Adafruit 2.4" Color TFT Touchscreen
Breakout
Created by lady ada

https://learn.adafruit.com/adafruit-2-4-color-tft-touchscreen-breakout

©Adafruit Industries Page 1 of 63

Table of Contents

Overview

Pinouts

« SPI Mode
« Resistive touch pins
- 8-Bit Mode

Assembly

« Prepare the header strip:
« Add the breakout board:
« And Solder!

Wiring & Test

8-Bit Wiring & Test

« 8-Bit Wiring

« Part 1- Power & backlight test
« Part 2 - Data Bus Lines

- 8-Bit Library Install

SPI Wiring & Test

« SPI Mode Jumpers
« Wiring

« Install Libraries

« Install Libraries

Bitmaps (SPI Mode)
Adafruit GFX Library

Resistive Touchscreen

- Download Library
« Touchscreen Paint (SPI mode)
« Touchscreen Paint (8-Bit mode)

CircuitPython Displayio Quickstart

« Preparing the Breakout

« Wiring the Breakout to the Feather
« Required CircuitPython Libraries

« Code Example Additional Libraries
« CircuitPython Code Example

» Code Details

« Using Touch

« Where to go from here

Python Wiring and Setup

« Wiring

« ILI9341 and HX-8357-based Displays
« ST7789 and ST7735-based Displays
« SSD1351-based Displays

« SSD1331-based Display

©Adafruit Industries

© © 0o

10

"
"
12

13

14

14
14
15
16

20

20

21
22
23

25

27

28

29
30
31

32

32
32
33
34
34
35
39
39

40

40
40
42
45
46

Page 2 of 63

« Setup

» Python Installation of RGB Display Library

« DejaVu TTF Font
« Pillow Library

Python Usage

« Turning on the Backlight

- Displaying an Image

« Drawing Shapes and Text

- Displaying System Information

Troubleshooting

Downloads

« Datasheets
« Schematic
« Fabrication Print

©Adafruit Industries

47
47
48
48

48

48
49
54
57

61

62

62
62
62

Page 3 of 63

©Adafruit Industries Page 4 of 63

Overview

Add some jazz & pizazz to your project with a color touchscreen LCD. This TFT
display is 2.4" diagonal with a bright (4 white-LED) backlight and it's colorfull 240x320

pixels with individual RGB pixel control, this has way more resolution than a black and
white 128x64 display.

As a bonus, this display has a resistive touchscreen attached to it already, so you can
detect finger presses anywhere on the screen.

©Adafruit Industries Page 5 of 63

This display has a controller built into it with RAM buffering, so that almost no work is
done by the microcontroller. The display can be used in two modes: 8-bit or SPI. For
8-bit mode, you'll need 8 digital data lines and 4 or 5 digital control lines to read and
write to the display (12 lines total). SPI mode requires only 5 pins total (SPI data in,
data out, clock, select, and d/c) but is slower than 8-bit mode.

In addition, 4 pins are required for the touch screen (2 digital, 2 analog) or you can
purchase and use our resistive touchscreen controller (not included) to use I12C or SPI
(http://adafru.it/1571)

Of course, we wouldn't just leave you with a datasheet and a "good luck!". For 8-bit
interface fans we've written a full open source graphics library that can draw pixels,
lines, rectangles, circles, text, and more (https://adafru.it/aHk). For SPI users, we have
a library as well (https://adafru.it/d4d), its separate from the 8-bit library since both
versions are heavily optimized.

For resitive touch, we also have a touch screen library that detects x, y and z
(pressure) (https://adafru.it/aT1) and example code to demonstrate all of it.

©Adafruit Industries Page 6 of 63

http://www.adafruit.com/products/1571
http://www.adafruit.com/products/1571
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Touch-Screen-Library
https://github.com/adafruit/Touch-Screen-Library

0—-A¥6) 2—-09
SGL9ee3e)}

& .
+ k2 =
i 1 a3
- L5 —
= BES :
= - i f
P !

Pinouts

The 2.8" TFT display on this breakout supports many different modes - so many that
the display itself has 50 pins. However, we think most people really only use 2
different modes, either "SPI" mode or 8-bit mode (which includes both 6800 and
8080). Each 'side' of the display has all the pins required for that mode. You can

switch between modes, by rewiring the display, but it cannot be used in two modes at
the same time!

All logic pins, both 8-bit and SPI sides, are 3-5V logic level compatible, the 74LVX245
chips on the back perform fast level shifting so you can use either kind of logic levels.
If there's data output, the levels are at at 3.3V

©Adafruit Industries Page 7 of 63

LD OO OO LU OD UL 0D U
GND 3VUo HNISO cs RST Y+ Y=

SP| Mode

This is what we think will be a popular mode when speed is not of the utmost
importance. It doesn't use as many pins (only 4 to draw on the TFT if you skip the
MISO pin), is fairly flexible, and easy to port to various microcontrollers. It also allows
using a microSD card socket on the same SPI bus. However, its slower than parallel 8-
bit mode because you have to send each bit at a time instead of 8-bits at a time.
Tradeoffs!

X= 1M1

OO0 0 O Q[oleolelelelolelelole

GND 3Uo MISO CS Y- 1fe IfA2

+ GND - this is the power and signal ground pin

« 3-5V / Vin - this is the power pin, connect to 3-5VDC - it has reverse polarity
protection but try to wire it right!

« 3.3Vout - this is the 3.3V output from the onboard regulator

« CLK - this is the SPI clock input pin

« MISO - this is the SPI Microcontroller In Serial Out pin, its used for the SD card
mostly, and for debugging the TFT display. It isn't necessary for using the TFT
display which is write-only

« MOSI - this is the SPI Microcontroller Out Serial In pin, it is used to send data
from the microcontroller to the SD card and/or TFT

« CS - this is the TFT SPI chip select pin

« D/C - this is the TFT SPI data or command selector pin

©Adafruit Industries Page 8 of 63

« RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so
this pin is not required but it can be helpful sometimes to reset the TFT if your
setup is not always resetting cleanly. Connect to ground to reset the TFT

. Lite - this is the PWM input for the backlight control. It is by default pulled high
(backlight on) you can PWM at any frequency or pull down to turn the backlight
off

« IM3 IM2 IM1IMO - these are interface control set pins. In general these
breakouts aren't used, and instead the onboard jumpers are used to fix the
interface to SPI or 8-bit. However, we break these out for advanced use and also
for our test procedures

« Card CS / CCS - this is the SD card chip select, used if you want to read from the
SD card.

« Card Detect / CD - this is the SD card detect pin, it floats when a card is
inserted, and tied to ground when the card is not inserted. We don't use this in
our code but you can use this as a switch to detect if an SD card is in place
without trying to electrically query it. Don't forget to use a pullup on this pin if so!

Resistive touch pins

« Y+ X+ Y- X- these are the 4 resistive touch screen pads, which can be read with
analog pins to determine touch points. They are completely separated from the
TFT electrically (the overlay is glued on top) They can be used in 8-bit or SPI
mode.

8-Bit Mode

This mode is for when you have lots of pins and want more speed. In this mode we
send 8 bits at a time, so it needs way more pins, 12 or so (8 bits plus 4 control)! If your
microcontroller

RO Lite
Q0000
RST\—X+

« GND - this is the power and signal ground pin

« 3-5V (Vin)- this is the power pin, connect to 3-5VDC - it has reverse polarity
protection but try to wire it right!

« CS - this is the TFT 8-bit chip select pin (it is also tied to the SPI mode CS pin)

©Adafruit Industries Page 9 of 63

« C/D - this is the TFT 8-bit data or command selector pin. It is not the same as the
SPI D/C pin! Instead, it's the same as the SPI CLK pin.

« WR - this is the TFT 8-bit write strobe pin. It is also connected to the SPI D/C pin

« RD - this is the TFT 8-bit read strobe pin. You may not need this pin if you don't
want to read data from the display

« RST - this is the TFT reset pin. There's auto-reset circuitry on the breakout so
this pin is not required but it can be helpful sometimes to reset the TFT if your
setup is not always resetting cleanly. Connect to ground to reset the TFT

« Backkite - this is the PWM input for the backlight control. It is by default pulled
high (backlight on) you can PWM at any frequency or pull down to turn the
backlight off

« DO thru D7 - these are the 8 bits of parallel data sent to the TFT in 8-bit mode. D
0 is the least-significant-bit and D7 is the MSB

Assembly

5 VULV UOUU U
Y- Ihe 1A2 cCs E

©Adafruit Industries Page 10 of 63

Prepare the header strip:
Cut the strip to length if necessary. It will

CEREIL LILal tieel dhees wenes ’ be easier to solder if you insert it into a
R R R R R L L N B
R R R R
IR AR I T R R R R R L
S A R I R R O R R B R R R

.. IR R R R R R R RN
WEssssssEsssesEEEEEE
e

-
-

Add the breakout board:

Place the breakout board over the pins
so that the short pins poke through the
breakout pads

-vi\a SEEEE sesew sanew ntiic

©Adafruit Industries Page 11 of 63

https://learn.adafruit.com//assets/25682
https://learn.adafruit.com//assets/25682
https://learn.adafruit.com//assets/25683
https://learn.adafruit.com//assets/25683

ooooooooooooooooqooo. And SOlder!
Be sure to solder all pins for reliable
electrical contact.

Solder the longer power/data strip first
(For tips on soldering, be sure to check

out our Guide to Excellent
Soldering (https://adafru.it/aTk)).

!
|

You're done! Check your solder joints
visually

enae ey
1

fghi

Newwew
abcde

©Adafruit Industries Page 12 of 63

https://learn.adafruit.com//assets/25684
https://learn.adafruit.com//assets/25684
https://learn.adafruit.com//assets/25685
https://learn.adafruit.com//assets/25685
https://learn.adafruit.com//assets/25686
https://learn.adafruit.com//assets/25686
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering
https://learn.adafruit.com//assets/25687
https://learn.adafruit.com//assets/25687

If your display isn't taped down to the
breakout PCB, peel off the tape covering
and press down so the TFT sticks to the
circuit board

We tried to make this TFT breakout useful for both high-pin microcontrollers that can
handle 8-bit data transfer modes as well as low-pincount micros like the Arduino UNO
and Leonardo that are OK with SPI.

Essentially, the tradeoff is pins for speed. SPI is about 2-4 times slower than 8-bit
mode, but that may not matter for basic graphics!

In addition, SPI mode has the benefit of being able to use the onboard microSD card

socket for reading images. We don't have support for this in 8-bit mode so if you want
to have an all-in-one image viewer type application, use SPI!

©Adafruit Industries Page 13 of 63

https://learn.adafruit.com//assets/25688
https://learn.adafruit.com//assets/25688

8-Bit Wiring & Test
8-Bit Wiring

Wiring up the 8-bit mode is kind of a pain, so we really only recommend doing it for
UNO (which we show) and Mega (which we describe, and is pretty easy since its 8
pins in a row). Anything else, like a Leonardo or Micro, we strongly recommend going
with SPI mode since we don't have an example for that. Any other kind of 'Arduino
compatible' that isn't an Uno, try SPI first. The 8-bit mode is hand-tweaked in the Adaf
ruit_TFTLCD pin_magic.h file. Its really only for advanced users who are totally cool
with figuring out bitmasks for various ports & pins.

Really, we'll show how to do the UNO but anything else? go with SPI!

Make sure you're soldering and connecting to the 8-bit side!

Part 1 - Power & backlight test

Begin by wiring up the 3-5VDC and GND pins.

Connect the 3-5V pin to 5V and GND to GND on your Arduino. I'm using the
breadboard rails but you can also just wire directly.

Power it up and you should see the white backlight come on.

©Adafruit Industries Page 14 of 63

Part 2 - Data Bus Lines

Now that the backlight is working, we can get the TFT LCD working. There are many
pins required, and to keep the code running fairly fast, we have 'hardcoded' Arduino
digital pins #2-#9 for the 8 data lines.

However, they are not in that order! DO and D1 go to digital #8 and #9, then D2-D7
connect to #2 thru #7. This is because Arduino pins #0 and #1 are used for serial data
so we can't use them

Begin by connecting DO and D1 to digital #8 and 9 respectively as seen above. If
you're using a Mega, connect the TFT Data Pins DO-D1to Mega pins #22-23, in that
order. Those Mega pins are on the 'double' header.

Now you can connect the remaining 6 pins over. Connect D2-D7 on the TFT pins to
digital 2 thru 7 in that order. If you're using a Mega, connect the TFT Data Pins D2-D7
to Mega pins #24-29, in that order. Those Mega pins are on the 'double' header.

In addition to the 8 data lines, you'll also need 4 or 5 control lines. These can later be
reassigned to any digital pins, they're just what we have in the tutorial by default.

« Connect the third pin CS (Chip Select) to Analog 3

« Connect the fourth pin C/D (Command/Data) to Analog 2
« Connect the fifth pin WR (Write) to Analog 1

« Connect the sixth pin RD (Read) to Analog O

©Adafruit Industries Page 15 of 63

You can connect the seventh pin RST (Reset) to the Arduino Reset line if you'd like.
This will reset the panel when the Arduino is Reset. You can also use a digital pin for
the LCD reset if you want to manually reset. There's auto-reset circuitry on the board
so you probably don't need to use this pin at all and leave it disconnected

The RD pin is used to read the chip ID off the TFT. Later, once you get it all working,
you can remove this pin and the ID test, although we suggest keeping it since its
useful for debugging your wiring. OK! Now we can run some code

8-Bit Library Install

We have example code ready to go for use with these TFTs. It's written for Arduino,
which should be portable to any microcontroller by adapting the C++ source.

Two libraries need to be downloaded and installed: the TFTLCD library (https://
adafru.it/aHk) and the GFX library. (https://adafru.it/aJa) You can install these libraries
through the Arduino library managetr.

Open up the Arduino library manager:

©Adafruit Industries Page 16 of 63

https://github.com/adafruit/TFTLCD-Library
https://github.com/adafruit/Adafruit-GFX-Library

Search for the Adafruit GFX library and install it:

If using an older Arduino IDE (pre-1.8.10), do the same for Adafruit_BuslO (newer
versions do this one automatically).

Then search for the Adafruit TFTLCD library and install it:

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/ayM)

©Adafruit Industries Page 17 of 63

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

After restarting the Arduino software, you should see a new example folder called Ad
afruit_TFTLCD and inside, an example called graphicstest. Upload that sketch to your
Arduino. You may need to press the Reset button to reset the arduino and TFT. You
should see a collection of graphical tests draw out on the TFT.

©Adafruit Industries Page 18 of 63

If you're having difficulties, check the serial console.The first thing the sketch does is
read the driver code from the TFT. It should be 0x9341 (for the ILI9341 controller
inside)

If you Unknown Driver Chip then it's probably something with your wiring, double
check and try again!

©Adafruit Industries Page 19 of 63

SPI Wiring & Test

LORORS)

VUL OLOQL OV U
cS RST Y+ - 1ne In2

Don't forget, we're using the SPI interface side of the PCB!

SPI Mode Jumpers

Before you start, we'll need to tell the display to put us in SPI mode so it will know
which pins to listen to. To do that, we have to connect tbe IM1, IM2 and IM3 pins to
3.3V. The easiest way to do that is to solder closed the IMx jumpers on the back of
the PCB. Turn over the PCB and find the solder jumpers

©Adafruit Industries Page 20 of 63

T A Y)Y
A1l 7 444y

With your soldering iron, melt solder to close the three jumpers indicated IM1IM2 and
IM3 (do not solder closed IMO!)

If you really don't want to solder them, you can also wire the breakout pins to the 3vo
pin, just make sure you don't tie them to 5V by accident! For that reason, we suggest
going with the solder-jumper route.

Wiring

Wiring up the display in SPI mode is much easier than 8-bit mode since there's way
fewer wires. Start by connecting the power pins

« 3-5V Vin connects to the Arduino 5V pin

+ GND connects to Arduino ground

+ CLK connects to SPI clock. On Arduino Uno/Duemilanove/328-based, thats Digi
tal 13. On Mega's, its Digital 52 and on Leonardo/Due its ICSP-3 (See SPI
Connections for more details (https://adafru.it/d5h))

« MISO connects to SPI MISO. On Arduino Uno/Duemilanove/328-based, thats Di
gital 12. On Mega's, its Digital 50 and on Leonardo/Due its ICSP-1 (See SPI
Connections for more details (https://adafru.it/d5h))

+ MOSI connects to SPI MOSI. On Arduino Uno/Duemilanove/328-based, thats Di
gital 11. On Mega's, its Digital 51 and on Leonardo/Due its ICSP-4 (See SPI
Connections for more details (https://adafru.it/d5h))

« CS connects to our SPI Chip Select pin. We'll be using Digital 10 but you can
later change this to any pin

©Adafruit Industries Page 21 of 63

http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI

« D/C connects to our SPI data/command select pin. We'll be using Digital 9 but
you can later change this pin too.

That's it! You do not need to connect the RST or other pins for now.

Install Libraries

You'll need a few libraries to use this display

From within the Arduino IDE, open up the Library Manager...

©Adafruit Industries Page 22 of 63

Install Libraries

We have example code ready to go for use with these TFTs.

Two libraries need to be downloaded and installed: first is the Adafruit ILI9341 library (
https://adafru.it/d4d) (this contains the low-level code specific to this device), and
second is the Adafruit GFX Library (https://adafru.it/aJa) (which handles graphics
operations common to many displays we carry). If you have Adafruit_GFX already,
make sure its the most recent version since we've made updates for better
performance

Search for ILI9341 and install the Adafruit ILI9341 library that pops up!

For more details, especially for first-time library installers, check out our great tutorial
at http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/ayM)

Next up, search for Adafruit GFX and locate the core library. A lot of libraries may pop
up because we reference it in the description so just make sure you see Adafruit GFX
Library in bold at the top.

Install it!

If using an older Arduino IDE (pre-1.8.10), do the same for Adafruit_BuslO (newer
versions do this one automatically).

After restarting the Arduino software, you should see a new example folder called Ad
afruit_ILI9341 and inside, an example called graphicstest. Upload that sketch to your

©Adafruit Industries Page 23 of 63

https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit-GFX-Library
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Arduino. You may need to press the Reset button to reset the arduino and TFT. You
should see a collection of graphical tests draw out on the TFT.

v g by apogqge + \
wwmew = w m = @0f |
" cuaunwn Ml =55 a s sz e 2 | |
"8 lpenans %6y wmoz |*")
N Wiz 2"
wwoz | *°
‘ = I CIL R - ()
I . vl b
‘ | 154 Rl 2
- - a.
. u |l ol v."
o w0z | *° S
Y 9
I LI L ‘
[R 0
I wor | " ° 6
| E e oL,
N L [0
)
— - €1
: . ()
‘ ~
G
B
. .y
" eg o
...z ¢ T
L - " & 8= .- e w8) J y
£ — L (ganaB) apoge +

©Adafruit Industries Page 24 of 63

If you're having difficulties, check the serial console.The first thing the sketch does is
read the driver configuration from the TFT, you should see the same numbers as
below

If you did not connect up the MISO line to the TFT, you wont see the read
configuation bytes so please make sure you connect up the MISO line for easy
debugging! Once its all working, you can remove the MISO line

Bitmaps (SPI Mode)

There is a built in microSD card slot into the breakout, and we can use that to load
bitmap images! You will need a microSD card formatted FAT16 or FAT32 (they almost
always are by default).

Its really easy to draw bitmaps. However, this is only supported when talking to the
display in SPI mode, not 8-bit mode!

It's really easy to draw bitmaps. We have a library for it, Adafruit_ImageReader, which
can be installed through the Arduino Library Manager (Sketch—Include
Library—=Manage Libraries...). Enter “imageread” in the search field and the library is
easy to spot:

©Adafruit Industries Page 25 of 63

Lets start by downloading this image of pretty flowers

Copy purple.bmp into the base directory of a microSD card and insert it into the
microSD socket in the breakout.

You'll need to connect up the CCS pin to Digital 4 on your Arduino as well. In the
below image, its the extra brown wire

You may want to try the SD library examples before continuing, especially one that
lists all the files on the SD card

Now upload the File=»examples—Adafruit ImageReader Library—=ShieldILI9341 examp
le to your Arduino + breakout. You will see the flowers appear!

©Adafruit Industries Page 26 of 63

Adafruit GFX Library

+ ey

6
wwmae
3

6l m = =
L

I 876 n 8

Pee0 000000
49400000000
P40 00400
9000000000
P40 0000 0
9400000000
99400004040
e 00000000
R RR R R R R R
IR R R R

ge&;

S0 @OLLVDSR

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics
functions for all of our TFT, LCD and OLED displays. This allows Arduino sketches to
easily be adapted between display types with minimal fuss...and any new features,
performance improvements and bug fixes will immediately apply across our complete

offering of color displays.

The GFX library is what lets you draw points, lines, rectangles, round-rects, triangles,

text, etc.

©Adafruit Industries

Page 27 of 63

—
1M aluln] =
I implore the

Check out our detailed tutorial here http://learn.adafruit.com/adafruit-gfx-graphics-
library (https://adafru.it/aPx)

It covers the latest and greatest of the GFX library. The GFX library is used in both 8-
bit and SPI modes so the underlying commands (drawLine() for example) are identical!

Resistive Touchscreen

The LCD has a 2.8" 4-wire resistive touch screen glued onto it. You can use this for
detecting finger-presses, stylus', etc. You'll need 4 pins to talk to the touch panel, and
at least 2 must be analog inputs. The touch screen is a completely separate part from
the TFT, so be aware if you rotate the display or have the TFT off or reset, the touch
screen doesn't "know" about it - its just a couple resistors!

We have a demo for the touchscreen + TFT that lets you 'paint' simple graphics.
There's versions for both SPI and 8-bit mode and are included in the libraries. Just
make sure you have gone thru the TFT test procedure already since this builds on
that.

©Adafruit Industries Page 28 of 63

http://learn.adafruit.com/adafruit-gfx-graphics-library
http://learn.adafruit.com/adafruit-gfx-graphics-library

Remember, if you rotate the screen drawing with setRotation() you'll have to use
map() or similar to flip around the X/Y coordinates for the touchscreen as well! It
doesn't know about drawing rotation

Download Library

Begin by grabbing our analog/resistive touchscreen library (https://adafru.it/aT1)from
the Arduino library manager.

Open up the Arduino library manager:

Search for the Adafruit TouchScreen library and install it

©Adafruit Industries Page 29 of 63

https://github.com/adafruit/Touch-Screen-Library

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (https://
adafru.it/aYM)

Touchscreen Paint (SPI mode)

An additional 4 pins are required for the touchscreen. For the two analog pins, we'll
use A2 and A3. For the other two connections, you can pin any two digital pins. We
can save the one pin by sharing with D/C but you can't share any other SPI pins. So
basically you can get away with using only three additional pins.

Wire the additional 4 pins as follows:

« Y+ to Arduino A2
« X+ to Arduino D4
» Y-to Arduino D5
« X- to Arduino A3

Load up the breakoutTouchPaint example from the Adafruit_ILI9341 library and try
drawing with your fingernail! You can select colors by touching the 'pallette' of colors
on top

©Adafruit Industries Page 30 of 63

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

Touchscreen Paint (8-Bit mode)

Another 4 pins seems like a lot since already 12 are taken up with the TFT but you can
reuse some of the pins for the TFT LCD! This is because the resistance of the panel is
high enough that it doesn't interfere with the digital input/output and we can query
the panel in between TFT accesses, when the pins are not being used.

We'll be building on the wiring used in the previous drawing test for UNO

You can wire up the 4 touchscreen pins as follows. Starting from the top

« Y- connects to digital #9 (also D1)

« The next one down (X-) connects to Analog 2 (also C/D)
« The next one over (Y+) connects to Analog 3 (also CS)

« The last one (X+) connects to digital 8. (also DO)

The X- and Y+ pins pretty much have to connect to those analog pins (or to analog
4/5) but Y-/X+ can connect to any digital or analog pins.

Load up the tftpaint example from the Adafruit_TFTLCD library and try drawing with
your fingernail! You can select colors by touching the 'pallette' of colors on the right

©Adafruit Industries Page 31 of 63

CircuitPython Displayio Quickstart

You will need a board capable of running CircuitPython such as the Metro MO Express
or the Metro M4 Express. You can also use boards such as the Feather MO Express or
the Feather M4 Express. We recommend either the Metro M4 or the Feather M4
Express because it's much faster and works better for driving a display. For this guide,
we will be using a Feather M4 Express. The steps should be about the same for the
Feather MO Express or either of the Metros. If you haven't already, be sure to check
out our Feather M4 Express (https://adafru.it/EEm) guide.

Adafruit Feather M4 Express - Featuring
ATSAMD51

It's what you've been waiting for, the
Feather M4 Express featuring ATSAMD51.
This Feather is fast like a swift, smart like
an owl, strong like a ox-bird (it's half ox,...
https://www.adafruit.com/product/3857

For this guide, we'll assume you have a Feather M4 Express. The steps should be
about the same for the Feather MO Express. To start, if you haven't already done so,
follow the assembly instructions for the Feather M4 Express in our Feather M4
Express guide (https://adafru.it/EEm).

Preparing the Breakout

Before using the TFT Breakout, you will need to solder the headers or some wires to
it. Be sure to check out the Adafruit Guide To Excellent Soldering (https://adafru.it/drl).
Also, follow the SPI Wiring and Test page of this guide to be sure your display is setup
for SPI. After that, the breakout should be ready to go.

Wiring the Breakout to the Feather

« 3-5V Vin connects to the Feather 3V pin

+ GND connects toFeather ground

« CLK connects to SPI clock. On the Feather that's SCK.
« MISO connects to SPI MISO. On the Feather that's Ml
« MOSI connects to SPI MOSI. On the Feather that's MO

©Adafruit Industries Page 32 of 63

https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://www.adafruit.com/product/3857
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-feather-m4-express-atsamd51/assembly
https://learn.adafruit.com/adafruit-guide-excellent-soldering

« CS connects to our SPI Chip Select pin. We'll be using Digital 9 but you can later

change this to any pin
« D/C connects to our SPI data/command select pin. We'll be using Digital 10 but

you can later change this pin too.
« RST connects to our reset pin. We'll be using Digital 6 but you can later change

this pin too.

2.8-breakout-feather-m4.fzz

https://adafru.it/Fyk

Required CircuitPython Libraries

To use this display with displayio, there is only one required library.

Adafruit_CircuitPython_ILI9341

https://adafru.it/EGe

First, make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

©Adafruit Industries Page 33 of 63

https://cdn-learn.adafruit.com/assets/assets/000/079/468/original/2.8-breakout-feather-m4.fzz?1565820316
https://github.com/adafruit/Adafruit_CircuitPython_ILI9341/releases
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython

Next, you'll need to install the necessary libraries to use the hardware--carefully
follow the steps to find and install these libraries from Adafruit's CircuitPython library
bundle (https://adafru.it/zdx). Our introduction guide has a great page on how to
install the library bundle (https://adafru.it/ABU) for both express and non-express
boards.

Remember for non-express boards, you'll need to manually install the necessary
libraries from the bundle:

« adafruit_ili9341

Before continuing make sure your board's lib folder or root filesystem has the adafrui
t_ili9341 file copied over.

Code Example Additional Libraries

For the Code Example, you will need an additional library. We decided to make use of
a library so the code didn't get overly complicated.

Adafruit_CircuitPython_Display_Text

https://adafru.it/FiA

Go ahead and install this in the same manner as the driver library by copying the adaf
ruit_display_text folder over to the lib folder on your CircuitPython device.

CircuitPython Code Example

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This test will initialize the display using displayio and draw a solid green
background, a smaller purple rectangle, and some yellow text. All drawing is done
using native displayio modules.

Pinouts are for the 2.4" TFT FeatherWing or Breakout with a Feather M4 or MO.
import board

import terminalio

import displayio

from adafruit display text import label

import adafruit i1i9341

Release any resources currently in use for the displays
displayio.release displays()

spi = board.SPI()

©Adafruit Industries Page 34 of 63

https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://github.com/adafruit/Adafruit_CircuitPython_Display_Text

board.D9
board.D10

tft _cs
tft dc

display bus = displayio.FourWire(
spi, command=tft dc, chip select=tft cs, reset=board.D6
)

display = adafruit i1i9341.ILI9341(display bus, width=320, height=240)

Make the display context
splash = displayio.Group()
display.show(splash)

Draw a green background

color bitmap = displayio.Bitmap(320, 240, 1)
color palette = displayio.Palette(1)

color palette[0] = OxOOFFO0 # Bright Green

bg sprite = displayio.TileGrid(color_bitmap, pixel shader=color_ palette, x=0, y=0)
splash.append(bg sprite)

Draw a smaller inner rectangle

inner_bitmap = displayio.Bitmap(280, 200, 1)

inner palette = displayio.Palette(1)

inner _palette[0] = OxAA00O88 # Purple

inner _sprite = displayio.TileGrid(inner bitmap, pixel shader=inner palette, x=20,
y=20)

splash.append(inner sprite)

Draw a label

text group = displayio.Group(scale=3, x=57, y=120)

text = "Hello World!"

text area = label.Label(terminalio.FONT, text=text, color=0xFFFF0O)
text _group.append(text area) # Subgroup for text scaling
splash.append(text group)

while True:
pass

Code Details

Let's take a look at the sections of code one by one. We start by importing the board
so that we can initialize SPI, displayio, terminalio for the font,a label, and
the adafruit i1i9341 driver.

import board

import displayio

import terminalio

from adafruit display text import label
import adafruit il1i9341

Next we release any previously used displays. This is important because if the
Feather is reset, the display pins are not automatically released and this makes them
available for use again.

displayio.release displays()

©Adafruit Industries Page 35 of 63

Next, we set the SPI object to the board's SPI with the easy shortcut function board.
SPI() . By using this function, it finds the SPI module and initializes using the default
SPI parameters. Next we set the Chip Select and Data/Command pins that will be
used.

spi = board.SPI()
tft _cs = board.D9
tft dc = board.D10

In the next line, we set the display bus to FourWire which makes use of the SPI bus.

display bus = displayio.FourWire(spi, command=tft dc, chip select=tft cs,
reset=board.D6)

Finally, we initialize the driver with a width of 320 and a height of 240. If we stopped
at this point and ran the code, we would have a terminal that we could type at and
have the screen update.

display = adafruit i1i9341.ILI9341(display bus, width=320, height=240)

Code done running. Waiting for reload,

Next we create a background splash image. We do this by creating a group that we
can add elements to and adding that group to the display. In this example, we are
limiting the maximum number of elements to 10, but this can be increased if you
would like. The display will automatically handle updating the group.

splash = displayio.Group(max size=10)
display.show(splash)

©Adafruit Industries Page 36 of 63

Next we create a Bitmap which is like a canvas that we can draw on. In this case we
are creating the Bitmap to be the same size as the screen, but only have one color.
The Bitmaps can currently handle up to 256 different colors. We create a Palette with
one color and set that color to OXOOFFOO which happens to be green. Colors are
Hexadecimal values in the format of RRGGBB. Even though the Bitmaps can only
handle 256 colors at a time, you get to define what those 256 different colors are.

color bitmap = displayio.Bitmap(320, 240, 1)
color palette = displayio.Palette(1)
color palette[0] = OxOOFFOO # Bright Green

With all those pieces in place, we create a TileGrid by passing the bitmap and palette
and draw itat (0, 0) which represents the display's upper left.

bg sprite = displayio.TileGrid(color bitmap,
pixel shader=color palette,
x=0, y=0)

splash.append(bg sprite)

This creates a solid green background which we will draw on top of.

Next we will create a smaller purple rectangle. The easiest way to do this is the create
a new bitmap that is a little smaller than the full screen with a single color and place it
in a specific location. In this case we will create a bitmap that is 20 pixels smaller on
each side. The screen is 320x240, so we'll want to subtract 40 from each of those
numbers.

©Adafruit Industries Page 37 of 63

We'll also want to place it at the position (20, 20) so thatit ends up centered.

inner bitmap = displayio.Bitmap(280, 200, 1)
inner palette = displayio.Palette(1)
inner palette[0] = OxAAG088 # Purple
inner sprite = displayio.TileGrid(inner_ bitmap,
pixel shader=inner palette,
x=20, y=20)
splash.append(inner_sprite)

Since we are adding this after the first rectangle, it's automatically drawn on top.
Here's what it looks like now.

Next let's add a label that says "Hello World!" on top of that. We're going to use the
built-in Terminal Font and scale it up by a factor of three. To scale the label only, we
will make use of a subgroup, which we will then add to the main group.

Labels are centered vertically, so we'll place it at 120 for the Y coordinate, and around
57 pixels make it appear to be centered horizontally, but if you want to change the
text, change this to whatever looks good to you. Let's go with some yellow text, so
we'll pass it a value of OxXFFFFOO .

text group = displayio.Group(max _size=10, scale=3, x=57, y=120)
text = "Hello World!"

text area = label.Label(terminalio.FONT, text=text, color=0xFFFF00)
text group.append(text area) # Subgroup for text scaling
splash.append(text group)

©Adafruit Industries Page 38 of 63

Finally, we place an infinite loop at the end so that the graphics screen remains in
place and isn't replaced by a terminal.

while True:
pass

Hello World!

Using Touch

We won't be covering how to use the touchscreen with CircuitPython in this guide, but
the libraries required to use it are:

« For enabling capacitive touch use the Adafruit_CircuitPython_FocalTouch (https
://ladafru.it/Fsy) library.

* For enabling resistive touch use the Adafruit_CircuitPython_STMPEG10 (https://
adafru.it/Fsz) library.

Where to go from here

Be sure to check out this excellent guide to CircuitPython Display Support Using
displayio (https://adafru.it/EGh)

©Adafruit Industries Page 39 of 63

https://github.com/adafruit/Adafruit_CircuitPython_FocalTouch
https://github.com/adafruit/Adafruit_CircuitPython_STMPE610
https://learn.adafruit.com/circuitpython-display-support-using-displayio
https://learn.adafruit.com/circuitpython-display-support-using-displayio

Python Wiring and Setup
Wiring

It's easy to use display breakouts with Python and the Adafruit CircuitPython RGB
Display (https://adafru.it/u1C) module. This module allows you to easily write Python
code to control the display.

We'll cover how to wire the display to your Raspberry Pi. First assemble your display.

Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

Connect the display as shown below to your Raspberry Pi.

Note this is not a kernel driver that will let you have the console appear on the

TFT. However, this is handy when you can't install an fbtft driver, and want to use
the TFT purely from 'user Python' code!

ILI9341 and HX-8357-based Displays
2.2" Display

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

©Adafruit Industries Page 40 of 63

https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://github.com/adafruit/Adafruit_CircuitPython_RGB_Display
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

2.2" TFT
320x240

ce e e e
L I

M2

fritzing

Download the Fritzing Diagram

https://adafru.it/H6C

2.4" 2.8" 3.2", and 3.5" Displays

These displays are set up to use the 8-bit data lines by default. We want to use them
for SPI. To do that, you'll need to either solder bridge some pads on the back or
connect the appropriate IM lines to 3.3V with jumper wires. Check the back of your
display for the correct solder pads or IM lines to put it in SPI mode.

- Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

©Adafruit Industries Page 41 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/669/original/2.2_TFT.fzz?1574277335

2.8 1l

320x240

fritzing

Download the Fritzing Diagram

https://adafru.it/H7a

ST7789 and ST/7735-based Displays

1.3", 1.54", and 2.0" IPS TFT Display

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

©Adafruit Industries Page 42 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/670/original/2.8_TFT.fzz?1574277361

xgh2

N
H
o
X

w
N
o

682248
41 u0°2 D2E

141 SdI .02

fi o e

fritzing

Download the Fritzing Diagram

https://adafru.it/H7A

0.96" 114", and 1.44" Displays

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

©Adafruit Industries Page 43 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/671/original/2.0_TFT.fzz?1574277392

Unv

fritzing

Download the Fritzing Diagram

https://adafru.it/H7B

1.8" Display

« GND connects to the Raspberry Pi's ground

« Vin connects to the Raspberry Pi's 3V pin

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

« CS connects to our SPI Chip Select pin. We'll be using CEO

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« LITE connects to the Raspberry Pi's 3V pin. This can be used to separately
control the backlight.

©Adafruit Industries Page 44 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/672/original/1.44_TFT.fzz?1574277409

8¢TIX091
141 .8°T

sEEEREN

USB 2x
v

s gt

fritzing

Download the Fritzing Diagram

https://adafru.it/H8a

SSD1351-based Displays

1.27" and 1.5" OLED Displays

« GND connects to the Raspberry Pi's ground

« Vin connects to the Raspberry Pi's 3V pin

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CS connects to our SPI Chip Select pin. We'll be using CEO

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later.

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later as well.

©Adafruit Industries Page 45 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/673/original/1.8_TFT.fzz?1574277427

R——— > % & 4370 894 92TX92T TSETASS w5°1

128x128

[a)
w
=
@]
in
—

NESNERNNNEEERES

Y/

KTEI TR E) - 2 .0

. .
;
= . ®o 000 0 ®e 0o 00 0 >®
o . » S LI]
. '
LA

ETHERNET S B R R R I L A)

U ql

fritzing

Download the Fritzing Diagram

https://adafru.it/H8A

SSD1331-based Display

0.96" OLED Display

« MOSI connects to SPI MOSI. On the Raspberry Pi, thats also MOSI

« CLK connects to SPI clock. On the Raspberry Pi, thats SLCK

« D/C connects to our SPI Chip Select pin. We'll be using GPIO 25, but this can be
changed later.

« RST connects to our Reset pin. We'll be using GPIO 24 but this can be changed
later as well.

« CS connects to our SPI Chip Select pin. We'll be using CEO

« Vin connects to the Raspberry Pi's 3V pin

« GND connects to the Raspberry Pi's ground

©Adafruit Industries Page 46 of 63

https://cdn-learn.adafruit.com/assets/assets/000/084/674/original/1.5_OLED.fzz?1574277454

i

DSI (DISPLAY)

fritzing

Download the Fritzing Diagram

https://adafru.it/OaF

Setup

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling SPI on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https

://adafru.it/BSN)!

Python Installation of RGB Display Library

Once that's done, from your command line run the following command:

« sudo pip3 install adafruit-circuitpython-rgb-display

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

©Adafruit Industries Page 47 of 63

https://cdn-learn.adafruit.com/assets/assets/000/096/092/original/0.96_OLED.fzz?1603118637
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If that complains about pip3 not being installed, then run this first to install it:

« sudo apt-get install python3-pip

DejaVu TTF Font

Raspberry Pi usually comes with the DejaVu font already installed, but in case it didn't,
you can run the following to install it:

- sudo apt-get install fonts-dejavu

This package was previously calls ttf-dejavu, so if you are running an older version of
Raspberry Pi OS, it may be called that.

Pillow Library

We also need PIL, the Python Imaging Library, to allow graphics and using text with
custom fonts. There are several system libraries that PIL relies on, so installing via a
package manager is the easiest way to bring in everything:

« sudo apt-get install python3-pil

That's it. You should be ready to go.

Python Usage

Now that you have everything setup, we're going to look over three different
examples. For the first, we'll take a look at automatically scaling and cropping an
image and then centering it on the display.

Turning on the Backlight

On some displays, the backlight is controlled by a separate pin such as the 1.3" TFT
Bonnet with Joystick. On such displays, running the below code will likely result in the

©Adafruit Industries Page 48 of 63

display remaining black. To turn on the backlight, you will need to add a small snippet
of code. If your backlight pin number differs, be sure to change it in the code:

Turn on the Backlight

backlight = DigitalInOut(board.D26)
backlight.switch to output()
backlight.value = True

Displaying an Image

Here's the full code to the example. We will go through it section by section to help
you better understand what is going on. Let's start by downloading an image of
Blinka. This image has enough border to allow resizing and cropping with a variety of
display sizes and rations to still look good.

Make sure you save it as blinka.jpg and place it in the same folder as your script.
Here's the code we'll be loading onto the Raspberry Pi. We'll go over the interesting
parts.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

Be sure to check the learn guides for more usage information.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

import digitalio

import board

from PIL import Image, ImageDraw

from adafruit rgb display import il1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import

©Adafruit Industries Page 49 of 63

from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInQut(board.CEQ)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.
disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.
ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789

ST7789

OII
3", 1.54"

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3,
1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT
ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,

dc=dc_pin,

rst=reset pin,

baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

image = Image.open("blinka.jpg")

Scale the image to the smaller screen dimension

image ratio = image.width / image.height

screen ratio = width / height

if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height

else:
scaled width = width

©Adafruit Industries Page 50 of 63

scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Crop and center the image
= scaled_width // 2 - width // 2
= scaled_height // 2 - height // 2

#
X
y
image = image.crop((x, y, x + width, y + height))

Display image.
disp.image(image)

So we start with our usual imports including a couple of Pillow modules and the
display drivers. That is followed by defining a few pins here. The reason we chose
these is because they allow you to use the same code with the PiTFT if you chose to
do so.

import digitalio

import board

from PIL import Image, ImageDraw

import adafruit rgb display.ili9341 as i1i9341
import adafruit rgb display.st7789 as st7789
import adafruit rgb display.hx8357 as hx8357
import adafruit rgb display.st7735 as st7735
import adafruit rgb display.ssd1351 as ssd1351
import adafruit rgb display.ssd1331 as ssd1331

Configuration for CS and DC pins

cs pin = digitalio.DigitalInOut(board.CEQ)
dc_pin = digitalio.DigitalInOut(board.D25)
reset pin = digitalio.DigitalInOut(board.D24)

Next we'll set the baud rate from the default 24 MHz so that it works on a variety of
displays. The exception to this is the SSD1351 driver, which will automatically limit it to
16MHz even if you pass 24MHz. We'll set up out SPI bus and then initialize the display.

We wanted to make these examples work on as many displays as possible with very
few changes. The ILI9341 display is selected by default. For other displays, go ahead
and comment out the line that starts with:

disp = 1i1i9341.ILI9341(spi,

and uncomment the line appropriate for your display. The displays have a rotation
property so that it can be set in just one place.

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

#disp = st7789.5T7789(spi, rotation=90, # 2.0" ST7789
#disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

#disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,

©Adafruit Industries Page 51 of 63

y offset=40, # 1.14" ST7789

#disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
#disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
#disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3, #
1.44" ST7735R

#disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT
ST7735R

#disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
#disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
#disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(spi, rotation=90, # 2.2", 2.4",

2.8", 3.2" ILI9341
cs=cs_pin, dc=dc_pin, rst=reset pin, baudrate=BAUDRATE)

Next we read the current rotation setting of the display and if it is 90 or 270 degrees,
we need to swap the width and height for our calculations, otherwise we just grab the
width and height. We will create an image with our dimensions and use that to create
a draw object. The draw object will have all of our drawing functions.

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new('RGB', (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Next we clear whatever is on the screen by drawing a black rectangle. This isn't
strictly necessary since it will be overwritten by the image, but it kind of sets the
stage.

Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

Next we open the Blinka image, which we've named blinka.jpg, which assumes it is in
the same directory that you are running the script from. Feel free to change it if it
doesn't match your configuration.

image = Image.open("blinka.jpg")

©Adafruit Industries Page 52 of 63

Here's where it starts to get interesting. We want to scale the image so that it matches
either the width or height of the display, depending on which is smaller, so that we
have some of the image to chop off when we crop it. So we start by calculating the
width to height ration of both the display and the image. If the height is the closer of
the dimensions, we want to match the image height to the display height and let it be
a bit wider than the display. Otherwise, we want to do the opposite.

Once we've figured out how we're going to scale it, we pass in the new dimensions
and using a Bicubic rescaling method, we reassign the newly rescaled image back to
image . Pillow has quite a few different methods to choose from, but Bicubic does a
great job and is reasonably fast.

Scale the image to the smaller screen dimension
image ratio = image.width / image.height
screen_ratio = width / height
if screen ratio < image ratio:
scaled width = image.width * height // image.height
scaled height = height
else:
scaled width = width
scaled height = image.height * width // image.width
image = image.resize((scaled width, scaled height), Image.BICUBIC)

Next we want to figure the starting x and y points of the image where we want to
begin cropping it so that it ends up centered. We do that by using a standard
centering function, which is basically requesting the difference of the center of the
display and the center of the image. Just like with scaling, we replace the image
variable with the newly cropped image.

scaled width // 2 - width // 2
scaled height // 2 - height // 2
mage = image.crop((x, y, x + width, y + height))

Crop and center the image
X =

Y:

i

Finally, we take our image and display it. At this point, the image should have the
exact same dimensions at the display and fill it completely.

disp.image(image)

©Adafruit Industries Page 53 of 63

X0l

RZe>

N
N
-f

11/nN

Drawing Shapes and Text

In the next example, we'll take a look at drawing shapes and text. This is very similar
to the displayio example, but it uses Pillow instead. Here's the code for that.

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This demo will draw a few rectangles onto the screen along with some text
on top of that.

This example is for use on (Linux) computers that are using CPython with
Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

Author(s): Melissa LeBlanc-Williams for Adafruit Industries

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit rgb display import i1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import
from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

First define some constants to allow easy resizing of shapes.
BORDER = 20
FONTSIZE = 24

Configuration for CS and DC pins (these are PiTFT defaults):
cs_pin = digitalio.DigitalInOut(board.CEO)

dc_pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):

©Adafruit Industries Page 54 of 63

BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long
Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,
y offset=40, # 1.14" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3,
1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT
ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,
dc=dc_pin,
rst=reset pin,
baudrate=BAUDRATE,
)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a green filled box as the background
draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Draw a smaller inner purple rectangle
draw. rectangle(

(BORDER, BORDER, width - BORDER - 1, height - BORDER - 1), fill=(170, 0, 136)
)

Load a TTF Font
font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
FONTSIZE)

Draw Some Text
text = "Hello World!"
(font _width, font height) = font.getsize(text)
draw. text(
(width // 2 - font width // 2, height // 2 - font height // 2),
text,
font=font,
fill=(255, 255, 0),

©Adafruit Industries Page 55 of 63

Display image.
disp.image(image)

Just like in the last example, we'll do our imports, but this time we're including the Im
ageFont Pillow module because we'll be drawing some text this time.

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as ili9341

Next we'll define some parameters that we can tweak for various displays. The BORD

ER will be the size in pixels of the green border between the edge of the display and

the inner purple rectangle. The FONTSIZE will be the size of the font in points so that
we can adjust it easily for different displays.

BORDER = 20
FONTSIZE = 24

Next, just like in the previous example, we will set up the display, setup the rotation,
and create a draw object. If you have are using a different display than the ILI9341, go
ahead and adjust your initializer as explained in the previous example. After that, we
will setup the background with a green rectangle that takes up the full screen. To get
green, we pass in a tuple that has our Red, Green, and Blue color values in it in that
order which can be any integer from 0 to 255.

draw.rectangle((0, 0, width, height), fill=(0, 255, 0))
disp.image(image)

Next we will draw an inner purple rectangle. This is the same color value as our
example in displayio quickstart, except the hexadecimal values have been converted
to decimal. We use the BORDER parameter to calculate the size and position that we
want to draw the rectangle.

draw.rectangle((BORDER, BORDER, width - BORDER - 1, height - BORDER - 1),
fill=(170, 0, 136))

Next we'll load a TTF font. The DejaVuSans.ttf font should come preloaded on
your Pi in the location in the code. We also make use of the FONTSIZE parameter
that we discussed earlier.

Load a TTF Font
font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"',
FONTSIZE)

©Adafruit Industries Page 56 of 63

Now we draw the text Hello World onto the center of the display. You may recognize
the centering calculation was the same one we used to center crop the image in the
previous example. In this example though, we get the font size values using the gets
ize() function of the font object.

Draw Some Text

text = "Hello World!"

(font width, font height) = font.getsize(text)

draw.text((width//2 - font width//2, height//2 - font height//2),
text, font=font, fill=(255, 255, 0))

Finally, just like before, we display the image.

disp.image(image)

v, @

0ZE*D

Hello World!

" ntnajepe hq
131 ,2°C

c
~
—
i~
—
w0
w
~b
®
O

Displaying System Information

In this last example we'll take a look at getting the system information and displaying
it. This can be very handy for system monitoring. Here's the code for that example:

SPDX-FileCopyrightText: 2021 ladyada for Adafruit Industries
SPDX-License-Identifier: MIT

This will show some Linux Statistics on the attached display. Be sure to adjust
to the display you have connected. Be sure to check the learn guides for more
usage information.

This example is for use on (Linux) computers that are using CPython with

Adafruit Blinka to support CircuitPython libraries. CircuitPython does
not support PIL/pillow (python imaging library)!

©Adafruit Industries Page 57 of 63

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont

from adafruit rgb display import i1i9341

from adafruit rgb display import st7789 # pylint: disable=unused-import
from adafruit rgb display import hx8357 # pylint: disable=unused-import
from adafruit rgb display import st7735 # pylint: disable=unused-import
from adafruit rgb display import ssd1351 # pylint: disable=unused-import
from adafruit rgb display import ssd1331 # pylint: disable=unused-import

Configuration for CS and DC pins (these are PiTFT defaults):
cs _pin = digitalio.DigitalInOQut(board.CEQ)

dc _pin = digitalio.DigitalInOut(board.D25)

reset pin = digitalio.DigitalInOut(board.D24)

Config for display baudrate (default max is 24mhz):
BAUDRATE = 24000000

Setup SPI bus using hardware SPI:
spi = board.SPI()

pylint: disable=line-too-long

Create the display:

disp = st7789.ST7789(spi, rotation=90, # 2.0" ST7789
disp = st7789.ST7789(spi, height=240, y offset=80, rotation=180, # 1.3", 1.54"
ST7789

disp = st7789.ST7789(spi, rotation=90, width=135, height=240, x offset=53,

y offset=40, # 1.14" ST7789

disp = hx8357.HX8357(spi, rotation=180, # 3.5" HX8357
disp = st7735.ST7735R(spi, rotation=90, # 1.8" ST7735R
disp = st7735.ST7735R(spi, rotation=270, height=128, x offset=2, y offset=3,
1.44" ST7735R
disp = st7735.ST7735R(spi, rotation=90, bgr=True, # 0.96" MiniTFT
ST7735R
disp = ssd1351.SSD1351(spi, rotation=180, # 1.5" SSD1351
disp = ssd1351.SSD1351(spi, height=96, y offset=32, rotation=180, # 1.27" SSD1351
disp = ssd1331.SSD1331(spi, rotation=180, # 0.96" SSD1331
disp = 11i9341.ILI9341(

spi,

rotation=90, # 2.2", 2.4", 2.8", 3.2" ILI9341
cs=cs_pin,

dc=dc_pin,

rst=reset pin,

baudrate=BAUDRATE,

)
pylint: enable=line-too-long

Create blank image for drawing.

Make sure to create image with mode 'RGB' for full color.

if disp.rotation % 180 == 90:
height = disp.width # we swap height/width to rotate it to landscape!
width = disp.height

else:
width = disp.width # we swap height/width to rotate it to landscape!
height = disp.height

image = Image.new("RGB", (width, height))

Get drawing object to draw on image.
draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

draw.rectangle((0, 0, width, height), outline=0, fill=(0, 0, 0))
disp.image(image)

©Adafruit Industries Page 58 of 63

First define some constants to allow easy positioning of text.
padding = -2
x =0

Load a TTF font. Make sure the .ttf font file is in the

same directory as the python script!

Some other nice fonts to try: http://www.dafont.com/bitmap.php

font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", 24)

while True:
Draw a black filled box to clear the image.
draw.rectangle((0, 0, width, height), outline=0, fill=0)

Shell scripts for system monitoring from here:

https://unix.stackexchange.com/questions/119126/command-to-display-memory -
usage-disk-usage-and-cpu-load

cmd = "hostname -I | cut -d' ' -fl1"

IP = "IP: " 4 subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"
CPU = subprocess.check output(cmd, shell=True).decode("utf-8")
cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\",

$3,%$2,$3*%100/%$2 }'"

MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = 'df -h | awk \'$NF=="/"{printf "Disk: %d/%d GB %s", $3,$2,$5}\""'

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zone®/temp | awk '{printf \"CPU Temp: %.
1f C\", $(NF-0) / 1000}'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Write four lines of text.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")

y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")
y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")
y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Display image.
disp.image(image)
time.sleep(0.1)

Just like the last example, we'll start by importing everything we imported, but we're
adding two more imports. The first one is time so that we can add a small delay and
the otheris subprocess so we can gather some system information.

import time

import subprocess

import digitalio

import board

from PIL import Image, ImageDraw, ImageFont
import adafruit rgb display.ili9341 as ili9341

Next, just like in the first two examples, we will set up the display, setup the rotation,
and create a draw object. If you have are using a different display than the ILI9341, go
ahead and adjust your initializer as explained in the previous example.

©Adafruit Industries Page 59 of 63

Just like in the first example, we're going to draw a black rectangle to fill up the
screen. After that, we're going to set up a couple of constants to help with positioning
text. The first is the padding and that will be the Y-position of the top-most text and
the other is x which is the X-Position and represents the left side of the text.

First define some constants to allow easy positioning of text.
padding = -2
x =0

Next, we load a font just like in the second example.

font = ImageFont.truetype('/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf', 24)

Now we get to the main loop and by using while True: , it will loop until Control+C
is pressed on the keyboard. The first item inside here, we clear the screen, but notice
that instead of giving it a tuple like before, we can just pass 0 and it will draw black.

draw.rectangle((0, 0, width, height), outline=0, fill=0)

Next, we run a few scripts using the subprocess function that get called to the
Operating System to get information. The in each command is passed through awk in
order to be formatted better for the display. By having the OS do the work, we don't
have to. These little scripts came from https://unix.stackexchange.com/
questions/119126/command-to-display-memory-usage-disk-usage-and-cpu-
load

cmd = "hostname -I | cut -d\' \' -f1"

IP = "IP: "+subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "top -bnl | grep load | awk '{printf \"CPU Load: %.2f\", $(NF-2)}'"

CPU = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "free -m | awk 'NR==2{printf \"Mem: %s/%s MB %.2f%%\", $3,%$2,$3*100/$2 }'"
MemUsage = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "df -h | awk '$NF==\"/\"{printf \"Disk: %d/%d GB %s\", $3,%$2,$5}'"

Disk = subprocess.check output(cmd, shell=True).decode("utf-8")

cmd = "cat /sys/class/thermal/thermal zone0/temp | awk \'{printf \"CPU Temp: %.1f
C\", $(NF-0) / 1000}\'" # pylint: disable=line-too-long

Temp = subprocess.check output(cmd, shell=True).decode("utf-8")

Now we display the information for the user. Here we use yet another way to pass
color information. We can pass it as a color string using the pound symbol, just like we
would with HTML. With each line, we take the height of the line using getsize()

and move the pointer down by that much.

y = padding

draw.text((x, y), IP, font=font, fill="#FFFFFF")
y += font.getsize(IP)[1]

draw.text((x, y), CPU, font=font, fill="#FFFF00")

©Adafruit Industries Page 60 of 63

y += font.getsize(CPU)[1]

draw.text((x, y), MemUsage, font=font, fill="#00FF00")
y += font.getsize(MemUsage)[1]

draw.text((x, y), Disk, font=font, fill="#0000FF")

y += font.getsize(Disk)[1]

draw.text((x, y), Temp, font=font, fill="#FFOOFF")

Finally, we write all the information out to the display using disp.image() . Since we

are looping, we tell Python to sleep for 0.1 seconds so that the CPU never gets too
busy.

disp.image(image)
time.sleep(.1)

IBHEBIT/N LIl 42T OZEXBHT

IP: 192.168.11.33
CPU Load: 0.08

| Py
| do L2

pInJjepe

3
p ¢
o
w
&
L2
O
O
v
o
O

o

9.

3
®

5)

>

&

<

—

Zz
L

NS

Troubleshooting

Display does not work on initial power but does work
after a reset.

The display driver circuit needs a small amount of time to be ready after initial
power. If your code tries to write to the display too soon, it may not be ready. It will
work on reset since that typically does not cycle power. If you are having this issue,
try adding a small amount of delay before trying to write to the display.

In Arduino, use delay() to add a few milliseconds before calling tft.begin(). Adjust

the amount of delay as needed to see how little you can get away with for your
specific setup.

©Adafruit Industries Page 61 of 63

Downloads

Datasheets

« ILI9341 TFT controller chip datasheet (https://adafru.it/d4l) (this is what you want
to refer to if porting or if you want to look at the TFT command set)

« Datasheet for the raw 2.4" screen itself (https://adafru.it/fgr)

« Adafruit ILI9341 Arduino driver library (https://adafru.it/d4d)

- EagleCAD PCB files on GitHub (https://adafru.it/rEl)

« Fritzing object in the Adafruit Fritzing Library (https://adafru.it/aP3)

Schematic

Click to embiggen

Fabrication Print

Dimensions in Inches

©Adafruit Industries Page 62 of 63

http://www.adafruit.com/datasheets/ILI9341.pdf
http://www.adafruit.com/datasheets/YX240QV29-T__REV.B.pdf
https://github.com/adafruit/Adafruit_ILI9341
https://github.com/adafruit/Adafruit-2.4-TFT-Breakout-PCB
https://github.com/adafruit/Fritzing-Library

©Adafruit Industries Page 63 of 63

	Adafruit 2.4" Color TFT Touchscreen Breakout
	Table of Contents
	Overview
	Pinouts
	Assembly
	Wiring & Test
	8-Bit Wiring & Test
	SPI Wiring & Test
	Bitmaps (SPI Mode)
	Adafruit GFX Library
	Resistive Touchscreen
	CircuitPython Displayio Quickstart
	Python Wiring and Setup
	Python Usage
	Troubleshooting
	Downloads

	Overview
	Pinouts
	SPI Mode
	Resistive touch pins
	8-Bit Mode
	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Wiring & Test
	8-Bit Wiring & Test
	8-Bit Wiring
	Part 1 - Power & backlight test
	Part 2 - Data Bus Lines

	8-Bit Library Install
	SPI Wiring & Test
	SPI Mode Jumpers
	Wiring
	Install Libraries
	Install Libraries

	Bitmaps (SPI Mode)
	Adafruit GFX Library
	Resistive Touchscreen
	Download Library
	Touchscreen Paint (SPI mode)
	Touchscreen Paint (8-Bit mode)
	CircuitPython Displayio Quickstart
	Preparing the Breakout
	Wiring the Breakout to the Feather

	Required CircuitPython Libraries
	Code Example Additional Libraries

	CircuitPython Code Example
	Code Details
	Using Touch

	Where to go from here
	Python Wiring and Setup
	Wiring
	ILI9341 and HX-8357-based Displays
	2.2" Display
	2.4", 2.8", 3.2", and 3.5" Displays

	ST7789 and ST7735-based Displays
	1.3", 1.54", and 2.0" IPS TFT Display
	0.96", 1.14", and 1.44" Displays
	1.8" Display

	SSD1351-based Displays
	1.27" and 1.5" OLED Displays

	SSD1331-based Display
	0.96" OLED Display

	Setup
	Python Installation of RGB Display Library
	DejaVu TTF Font
	Pillow Library

	Python Usage
	Turning on the Backlight
	Displaying an Image
	Drawing Shapes and Text
	Displaying System Information

	Troubleshooting
	Display does not work on initial power but does work after a reset.

	Downloads
	Datasheets
	Schematic
	Fabrication Print

