

# NSM80101MT1G

## NPN Transistor with Dual Series Switching Diode

### Features

- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

### Typical Applications

- LCD Control Board
- High Speed Switching
- High Voltage Switching

### MAXIMUM RATINGS – PNP TRANSISTOR

| Rating                         | Symbol    | Value | Unit |
|--------------------------------|-----------|-------|------|
| Collector – Emitter Voltage    | $V_{CEO}$ | 80    | Vdc  |
| Collector – Base Voltage       | $V_{CBO}$ | 80    | Vdc  |
| Emitter – Base Voltage         | $V_{EBO}$ | 6.0   | Vdc  |
| Collector Current – Continuous | $I_C$     | 500   | mAdc |

### MAXIMUM RATINGS – SWITCHING DIODE

| Rating                                                                                                                                     | Symbol         | Value       | Unit |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------|
| Reverse Voltage                                                                                                                            | $V_R$          | 100         | V    |
| Forward Current                                                                                                                            | $I_F$          | 200         | mA   |
| Non-Repetitive Peak Forward Current (Square Wave, $T_J = 25^\circ\text{C}$ prior to surge)<br>$t < 1 \text{ sec}$<br>$t = 1 \mu\text{sec}$ | $I_{FSM}$      | 1.0<br>20   | A    |
| Operating and Storage Junction Temperature Range                                                                                           | $T_J, T_{stg}$ | -55 to +150 | °C   |

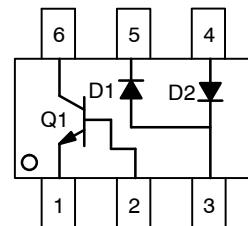
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

### ESD RATINGS

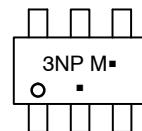
| Rating                  | Class     | Value    |
|-------------------------|-----------|----------|
| Electrostatic Discharge | HBM<br>MM | 3A<br>M4 |

### THERMAL CHARACTERISTICS

| Rating                                                                                        | Symbol          | Max         | Unit        |
|-----------------------------------------------------------------------------------------------|-----------------|-------------|-------------|
| Total Device Dissipation FR-5 Board, (Note 1) @ $T_A = 25^\circ\text{C}$<br>Derate above 25°C | $P_D$           | 400         | mW<br>mW/°C |
| Thermal Resistance from Junction-to-Ambient (Note 1)                                          | $R_{\theta JA}$ | 313         | °C/W        |
| Total Device Dissipation FR-5 Board (Note 2) $T_A = 25^\circ\text{C}$<br>Derate above 25°C    | $P_D$           | 270         | mW<br>mW/°C |
| Thermal Resistance, Junction-to-Ambient (Note 2)                                              | $R_{\theta JA}$ | 463         | °C/W        |
| Junction and Storage Temperature Range                                                        | $T_J, T_{stg}$  | -55 to +150 | °C          |


- FR-5 = 650 mm<sup>2</sup> pad, 2.0 oz Cu.
- FR-5 = 10 mm<sup>2</sup> pad, 2.0 oz Cu.




ON Semiconductor®

<http://onsemi.com>

## NPN Transistor with Dual Series Switching Diode



### MARKING DIAGRAM



3NP = Device Code  
M = Date Code\*  
- = Pb-Free Package

(Note: Microdot may be in either location)

\*Date Code orientation may vary depending upon manufacturing location.

### ORDERING INFORMATION

| Device       | Package         | Shipping <sup>†</sup> |
|--------------|-----------------|-----------------------|
| NSM80101MT1G | SC-74 (Pb-Free) | 3000 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

# NSM80101MT1G

## Q1: NPN TRANSISTOR ELECTRICAL CHARACTERISTICS ( $T_A = 25^\circ\text{C}$ unless otherwise noted)

| Characteristic | Symbol | Min | Max | Unit |
|----------------|--------|-----|-----|------|
|----------------|--------|-----|-----|------|

### OFF CHARACTERISTICS

|                                                                                          |                             |     |     |               |
|------------------------------------------------------------------------------------------|-----------------------------|-----|-----|---------------|
| Collector – Emitter Breakdown Voltage (Note 3)<br>( $I_C = 1.0 \text{ mA}$ , $I_B = 0$ ) | $V_{(\text{BR})\text{CEO}}$ | 80  | –   | V             |
| Emitter – Base Breakdown Voltage<br>( $I_E = 100 \mu\text{A}$ , $I_C = 0$ )              | $V_{(\text{BR})\text{EBO}}$ | 6.0 | –   | V             |
| Collector Cutoff Current<br>( $V_{\text{CE}} = 60 \text{ V}$ , $I_B = 0$ )               | $I_{\text{CES}}$            | –   | 0.1 | $\mu\text{A}$ |
| Collector Cutoff Current<br>( $V_{\text{CB}} = 80 \text{ V}$ , $I_E = 0$ )               | $I_{\text{CBO}}$            | –   | 0.1 | $\mu\text{A}$ |

### ON CHARACTERISTICS (Note 3)

|                                                                                                    |                             |     |     |   |
|----------------------------------------------------------------------------------------------------|-----------------------------|-----|-----|---|
| DC Current Gain<br>( $I_C = 10 \text{ mA}$ , $V_{\text{CE}} = 1.0 \text{ V}$ )                     | $h_{\text{FE}}$             | 120 | –   | – |
| Collector – Emitter Saturation Voltage<br>( $I_C = 100 \text{ mA}$ , $I_B = 10 \text{ mA}$ )       | $V_{\text{CE}(\text{sat})}$ | –   | 0.3 | V |
| Base – Emitter Saturation Voltage<br>( $I_C = 10 \text{ mA}$ , $V_{\text{CE}} = 5.0 \text{ Vdc}$ ) | $V_{\text{BE}(\text{sat})}$ | –   | 1.2 | V |

### SMALL-SIGNAL CHARACTERISTICS

|                                                                                                                           |       |     |   |     |
|---------------------------------------------------------------------------------------------------------------------------|-------|-----|---|-----|
| Current – Gain – Bandwidth Product<br>( $I_C = 10 \text{ mA}$ , $V_{\text{CE}} = 5.0 \text{ V}$ , $f = 100 \text{ MHz}$ ) | $f_T$ | 150 | – | MHz |
|---------------------------------------------------------------------------------------------------------------------------|-------|-----|---|-----|

3. Pulse Test: Pulse Width  $\leq 300 \mu\text{s}$ , Duty Cycle  $\leq 2.0\%$ .

## D1, D2: SWITCHING DIODE ( $T_A = 25^\circ\text{C}$ unless otherwise noted)

| Characteristic | Symbol | Min | Max | Unit |
|----------------|--------|-----|-----|------|
|----------------|--------|-----|-----|------|

### OFF CHARACTERISTICS

|                                                                                                                                                                             |                   |                  |                            |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|----------------------------|---------------|
| Reverse Breakdown Voltage                                                                                                                                                   | $V_{(\text{BR})}$ | 75               | –                          | V             |
| Reverse Voltage Leakage Current<br>( $V_R = 75 \text{ V}$ )<br>( $V_R = 20 \text{ V}$ , $T_J = 150^\circ\text{C}$ )<br>( $V_R = 75 \text{ V}$ , $T_J = 150^\circ\text{C}$ ) | $I_R$             | –<br>–<br>–      | 1.0<br>30<br>100           | $\mu\text{A}$ |
| Diode Capacitance<br>( $V_R = 0 \text{ V}$ , $f = 1.0 \text{ MHz}$ )                                                                                                        | $C_D$             | –                | 2.0                        | pF            |
| Forward Voltage<br>( $I_F = 1.0 \text{ mA}$ )<br>( $I_F = 10 \text{ mA}$ )<br>( $I_F = 50 \text{ mA}$ )<br>( $I_F = 150 \text{ mA}$ )                                       | $V_F$             | –<br>–<br>–<br>– | 715<br>855<br>1000<br>1250 | mV            |
| Reverse Recovery Time<br>( $I_F = I_R = 10 \text{ mA}$ , $i_{\text{R}(\text{REC})} = 1.0 \text{ mA}$ , $R_L = 100 \Omega$ )                                                 | $t_{\text{rr}}$   | –                | 6.0                        | ns            |
| Forward Recovery Voltage<br>( $I_F = 10 \text{ mA}$ , $t_r = 20 \text{ ns}$ )                                                                                               | $V_{\text{FR}}$   | –                | 1.75                       | V             |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

## TYPICAL CHARACTERISTICS

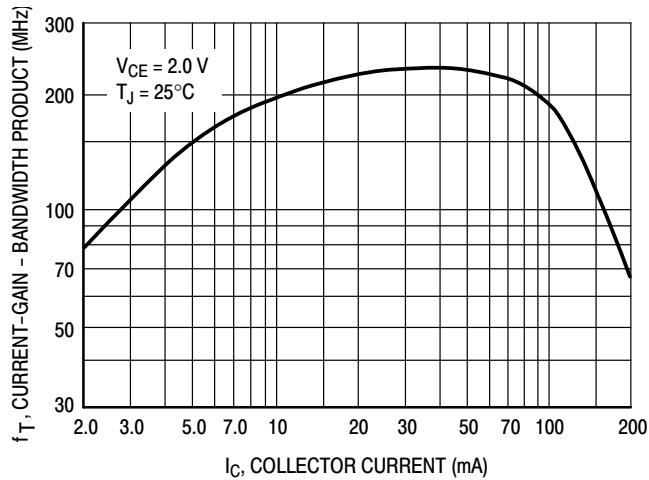



Figure 1. Current-Gain — Bandwidth Product

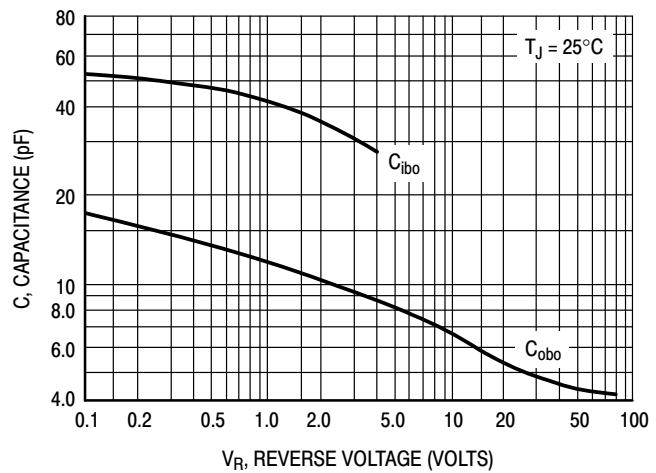



Figure 2. Capacitance

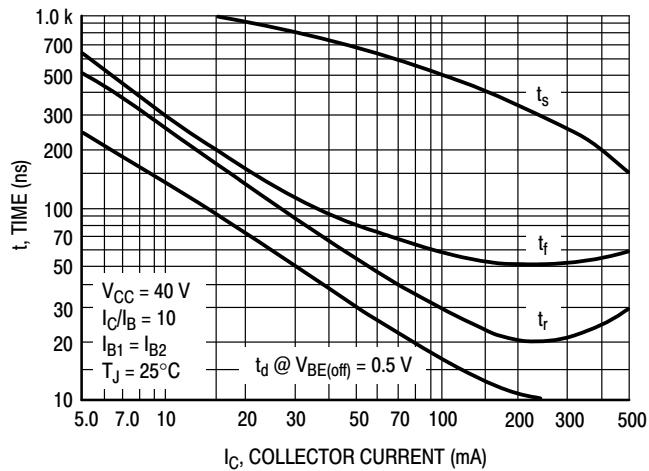



Figure 3. Switching Time

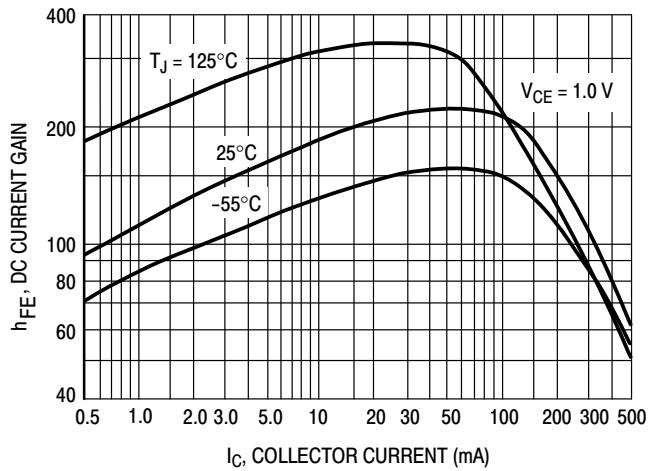



Figure 4. DC Current Gain

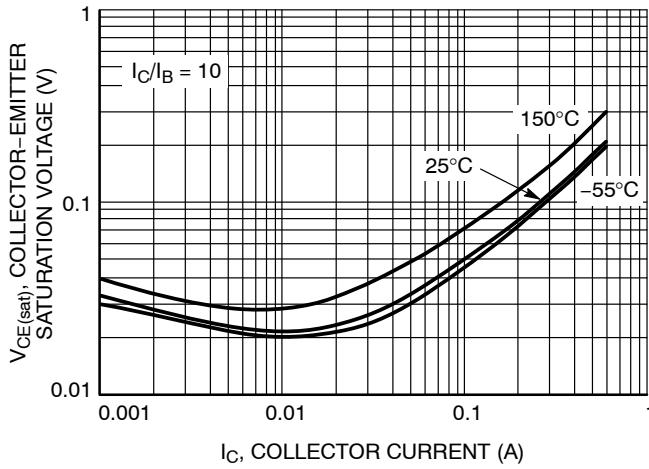



Figure 5. Collector Emitter Saturation Voltage vs. Collector Current

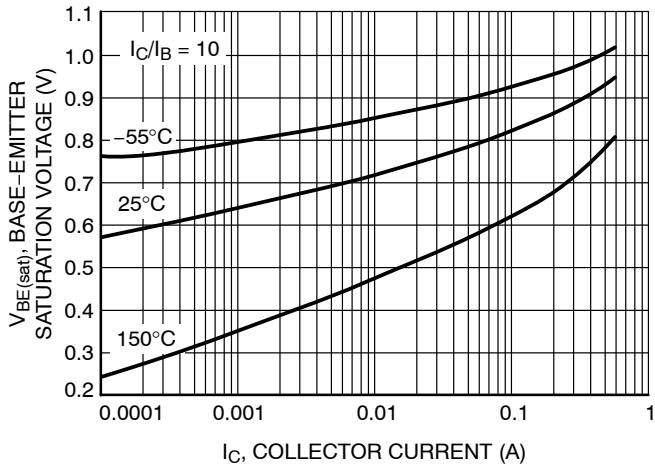
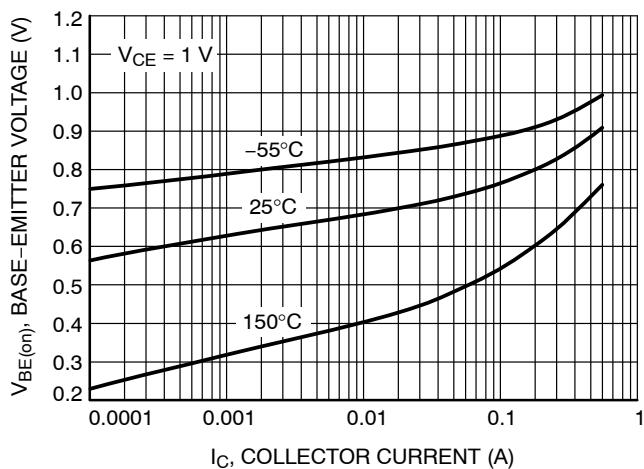
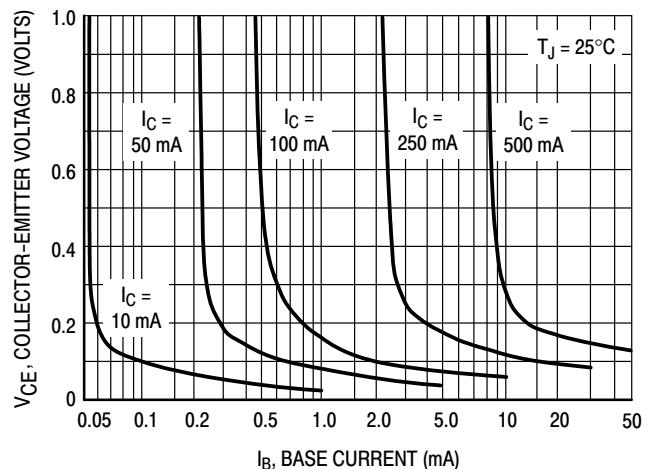
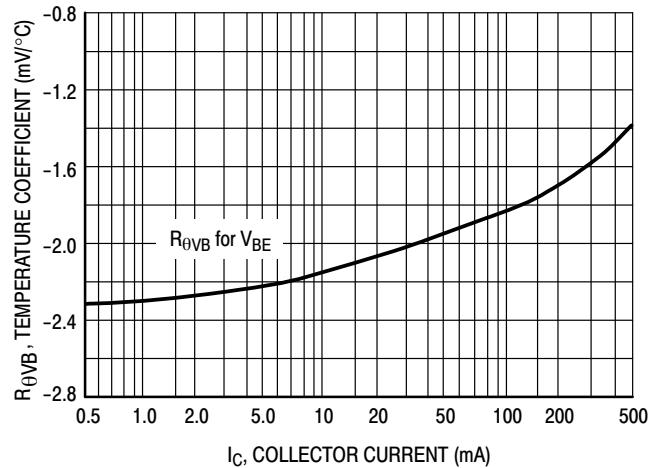
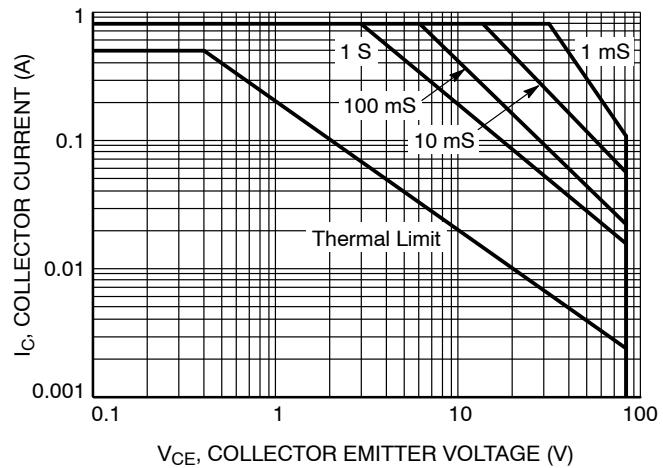




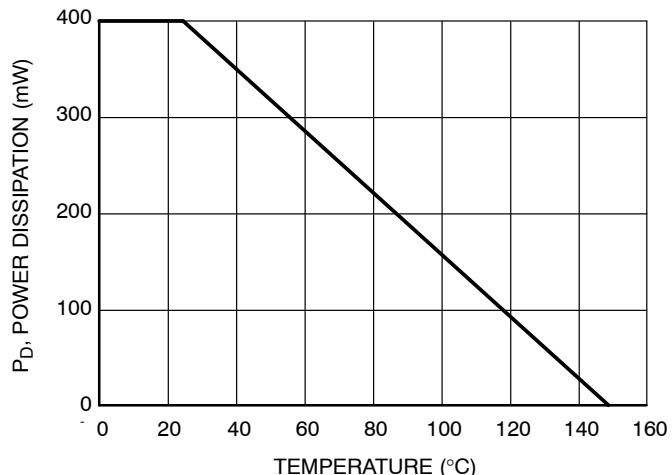

Figure 6. Base Emitter Saturation Voltage vs. Collector Current


**TYPICAL CHARACTERISTICS**



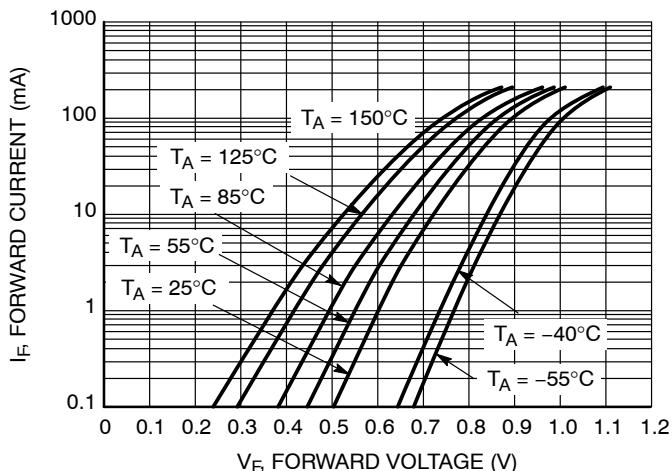

**Figure 7. Base Emitter Voltage vs. Collector Current**



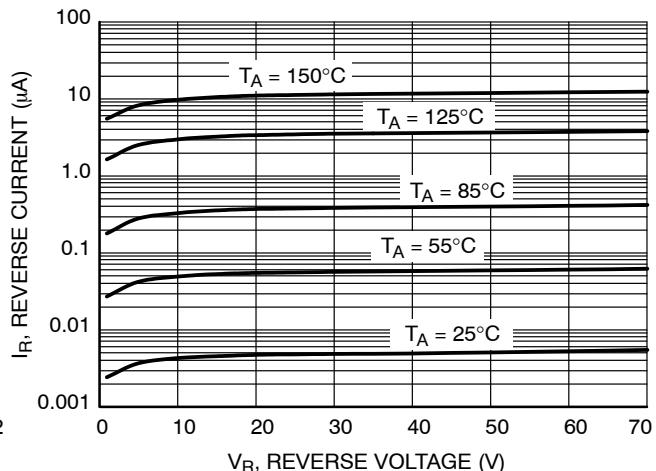

**Figure 8. Collector Saturation Region**



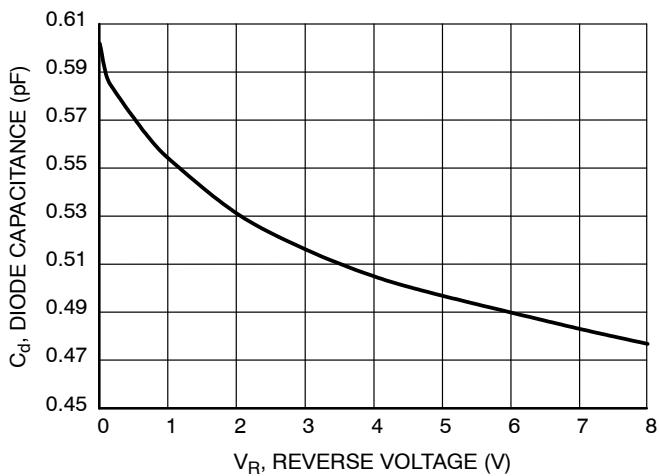
**Figure 9. Base-Emitter Temperature Coefficient**



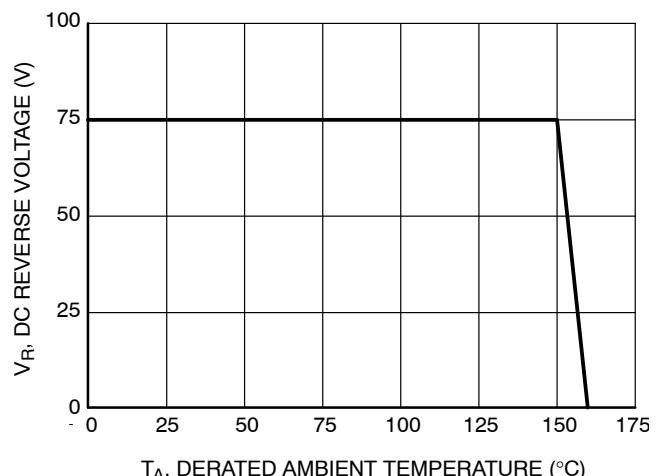

**Figure 10. Safe Operating Area**




**Figure 11. Operating Temperature Derating**


**TYPICAL CHARACTERISTICS**




**Figure 12. Forward Voltage**



**Figure 13. Leakage Current**

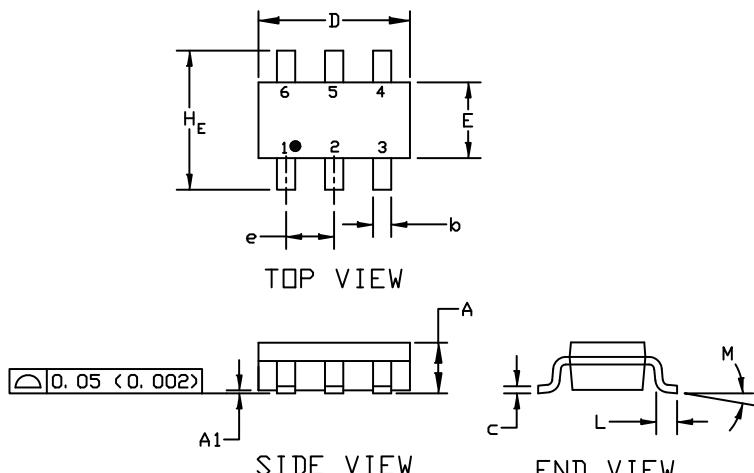


**Figure 14. Capacitance**



**Figure 15. Diode Power Dissipation Curve**

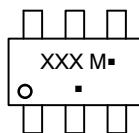
**MECHANICAL CASE OUTLINE**  
PACKAGE DIMENSIONS


**onsemi**<sup>TM</sup>



SCALE 2:1

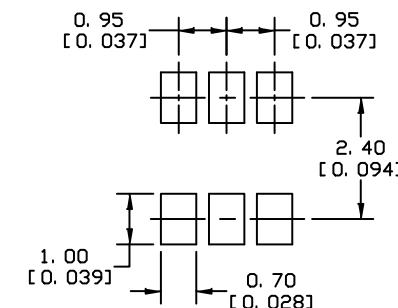
**SC-74**  
CASE 318F  
ISSUE P


DATE 07 OCT 2021



**NOTES:**  
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994  
 2. CONTROLLING DIMENSION: INCHES  
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.

| DIM            | MILLIMETERS |      |      | INCHES |       |       |
|----------------|-------------|------|------|--------|-------|-------|
|                | MIN.        | NOM. | MAX. | MIN.   | NOM.  | MAX.  |
| A              | 0.90        | 1.00 | 1.10 | 0.035  | 0.039 | 0.043 |
| A1             | 0.01        | 0.06 | 0.10 | 0.001  | 0.002 | 0.004 |
| b              | 0.25        | 0.37 | 0.50 | 0.010  | 0.015 | 0.020 |
| c              | 0.10        | 0.18 | 0.26 | 0.004  | 0.007 | 0.010 |
| D              | 2.90        | 3.00 | 3.10 | 0.114  | 0.118 | 0.122 |
| E              | 1.30        | 1.50 | 1.70 | 0.051  | 0.059 | 0.067 |
| e              | 0.85        | 0.95 | 1.05 | 0.034  | 0.037 | 0.041 |
| H <sub>E</sub> | 2.50        | 2.75 | 3.00 | 0.099  | 0.108 | 0.118 |
| L              | 0.20        | 0.40 | 0.60 | 0.008  | 0.016 | 0.024 |
| M              | 0°          | ---  | 10°  | 0°     | ---   | 10°   |


**GENERIC  
MARKING DIAGRAM\***



XXX = Specific Device Code  
 M = Date Code  
 ■ = Pb-Free Package

(Note: Microdot may be in either location)

\*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.



\* For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

**SOLDERING FOOTPRINT**

|                |                      |                  |                              |                  |                |
|----------------|----------------------|------------------|------------------------------|------------------|----------------|
| STYLE 1:       | STYLE 2:             | STYLE 3:         | STYLE 4:                     | STYLE 5:         | STYLE 6:       |
| PIN 1. CATHODE | PIN 1. NO CONNECTION | PIN 1. Emitter 1 | PIN 1. Collector 2           | PIN 1. CHANNEL 1 | PIN 1. CATHODE |
| 2. ANODE       | 2. COLLECTOR         | 2. BASE 1        | 2. Emitter 1/Emitter 2       | 2. ANODE         | 2. ANODE       |
| 3. CATHODE     | 3. Emitter           | 3. COLLECTOR 2   | 3. COLLECTOR 1               | 3. CHANNEL 2     | 3. CATHODE     |
| 4. CATHODE     | 4. NO CONNECTION     | 4. Emitter 2     | 4. Emitter 3                 | 4. CHANNEL 3     | 4. CATHODE     |
| 5. ANODE       | 5. COLLECTOR         | 5. BASE 2        | 5. BASE 1/BASE 2/Collector 3 | 5. CATHODE       | 5. CATHODE     |
| 6. CATHODE     | 6. BASE              | 6. COLLECTOR 1   | 6. BASE 3                    | 6. CHANNEL 4     | 6. CATHODE     |

|                 |                  |                  |                      |                  |
|-----------------|------------------|------------------|----------------------|------------------|
| STYLE 7:        | STYLE 8:         | STYLE 9:         | STYLE 10:            | STYLE 11:        |
| PIN 1. SOURCE 1 | PIN 1. Emitter 1 | PIN 1. Emitter 2 | PIN 1. ANODE/CATHODE | PIN 1. Emitter   |
| 2. GATE 1       | 2. BASE 2        | 2. BASE 2        | 2. BASE              | 2. BASE          |
| 3. DRAIN 2      | 3. COLLECTOR 2   | 3. COLLECTOR 1   | 3. Emitter           | 3. ANODE/CATHODE |
| 4. SOURCE 2     | 4. Emitter 2     | 4. Emitter 1     | 4. COLLECTOR         | 4. ANODE         |
| 5. GATE 2       | 5. BASE 1        | 5. BASE 1        | 5. ANODE             | 5. CATHODE       |
| 6. DRAIN 1      | 6. COLLECTOR 1   | 6. COLLECTOR 2   | 6. CATHODE           | 6. COLLECTOR     |

|                  |             |                                                                                                                                                                                     |
|------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DOCUMENT NUMBER: | 98ASB42973B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| DESCRIPTION:     | SC-74       | PAGE 1 OF 1                                                                                                                                                                         |

**onsemi** and **ONSEMI** are trademarks of Semiconductor Components Industries, LLC dba **onsemi** or its subsidiaries in the United States and/or other countries. **onsemi** reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

**onsemi, ONSEMI, and other names, marks, and brands** are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at [www.onsemi.com/site/pdf/Patent-Marking.pdf](http://www.onsemi.com/site/pdf/Patent-Marking.pdf). **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

### LITERATURE FULFILLMENT:

Email Requests to: [orderlit@onsemi.com](mailto:orderlit@onsemi.com)

**onsemi** Website: [www.onsemi.com](http://www.onsemi.com)

### TECHNICAL SUPPORT

#### North American Technical Support:

Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Phone: 011 421 33 790 2910

#### Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative