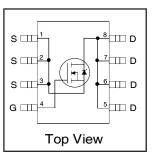
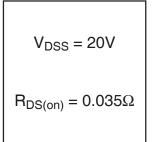
International Rectifier

IRF7402PbF


HEXFET® Power MOSFET


- Generation V Technology
- Ultra Low On-Resistance
- N-Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- Available in Tape & Reel
- Fast Switching
- Lead-Free

Description

Fifth Generation HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The SO-8 has been modified through a customized leadframe for enhanced thermal characterstics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infrared or wave soldering techniques. Power dissipation of greater than 0.8 W is possible in a typical PCB mount application.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	6.8	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	5.4	Α
I _{DM}	Pulsed Drain Current ①	54	
P _D @T _A = 25°C	Power Dissipation	2.5	W
P _D @T _A = 70°C	Power Dissipation	1.6	
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
dv/dt	Peak Diode Recovery dv/dt ②	5.0	V/ns
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient @	50	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.024		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.035	Ω	V _{GS} = 4.5V, I _D = 4.1A ③
				0.050		$V_{GS} = 2.7V, I_D = 3.5A$ ③
V _{GS(th)}	Gate Threshold Voltage	0.70			V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9 _{fs}	Forward Transconductance	6.1			S	$V_{DS} = 10V, I_D = 1.9A$
1	Drain-to-Source Leakage Current			1.0	^	V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Diam-to-Source Leakage Guirent			25	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
lasa	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	$V_{GS} = -12V$
Qg	Total Gate Charge		14	22		I _D = 3.8A
Q _{gs}	Gate-to-Source Charge		2.0	3.0	nC	$V_{DS} = 16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		6.3	9.5	1	V_{GS} = 4.5V, See Fig. 6 and 12 $^{\circ}$
t _{d(on)}	Turn-On Delay Time		5.1			$V_{DD} = 10V$
t _r	Rise Time		47		ns	$I_D = 3.8A$
t _{d(off)}	Turn-Off Delay Time		24		115	$R_G = 6.2\Omega$
t _f	Fall Time		32			$R_D = 2.6\Omega$ ③
C _{iss}	Input Capacitance		650			$V_{GS} = 0V$
Coss	Output Capacitance		300		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		150			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions												
Is	Continuous Source Current			0.5		MOSFET symbol												
	(Body Diode)			2.5	_	showing the												
I _{SM}	Pulsed Source Current			54			- A	F 4	F.4	F 4		- A		F 4	- A		A	integral reverse
	(Body Diode) ①					p-n junction diode.												
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 3.8A$, $V_{GS} = 0V$ ③												
t _{rr}	Reverse Recovery Time		51	77	ns	T _J = 25°C, I _F = 3.8A												
Q _{rr}	Reverse Recovery Charge		69	100	nC	di/dt = 100A/μs ③												

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\begin{tabular}{l} \textcircled{2} & I_{SD} \leq 3.8A, \ di/dt \leq 96A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \\ & T_{J} \leq 150 ^{\circ} C \end{tabular}$
- $\ensuremath{\mathfrak{G}}$ When mounted on 1 inch square copper board, t<10 sec
- ⑤ This data sheet has curves & data from IRF7601

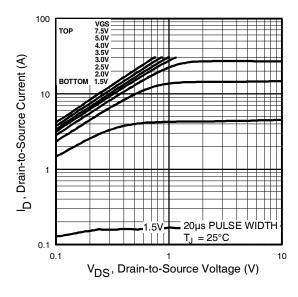


Fig 1. Typical Output Characteristics

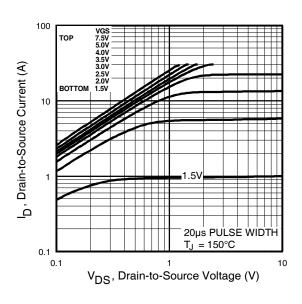
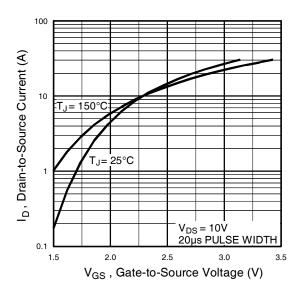
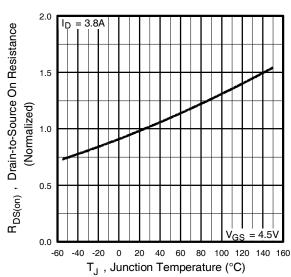
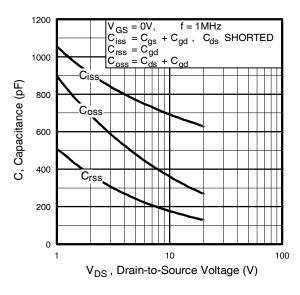
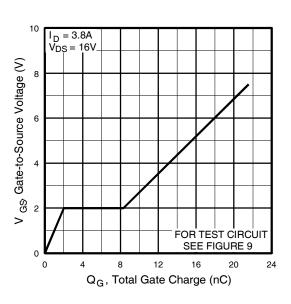


Fig 2. Typical Output Characteristics


Fig 3. Typical Transfer Characteristics

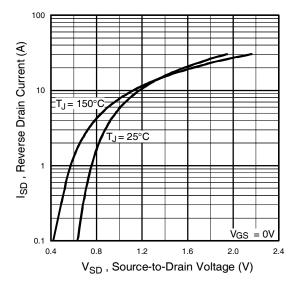

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

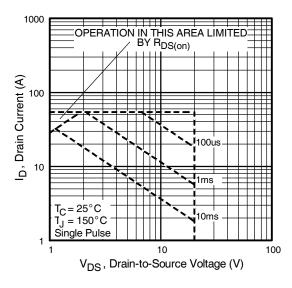
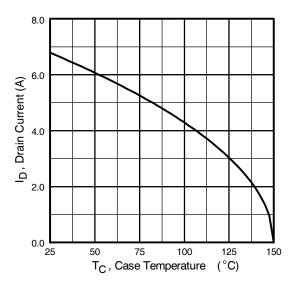



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Ambient Temperature

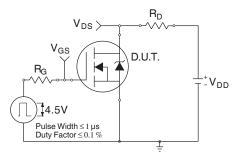


Fig 10a. Switching Time Test Circuit

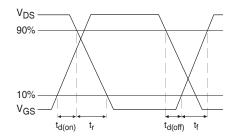


Fig 10b. Switching Time Waveforms

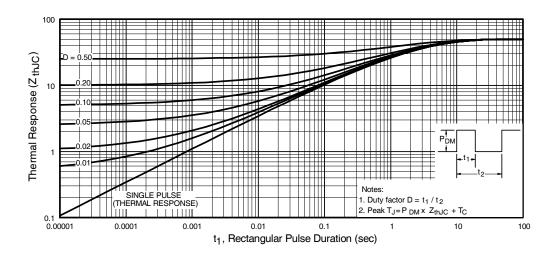


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International TOR Rectifier

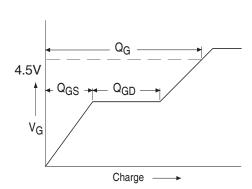


Fig 12a. Basic Gate Charge Waveform

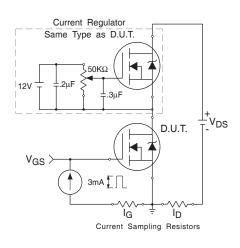
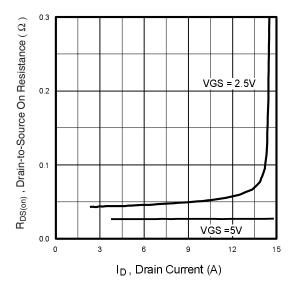
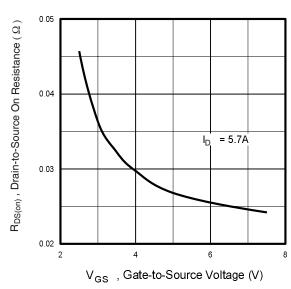
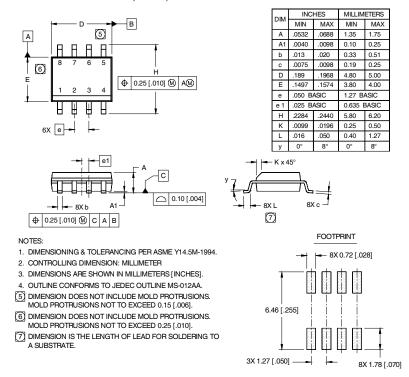
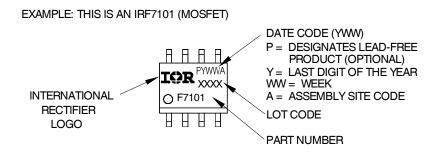


Fig 12b. Gate Charge Test Circuit

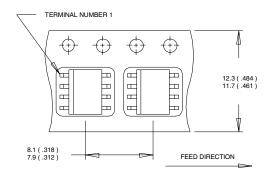




Fig 13. Typical On-Resistance Vs. Drain Current

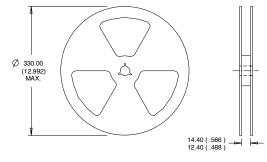

Fig 14. Typical On-Resistance Vs. Gate Voltage

SO-8 Package Outline

Dimensions are shown in milimeters (inches)



SO-8 Part Marking Information (Lead-Free)



SO-8 Tape and Reel

Dimensions are shown in milimeters (inches)

- 1. CONTROLLING DIMENSION : MILLIMETER.
 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information,09/04

8

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.