the THERM pin are asserted. Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality.

An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in consecutive measurements will increment the consecutive alert counter. The counters will also be reset if no out-of-limit condition or diode fault condition occurs in a consecutive reading.

When the ALERT pin is configured as an interrupt and the consecutive alert counter reaches its programmed value, the following will occur:

- the STATUS bit(s) for that channel and the last error condition(s) (i.e. E1HIGH, or E2LOW and/or E2FAULT) will be set to '1'
- the ALERT pin will be asserted
- the consecutive alert counter will be cleared, and measurements will continue.

When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode fault and low-limit errors and only increment if the measured temperature exceeds the High Limit. Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be asserted, but the counter will not be reset. It will remain set until the temperature drops below the High Limit minus the Therm Hysteresis value.

For example, if the CALRT[2:0] bits are set for four consecutive alerts on an EMC1413/14 device, the high limits are set at $+70^{\circ}$ C, and none of the channels are masked, then the ALERT pin will be asserted after the following four measurements:

- Internal Diode reads +71°C and both external diodes read +69°C. Consecutive alert counter for INT is incremented to 1.
- Both the Internal Diode and External Diode 1 channels read +71°C and External Diode 2 reads +68°C. The consecutive alert counter for INT is incremented to 2 and for EXT1 it is set to 1.
- External Diode 1 reads +71°C and both the Internal Diode and External Diode 2 channels read +69°C. Consecutive alert counters for INT and EXT2 are cleared and EXT1 is incremented to 2.
- 4. The Internal Diode reads +71°C and both external diodes read +71°C. The consecutive alert counter for INT is set to 1, EXT2 is set to 1, and EXT1 is incremented to 3.
- 5. The Internal Diode reads +71°C and both the external diodes read +71°C. The consecutive alert counter for INT is incremented to 2, EXT2 is set to 2, and EXT1 is incremented to 4. The appropriate status bits are set for EXT1 and the ALERT pin is asserted. The EXT1 counter is reset to 0 and all other counters hold the last value until the next temperature measurement.

R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	U-0
TIMEOUT		CTHRM[2:0]			CALRT[2:0]		_
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	1 = The SM device 0 = The SM	Determines wheth IBus Timeout fea will reset the SME IBus Timeout feat resetting its SMBu	ture is enab Bus protocol. ure is disabl	led. If the SMC ed. The SMCLI	LK line is held Kline can be he	low for more th	
bit 6-4	CTHRM[2:0 correspondi to set the re): Determines the ng Therm Limit be spective counters	e numbe <u>r of</u> fore the THE	consecutive me ERM pin is asse	easurements th erted. All temper	ature channels	use this valu
	If the temper measureme Once the TH correspondi 000 = The TH 001 = The TH 111 = The TH	rature drops belove ints above the The HERM pin has been ng temperature do THERM pin will be THERM pin will be THERM pin will be THERM pin will be	w the Therm erm Limit oc en asserted, rops below t e asserted at e asserted at e asserted at	Therm Limit. Limit, the cour- cur, the THER! the consecutiv he Therm Limi- fter one out-of- fter two consec fter three consec	nter is reset. If a d pin is asserte te therm counter minus the The imit measurem utive out-of-lim ecutive out-of-lim	a number of con d low. er will not reset u rm Hysteresis v ent. it measurement mit measuremen	usecutive until the value. s. nts.
bit 3-1	If the temper measureme Once the Tr correspondi 000 = The 1 001 = The 1 011 = The 1 111 = The 2 condition or set the resp 000 = The 7 defau 001 = The 7 011 = The 7 011 = The 7	rature drops belownts above the The HERM pin has been ing temperature du HERM pin will be HERM pin will be HERM pin will be HERM pin will be HERM pin will be dide fault before ective counters. ALERT pin will be LERT pin will be ALERT pin will be	w the Therm erm Limit oc en asserted, rops below t e asserted at e asserted at	Therm Limit. I Limit, the cour- cur, the THERI the consecutiv- he Therm Limi- fter one out-of- fter two consecu- fter three consecutive me pin is asserted fter one out-of- er two consecutive after three consecutive fter three consecutive fter one out-of-	nter is reset. If a in pin is asserte we therm counter imits the The imit measurem utive out-of-lim cutive out-of-lim cutive out-of-lim assurements that I. All temperatu limit measurem ive out-of-limit r secutive out-of-	a number of con d low. er will not reset u rm Hysteresis v ent. it measurement mit measuremen nit measurement at must have an re channels use hent or diode fau measurements o limit measurem	usecutive until the alue. s. nts. out-of-limit this value to ult. This is th or diode fault uents or diod

REGISTER 6-7: CONSECUTIVE ALERT REGISTER (ADDRESS 22H)

6.13 Beta Configuration Registers

These registers are used to set the Beta Compensation factor that is used for the external diode channels. Register 6-8 describes the beta configuration for the External Diode 1 channel. Register 6-9 details the beta configuration for the External Diode 2 channel.

REGISTER 6-8: EXTERNAL DIODE 1 BETA CONFIGURATION REGISTER (ADDRESS 25H)

U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0
—	—	—	—	ENABLE1		BETA1[2:0]	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	Unimplemented bits always read as '0'.
bit 3	 ENABLE1: Enables or disables the Beta Compensation factor auto-detection function. 1 = The Beta Compensation factor auto-detection circuitry is enabled. At the beginning of every conversion, the optimal Beta Compensation factor setting will be determined and applied. The BETA1[2:0] bits will be automatically updated to indicate the current setting. This is the default setting for the EMC1413. This is the default for EMC1414 for External Diode 1 only; it is disabled
	and cannot be enabled for External Diodes 2 and 3. 0 = The Beta Compensation Factor auto-detection circuitry is disabled.
bit 2-0	BETA1[2:0]: These bits always reflect the current beta configuration settings. If auto-detection circuitry is enabled, these bits will be updated automatically and writing to these bits will have no effect. If the auto-detection circuitry is disabled, these bits will determine the beta configuration setting that is used for their respective channels (Note 1).
	 000 = Indicates a minimum beta compensation factor of 0.11. This is the default configuration. 001 = Indicates a minimum beta compensation factor of 0.18 010 = Indicates a minimum beta compensation factor of 0.25 011 = Indicates a minimum beta compensation factor of 0.33 100 = Indicates a minimum beta compensation factor of 0.43 101 = Indicates a minimum beta compensation factor of 1.00 110 = Indicates a minimum beta compensation factor of 2.33 111 = Disabled
Note 1:	Care should be taken when setting the BETA1[2:0] bits when the auto-detection circuitry is disabled. If the Beta Compensation factor is set at a beta value that is higher than the transistor beta, the circuit may intro-

Beta Compensation factor is set at a beta value that is higher than the transistor beta, the circuit may introduce measurement errors. When measuring a discrete thermal diode (such as 2N3904) or a CPU diode that functions like a discrete thermal diode (such as an AMD processor diode), the BETA1[2:0] bits should be set to '111b'.

U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0
_	—	—	_	ENABLE2		BETA2[2:0]	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknowr				own			

bit 7-4	Unimplemented bits always read as '0'.
bit 3	 ENABLE2: Enables or disables the Beta Compensation factor auto-detection function. 1 = The Beta Compensation factor auto-detection circuitry is enabled. At the beginning of every conversion, the optimal Beta Compensation factor setting will be determined and applied. The BETA2[2:0] bits will be automatically updated to indicate the current setting. This is the default setting for the EMC1413. This is the default for EMC1414 for External Diode 1 only; it is disabled and cannot be enabled for External Diodes 2 and 3. 0 = The Beta Compensation Factor auto-detection circuitry is disabled.
bit 2-0	BETA2[2:0]: These bits always reflect the current beta configuration settings. If auto-detection circuitry is enabled, these bits will be updated automatically and writing to these bits will have no effect. If the auto-detection circuitry is disabled, these bits will determine the beta configuration setting that is used for their respective channels (Note 1).
	000 = Indicates a minimum beta compensation factor of 0.11. This is the default configuration for the EMC1413.
	001 = Indicates a minimum beta compensation factor of 0.18
	010 = Indicates a minimum beta compensation factor of 0.25
	011 = Indicates a minimum beta compensation factor of 0.33
	100 = Indicates a minimum beta compensation factor of 0.43
	101 = Indicates a minimum beta compensation factor of 1.00
	110 = Indicates a minimum beta compensation factor of 2.33
	111 = Disabled. This is the default configuration for the EMC1414.
Note 1:	Care should be taken when setting the BETA2[2:0] bits when the auto-detection circuitry is disabled. If the Beta Compensation factor is set at a beta value that is higher than the transistor beta, the circuit may intro- duce measurement errors. When measuring a discrete thermal diode (such as 2N3904) or a CPU diode

that functions like a discrete thermal diode (such as an AMD processor diode), the BETA2[2:0] bits should be set to '111b'.

6.14 External Diode Ideality Factor Registers

These registers store the ideality factors that are applied to the external diodes. Table 6-6 and Table 6-7 defines each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction automatically correct for most diode ideality errors; therefore, it is not recommended that these settings be updated without consulting Microchip.

REGISTER 6-10: EXTERNAL DIODE N IDEALITY FACTOR REGISTERS (ADDRESSES 27H, 28H AND 29H)(Note 1)

U-0	U-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
—				IDEALITYr	n[5:0](<mark>Note 1</mark>)		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented bits always read as '0'.

bit 5-0

IDEALITYn[5:0]: These bits set the ideality factor for the External Diode channels. Table 6-6 shows the ideality factor configuration using the diode model for temperature measurement. Table 6-7 shows the ideality factor configuration under the BJT transistor model.

Note 1: n is 1 to 3, describing the ideality factor configuration for External Diode channels 1 to 3. The External Diode 1 ideality factor register is at address 27h. The External Diode 2 ideality factor register is at address 28h.

The External Diode 3 ideality factor register is at address 29h.

TABLE 6-6:IDEALITY FACTOR LOOK-UP TABLE (DIODE MODEL)

Setting	Factor	Setting	Factor	Setting	Factor
08h	0.9949	18h	1.0159	28h	1.0371
09h	0.9962	19h	1.0172	29h	1.0384
0Ah	0.9975	1Ah	1.0185	2Ah	1.0397
0Bh	0.9988	1Bh	1.0200	2Bh	1.0410
0Ch	1.0001	1Ch	1.0212	2Ch	1.0423
0Dh	1.0014	1Dh	1.0226	2Dh	1.0436
0Eh	1.0027	1Eh	1.0239	2Eh	1.0449
0Fh	1.0040	1Fh	1.0253	2Fh	1.0462
10h	1.0053	20h	1.0267	30h	1.0475
11h	1.0066	21h	1.0280	31h	1.0488
12h (default)	1.0080	22h	1.0293	32h	1.0501
13h	1.0093	23h	1.0306	33h	1.0514
14h	1.0106	24h	1.0319	34h	1.0527
15h	1.0119	25h	1.0332	35h	1.0540
16h	1.0133	26h	1.0345	36h	1.0553
17h	1.0146	27h	1.0358	37h	1.0566

For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly differently than for discrete diode-connected transistors. Refer to Table 6-7 when using a CPU substrate transistor.

Setting	Factor	Setting	Factor	Setting	Factor
08h	0.9869	18h	1.0079	28h	1.0291
09h	0.9882	19h	1.0092	29h	1.0304
0Ah	0.9895	1Ah	1.0105	2Ah	1.0317
0Bh	0.9908	1Bh	1.0120	2Bh	1.0330
0Ch	0.9921	1Ch	1.0132	2Ch	1.0343
0Dh	0.9934	1Dh	1.0146	2Dh	1.0356
0Eh	0.9947	1Eh	1.0159	2Eh	1.0369
0Fh	0.9960	1Fh	1.0173	2Fh	1.0382
10h	0.9973	20h	1.0187	30h	1.0395
11h	0.9986	21h	1.0200	31h	1.0408
12h (default)	1.0000	22h	1.0213	32h	1.0421
13h	1.0013	23h	1.0226	33h	1.0434
14h	1.0026	24h	1.0239	34h	1.0447
15h	1.0039	25h	1.0252	35h	1.0460
16h	1.0053	26h	1.0265	36h	1.0473
17h	1.0066	27h	1.0278	37h	1.0486

TABLE 6-7: SUBSTRATE DIODE IDEALITY FACTOR LOOK-UP TABLE (BJT MODEL)

Note 1: When measuring a 65 nm Intel CPU, the Ideality Setting should be the default 12h. When measuring a 45 nm Intel CPU, the Ideality Setting should be 15h.

6.15 High Limit Status Register

The High Limit Status Register contains the status bits that are set when a temperature channel high limit is exceeded. If any of these bits are set, then the HIGH status bit in the Status Register is set. Reading from the High Limit Status Register will clear all bits. Reading from the register will also clear the HIGH status bit in the Status Register. The ALERT pin will be set if the programmed number of consecutive alert counts have been met and any of these status bits are set.

The status bits will remain set until read unless the $\overline{\text{ALERT}}$ pin is configured as a comparator output (see Section 5.3.2 "ALERT Pin Comparator Mode").

REGISTER 6-11: HIGH LIMIT STATUS REGISTER (ADDRESS 35H)

U-0	U-0	U-0	U-0	R-C-0	R-C-0	R-C-0	R-C-0
—	—	—	_	E3HIGH	E2HIGH	E1HIGH	IHIGH
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unkr	nown
R-C = Read then Clear bit				

bit 7-4	Unimplemented bits always read as '0'.
bit 3	E3HIGH: EMC1414 only. This bit is set when the External Diode 3 channel exceeds its programmed high limit.
bit 2	E2HIGH: This bit is set when the External Diode 2 channel exceeds its programmed high limit.

REGISTER 6-11: HIGH LIMIT STATUS REGISTER (ADDRESS 35H) (CONTINUED)

bit 1 **E1HIGH:** This bit is set when the External Diode 1 channel exceeds its programmed high limit.

bit 0 **IHIGH:** This bit is set when the Internal Diode channel exceeds its programmed high limit.

6.16 Low Limit Status Register

The Low Limit Status Register contains the status bits that are set when a temperature channel drops below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set. Reading from the Low Limit Status Register will clear all bits. Reading from the register will also clear the LOW status bit in the Status Register. The ALERT pin will be set if the programmed number of consecutive alert counts have been met and any of these status bits are set.

The status bits will remain set until read unless the ALERT pin is configured as a comparator output (see Section 5.3.2 "ALERT Pin Comparator Mode").

REGISTER 6-12: LOW LIMIT STATUS REGISTER (ADDRESS 36H)

U-0	U-0	U-0	U-0	R-C-0	R-C-0	R-C-0	R-C-0
—	—	—	—	E3LOW	E2LOW	E1LOW	ILOW
bit 7							bit 0

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
R-C = Read then Clear bit				

bit 7-4 Unimplemented bits always read as '0'.

- bit 3 **E3LOW:** EMC1414 only. This bit is set when the External Diode 3 channel drops below its programmed low limit.
- bit 2 **E2LOW:** This bit is set when the External Diode 2 channel drops below its programmed low limit.
- bit 1 E1LOW: This bit is set when the External Diode 1 channel drops below its programmed low limit.
- bit 0 **IHIGH:** This bit is set when the Internal Diode channel drops below its programmed low limit.

6.17 Therm Limit Status Register

The Therm Limit Status Register contains the status bits that are set when a temperature channel Therm Limit is exceeded. If any of these bits are set, the THERM status bit in the Status Register is set. Reading from the Therm Limit Status Register will not clear the status bits. Once the temperature drops below the Therm Limit minus the Therm Hysteresis, the corresponding status bits will be automatically cleared. The THERM bit in the Status Register will be cleared when all individual channel THERM bits are cleared.

REGISTER 6-13: THERM LIMIT STATUS REGISTER (ADDRESS 37H)

U-0	U-0	U-0	U-0	R-C-0	R-C-0	R-C-0	R-C-0
—	—	—	—	E3THERM	E2THERM	E1THERM	ITHERM
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
R-C = Read then Clear bit			

bit 7-4 Unimplemented bits always read as '0'.

REGISTER 6-13: THERM LIMIT STATUS REGISTER (ADDRESS 37H) (CONTINUED)

- bit 3 **E3THERM:** EMC1414 only. This bit is set when the External Diode 3 channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin.
- bit 2 **E2THERM:** This bit is set when the External Diode 2 channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin.
- bit 1 E1THERM: This bit is set when the External Diode 1 channel exceeds its programmed Therm Limit.
- bit 0 **IHIGH:** This bit is set when the Internal Diode channel exceeds its programmed Therm Limit. When set, this bit will assert the THERM pin.

6.18 Filter Control Register

The Filter Configuration Register controls the digital filter on the External Diode 1 channel.

REGISTER 6-14: FILTER CONTROL REGISTER (ADDRESS 40H)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	FILTE	R[1:0]
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2 Unimplemented bits always read as '0'.

bit 1-0 **FILTER[1:0]:** Controls the level of digital filtering that is applied to the External Diode 1 temperature measurement. See Figure 5-3 and Figure 5-4 for examples on the filter behavior.

- 00 = Averaging is disabled
- 01 = Level 1 Averaging is enabled
- 10 = Level 1 Averaging is enabled
- 11 = Level 2 Averaging is enabled

6.19 Product ID Register

The Product ID Register holds a unique value that identifies the device.

REGISTER 6-15: PRODUCT ID REGISTER (ADDRESS FDH)

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
			PI	D[7:0]			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimplemen	ted bit, rea	ıd as '0'	
-n = Value at PC	DR	'1' = Bit is set		'0' = Bit is cleared	b	x = Bit is unknowr	า
L							

bit 7-0 PID[7:0]: 00100001 = EMC1413 Product ID 00100101 = EMC1414 Product ID

6.20 Manufacturer ID Register

The Manufacturer ID register contains an 8-bit word that identifies Microchip as the manufacturer of the EMC1413/14.

REGISTER 6-16: MANUFACTURER ID REGISTER (ADDRESS FEH)

R-0	R-1	R-0	R-1	R-1	R-1	R-0	R-1
			MCHF	PID[7:0]			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 MCHPID[7:0]:

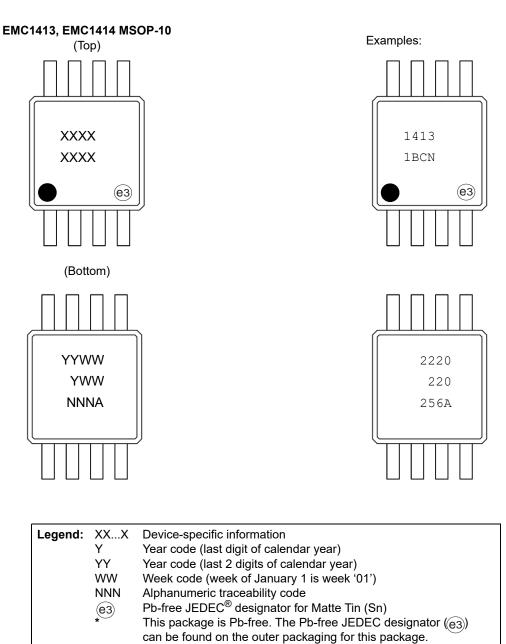
01011101 = Microchip

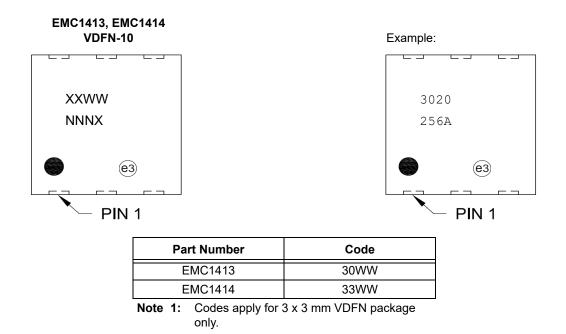
6.21 **Revision Register**

The Revision register contains an 8-bit word that identifies the die revision.

REGISTER 6-17: REVISION REGISTER (ADDRESS FFH)

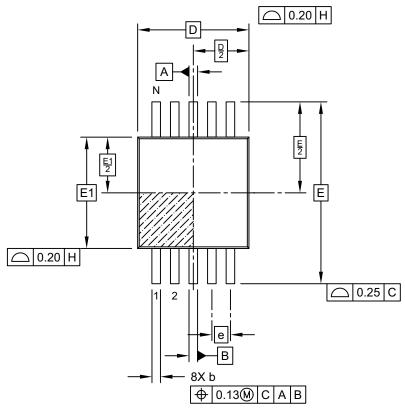
R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0
			REVISI				
bit 7							bit 0

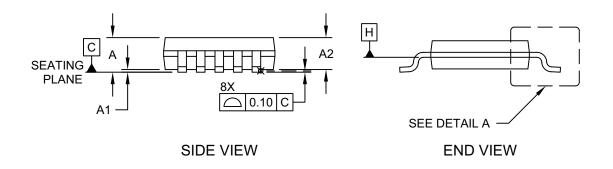

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-0 REVISION[7:0]:

00000100 = **Revision**

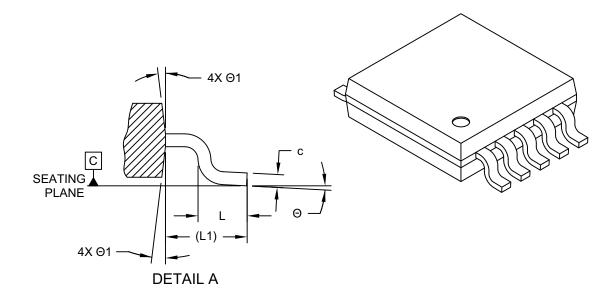
7.0 PACKAGE INFORMATION


7.1 Package Marking Information



10-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


TOP VIEW

Microchip Technology Drawing C04-021-MS Rev F Sheet 1 of 2

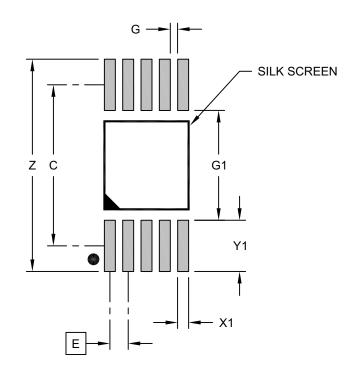
10-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		10		
Pitch	е		0.50 BSC		
Overall Height	Α	-	-	1.10	
Molded Package Thickness	A2	0.75	0.85	0.95	
Standoff	A1	0.00	-	0.15	
Overall Width	E	4.90 BSC			
Molded Package Width	E1	3.00 BSC			
Overall Length	D		3.00 BSC		
Foot Length	L	0.40	0.60	0.80	
Footprint	L1		0.95 REF		
Foot Angle	Θ	0°	-	8°	
Mold Draft Angle	Θ1	5°	-	15°	
Lead Thickness	С	0.08 - 0.23			
Lead Width	b	0.15	-	0.33	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or

- protrusions shall not exceed 0.15mm per side.
- Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-021-MS Rev F Sheet 2 of 2

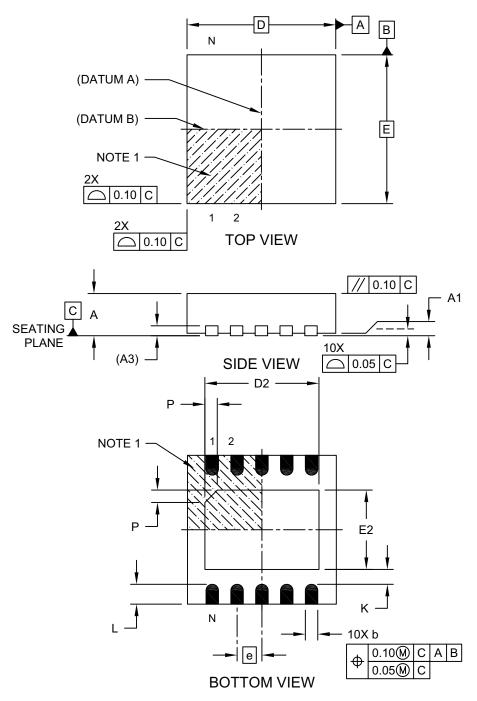
10-Lead Plastic Micro Small Outline Package (MS) - 3x3 mm Body [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	С		4.40	
Overall Width	Z			5.80
Contact Pad Width (X10)	X1			0.30
Contact Pad Length (X10)	Y1			1.40
Distance Between Pads (X5)	G1	3.00		
Distance Between Pads (X8)	G	0.20		

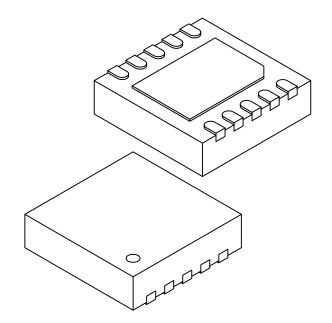
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2021-MS Rev F

10-Lead Very Thin Plastic Dual Flat, No Lead Package (9Q) - 3x3 mm Body [VDFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-206 Rev B Sheet 1 of 2

10-Lead Very Thin Plastic Dual Flat, No Lead Package (9Q) - 3x3 mm Body [VDFN]

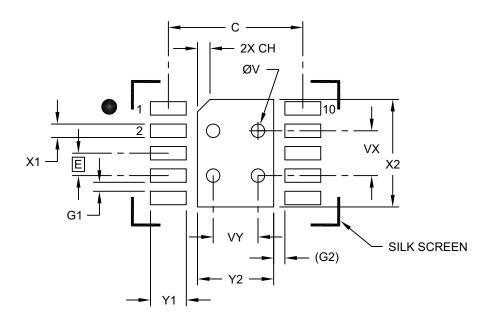
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	IILLIMETER:	S		
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	Ν		10		
Pitch	e		0.50 BSC		
Overall Height	Α	0.80	0.85	0.90	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	(A3)	0.20 REF			
Overall Length	D	3.00 BSC			
Exposed Pad Length	D2	2.20	2.30	2.40	
Overall Width	Е		3.00 BSC		
Exposed Pad Width	E2	1.50	1.60	1.70	
Exposed Pad Chamfer	Р	-	0.25	-	
Terminal Width	b	0.18	0.25	0.30	
Terminal Length	L	0.35	0.40	0.45	
Terminal-to-Exposed-Pad	К	0.25	0.30	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated


3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-206 Rev B Sheet 2 of 2

10-Lead Very Thin Plastic Dual Flat, No Lead Package (9Q) - 3x3 mm Body [VDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	Y2			1.70
Optional Center Pad Length	X2			2.40
Contact Pad Spacing	С		3.00	
Center Pad Chamfer	СН		0.28	
Contact Pad Width (X10)	X1			0.30
Contact Pad Length (X10)	Y1			0.80
Contact Pad to Contact Pad (X8)	G1	0.20		
Contact Pad to Center Pad (X10)	G2		0.25 REF	
Thermal Via Diameter	V		0.30	
Thermal Via Pitch	VX	1.00		
Thermal Via Pitch	VY		1.00	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerances, for reference only.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2206 Rev A

APPENDIX A: REVISION HISTORY

Revision B (August 2022)

- Updated Product Identification System.
- Corrected minor grammatical errors.

Revision A (March 2014)

• Original Release of this Document.

EMC1413/14

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>-</u> 2	<u> </u>	<u>-XX</u> ⁽¹⁾		Exa	mple	es:	
Device	SME Addr		Tape and Reel Option		a)	EMC	C1413-1-AIZL-TR:	Up-To three temperature sensors, 10-pin MSOP package, fixed SMBus Address 1001_100(r/w)
Device:	EMC14	13/14: Multiple Channe Sensors with Be	el, 1°C Accuracy Temp eta Compensation	perature	b)	EMC	C1413-3-AIZL-TR	Up-To three temperature sensors, 10-pin MSOP package, fixed SMBus Address 0011_000(r/w)
SMBus Address:	1 A 3	= Fixed Address: 1001 = Programmable Addr = Fixed Address: 0011	ess _		c)	EMC	C1414-A-AIA-TR	1Up-To four temperature sensors, 10-pin VDFN package, programmable SMBus address selectable via THERM pull-up.
Package:	AIZL	= 10-Lead Plastic Micr Compliant	o Small Outline (MSC	DP), RoHS				
	AIA	= 10-Lead Very Thin F RoHS Compliant	Plastic Dual Flat, No Lo	ead (VDFN),	Note	• 1:	the catalog part n identifier is used f not printed on the	el identifier only appears in umber description. This for ordering purposes and is device package. Check with
Tape and Reel:	TR	= Tape and Reel						ales Office for package le Tape and Reel option.

EMC1413/14

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable" Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https:// www.microchip.com/en-us/support/design-help/client-supportservices.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-6683-0979-7

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000 China - Chengdu

Tel: 86-28-8665-5511 China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138 China - Zhuhai

Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631 India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160 Japan - Tokyo

Tel: 81-3-6880- 3770 Korea - Daegu

Tel: 82-53-744-4301 Korea - Seoul

Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

Germany - Rosenheim Tel: 49-8031-354-560

> **Israel - Ra'anana** Tel: 972-9-744-7705

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Tel: 45-4485-5910

Fax: 45-4485-2829

Tel: 358-9-4520-820

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Garching

Tel: 49-2129-3766400

Germany - Heilbronn

Germany - Karlsruhe

Tel: 49-7131-72400

Tel: 49-721-625370

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Tel: 49-8931-9700

Germany - Haan

Finland - Espoo

France - Paris

Fax: 43-7242-2244-393

Denmark - Copenhagen

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820