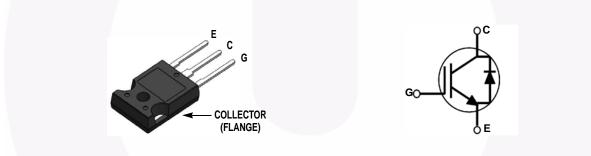
March 2015

FGH40N60SFD 600 V, 40 A Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 2.3 V @ I_C = 40 A
- High Input Impedance
- Fast Switching
- RoHS Compliant

Applications

 Solar Inverter, UPS, Welder, PFC, Microwave Oven, Telecom, ESS

General Description

Using novel field stop IGBT technology, Fairchild's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder, microwave oven, telecom, ESS and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

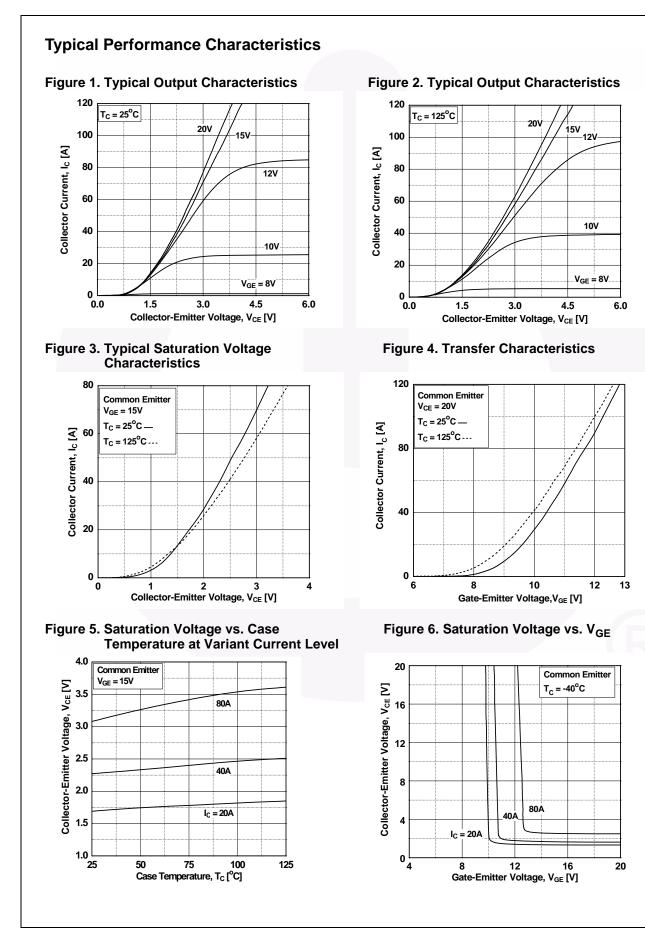
Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		600	V	
M	Gate to Emitter Voltage		±20	V	
V _{GES}	Transient Gate-to-Emitter Voltage		±30	- V	
I _C	Collector Current	@ T _C = 25°C	80	A	
ч С	Collector Current	@ T _C = 100 ^o C	40	А	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	120	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	290	W	
· U	Maximum Power Dissipation	@ T _C = 100 ^o C	116	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes:

1: Repetitive rating: Pulse width limited by max. junction temperature

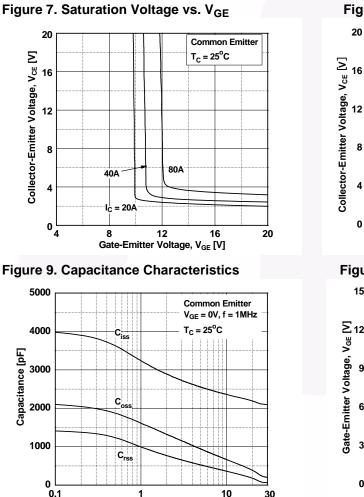
Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction to Case	-	0.43	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.45	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W	


Part Number Top Mark Packa		ge Packing Method		Re	el Size	Tape Width		Quantity		
FGH40N60SFDTU FGH40N60SFD TO-24		7	Tube	N/A		N/A		30		
Electric	al Cha	racteristics o	f the IC	GB.	T $T_{C} = 25^{\circ}C$ unless otherwise	e noted				
Symbol		Parameter			Test Conditions		Min.	Тур.	Max	. Unit
Off Charac	teristics						-			
BV _{CES}	Collector	to Emitter Breakdowr	Voltage	Ver	_Ξ = 0 V, I _C = 250 μA		600	-	-	V
ΔBV_{CES} / ΔT_J		ture Coefficient of Bre	0		_E = 0 V, I _C = 250 μA		-	0.6	-	V/ºC
ICES		r Cut-Off Current		V _{CE} = V _{CES} , V _{GE} = 0 V		-	_	250	μA	
I _{GES}	G-E Lea	kage Current		$V_{CE} = V_{CES}, V_{GE} = 0 V$ $V_{GE} = V_{GES}, V_{CE} = 0 V$		-	-	±400		
510				01						
On Charac	teristics									
V _{GE(th)}	G-E Thre	eshold Voltage		-	= 250 μ A, V _{CE} = V _{GE}		4.0	5.0	6.5	V
		uration Valtage		= 40 A, V _{GE} = 15 V		-	2.3	2.9	V	
V _{CE(sat)}	Collector	or to Emitter Saturation Voltage			$I_{C} = 40 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 125^{\circ}\text{C}$			2.5	-	V
Dynamic C	haracteri	stics								
C _{ies}	Input Ca	pacitance					-	2110	-	pF
C _{oes}	Output C	apacitance		V _{CE} = 30 V _, V _{GE} = 0 V, f = 1 MHz		-	200	-	pF	
C _{res}	Reverse	Transfer Capacitance	•				-	60	-	pF
Switching	Character	ristics								
t _{d(on)}	Turn-On	Delay Time					-	25	-	ns
t _r	Rise Tim	e					-	42	-	ns
t _{d(off)}	Turn-Off	Delay Time		Vcc	_C = 400 V, I _C = 40 A,		-	115	-	ns
t _f	Fall Time	e		R_{G}	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$		-	27	54	ns
Eon	Turn-On	Switching Loss		Ind			-	1.13	-	mJ
E _{off}	Turn-Off	Switching Loss					-	0.31	-	mJ
E _{ts}	Total Sw	itching Loss					-	1.44	-	mJ
t _{d(on)}	Turn-On	Delay Time					-	24	-	ns
t _r	Rise Tim	e					-	43	-	ns
t _{d(off)}	Turn-Off	Delay Time		Vcd	_C = 400 V, I _C = 40 A,		-	120	-	ns
t _f	Fall Time	9		R_{G}	$R_{G} = 10 \ \Omega$, $V_{GE} = 15 \ V$,		-	30	-	ns
E _{on}	Turn-On	Switching Loss		Ind	uctive Load, T _C = 125 ^o C	,	-	1.14	-	mJ
E _{off}	Turn-Off	Switching Loss		1			-	0.48	-	mJ
E _{ts}	Total Sw	itching Loss		Ī			-	1.62	-	mJ
Qg	Total Gat	te Charge					-	120	-	nC
Q _{ge}	Gate to E	Emitter Charge			= 400 V, I _C = 40 A,		-	14	-	nC
Q _{gc}	Coto to (Collector Charge			V _{GE} = 15 V		_	58	-	nC

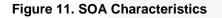
FGH40N
60SFD —
600 V, 40
) A Field
Stop IGB

Symbol	Parameter	Test Condition	Min.	Тур.	Max	Unit	
V _{FM}	Diode Forward Voltage	I _E = 20 A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	1.95	2.6	V
* F M		F = 20 /	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	1.85	-	, ,
t	Diode Reverse Recovery Time		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	45	-	ns
۲r		I _F =20 A, di _F /dt = 200 A/μs	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	140	-	
Q _{rr}	Diode Reverse Recovery Charge	$r_{\rm F} = 20 \text{ A}, \ \text{ar}_{\rm F}/\text{at} = 200 \text{ A}/\mu\text{s}$	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	75	-	nC
	Diodo Reference Receivery enarge		$T_{\rm C} = 125^{\rm o}{\rm C}$	-	375	-	


3

FGH40N60SFD — 600 V, 40 A Field Stop IGBT

©2008 Fairchild Semiconductor Corporation


FGH40N60SFD Rev.1.5

Typical Performance Characteristics

Collector-Emitter Voltage, V_{CE} [V]

1

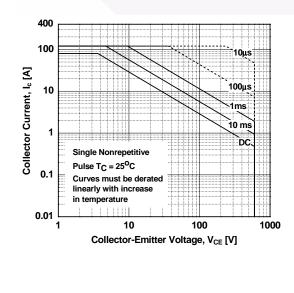
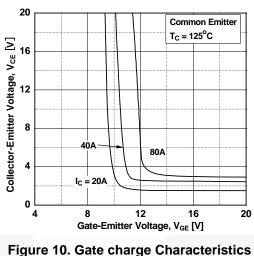
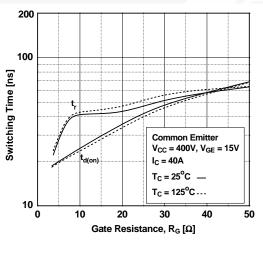
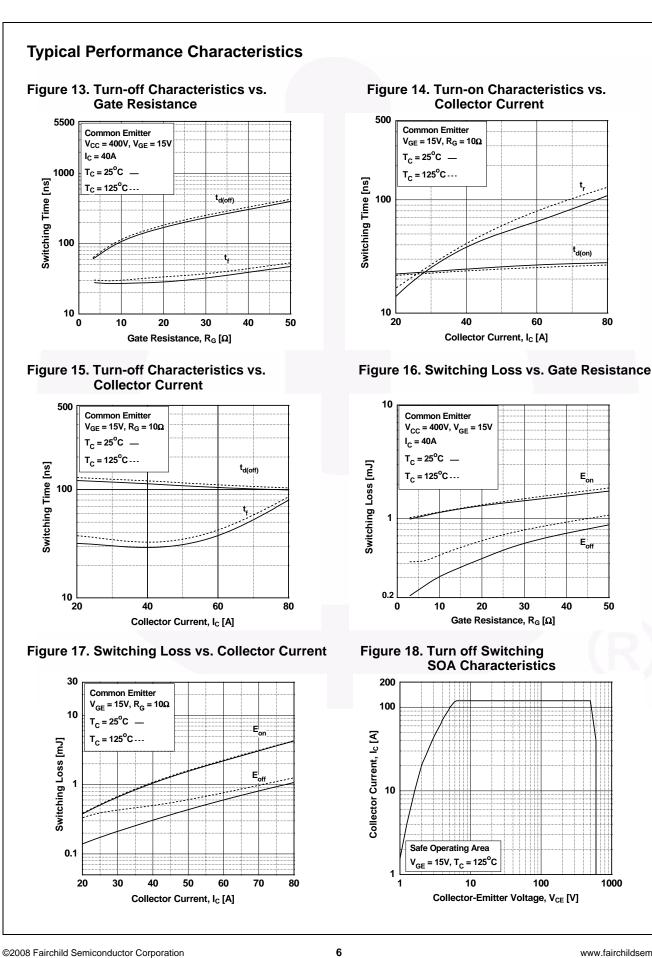




Figure 8. Saturation Voltage vs. V_{GE}

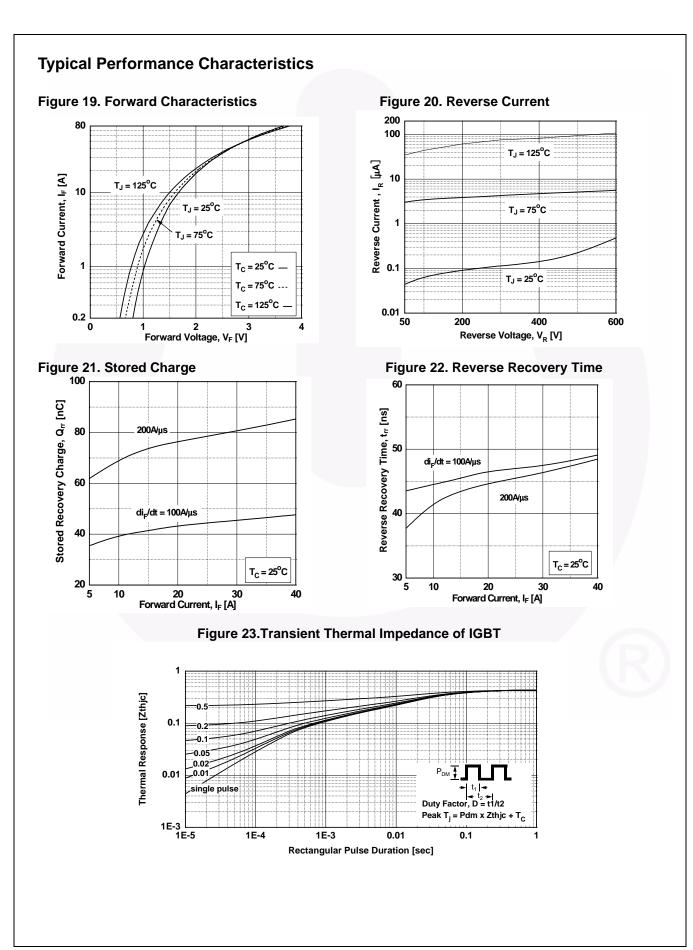
Common Emitter $T_C = 25^{\circ}C$ Gate-Emitter Voltage, V_{GE} [V] 8 0 6 71 200V = 100V 300V 0 50 100 150 0 Gate Charge, Q_q [nC]

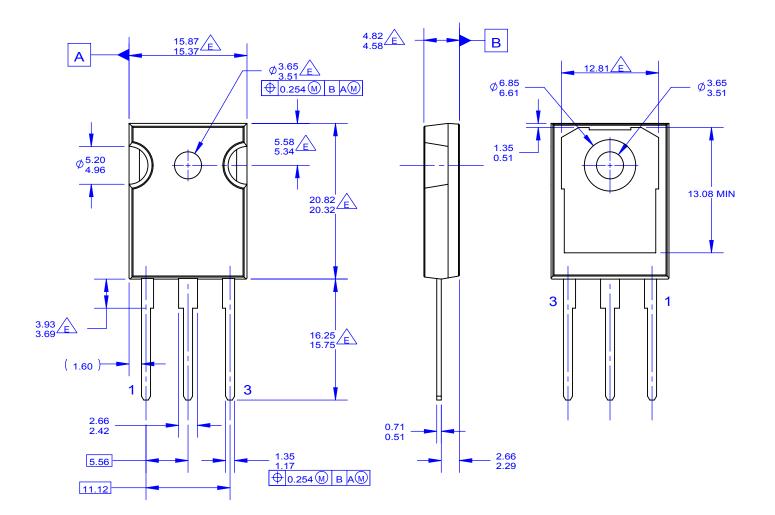
Figure 12. Turn-on Characteristics vs. **Gate Resistance**



©2008 Fairchild Semiconductor Corporation FGH40N60SFD Rev.1.5

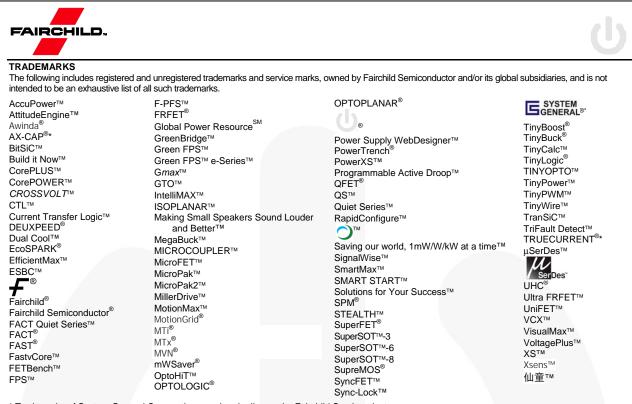
30


10


FGH40N60SFD — 600 V, 40 A Field Stop IGBT

FGH40N60SFD Rev.1.5

FGH40N60SFD — 600 V, 40 A Field Stop IGBT



NOTES: UNLESS OTHERWISE SPECIFIED.

- A. PACKAGE REFERENCE: JEDEC TO-247, ISSUE E, VARIATION AB, DATED JUNE, 2004.B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
- FLASH, AND TIE BAR EXTRUSIONS.
- C. ALL DIMENSIONS ARE IN MILLIMETERS.
- D. DRAWING CONFORMS TO ASME Y14.5 1994

DOES NOT COMPLY JEDEC STANDARD VALUE F. DRAWING FILENAME: MKT-TO247A03_REV03

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.