Adafruit PN532 RFID/NFC Breakout and

Shield

Created by lady ada

https://learn.adafruit.com/adafruit-pn532-rfid-nfc

Last updated on 2022-04-04 05:23:53 PM EDT

Page 1 of 52

©Adafruit Industries

Table of Contents

Overview

Breakout Wiring
« Wiring the Breakout for SPI

Shield Wiring

« Solder the Headers
« Using the Adafruit NFC Shield with 12C
« Using with the Arduino Leonardo and Yun

Arduino Library

« Which Library?
- Library Installation
« Testing MiFare

Python & CircuitPython

« CircuitPython Microcontroller Wiring

« Python Computer Wiring

« CircuitPython Installation of PN532 Library
« Python Installation of PN532 Library

« CircuitPython & Python Usage

« Full Example Code

Python Docs

About NFC

« NFC (Near Field Communication)

« Passive Communication: ISO14443A Cards (Mifare, etc.)

« Active Communication (Peer-to-Peer)
« NFC Data Exchange Format (NDEF)
« Reading

MiFare Cards & Tags

« MiFare Classic Cards

« EEPROM Memory

« 4 Block Sectors

« 16 Block Sectors

« Accessing EEPROM Memory
« Note on Authentication

« Example of a New Mifare Classic 1K Card
« MiFare Ultralight Cards

« EEPROM Memory

« Lock Bytes (Page 2)

« OTP Bytes (Page 3)

- Data Pages (Page 4-15)

« Accessing Data Blocks

- Read/Write Lengths

About the NDEF Format

« NDEF (NFC Data Exchange Format)
« NDEF Messages

©Adafruit Industries

10
"

12

12
12
13

14

14
16
18
18
19
20

21

21

21
22
22
23
24

24

24
24
25
26
27
27
28
29
29
30
30
30

31

31

31

31
32

Page 2 of 52

« NDEF Records 32

« Record Header (Byte 0) 32
- Type Length 33
« Payload Length 34
- ID Length 34
« Record Type 34
« Record ID 34
- Payload 34
« Well-Known Records (TNF Record Type 0x01) 34
« URI Records (0x55/'U') 34
« Test Records 35
« Smart Poster Records 35
« Example NDEF Records 36
« Using Mifare Classic Cards as an NDEF Tag 36
« Mifare Application Directory (MAD) 36
- Mifare Application Directory 1 (MAD1) 37
« Mifare Application Directory 2 (MAD2) 37
« MAD Sector Access 37
« Storing NDEF Messages in Mifare Sectors 37
« TLV Blocks 38
« Memory Dump of a Mifare Classic 1K Card with an NDEF Record 39
« NDEF Records 40
Using with LibNFC 42
« Using the PN532 Breakout Boards with libnfc 42
« libnfc In Linux (Ubuntu 10.10 used in this example) 42
« Step One: Download libnfc 42
« Step Two: Configure libnfc for PN532 and UART 42
« Step Three: Build and install libnfc 43
« Step Four: Check for installed devices 43
« Step Five: Poll for an ISO14443A (Mifare, etc.) Card 44
« libnfc With Mac OSX Lion 44
« Download and build libnfc and configure if for PN532 UART (making the code changes above before

running make): 44
- If everything worked out, switch to the examples folder and see if you can find the PN532 and wait for an
appropriate tag: 45
FAQ 45
Downloads 50
- Files 50
« Datasheets 50
« Breakout v1.6 schematic & print 50
» Version 1.3 schematic 51

©Adafruit Industries Page 3 of 52

©Adafruit Industries Page 4 of 52

Overview

Hey! So this is not a full tutorial, its just a quickstart guide while we do more research
into RFID/NFC. There's a lot of info here but not everything is explained in detail. We
hope to fill out the tutorial but there's not a lot of good information about NFC so it's

taking a bit of time!

Breakout Wiring

This part of the tutorial is specifically for the Breakout board. We show how to use it
with SPI. The breakout also supports TTL serial and 12C but we don't have a tutorial
for using it that way as SPI is the most cross-platform method to communicate

If you're using the shield, check the next page

©Adafruit Industries Page 5 of 52

PN532 Breakout Board

* microBuilder.eu &
Adafruit Industries

R r
R4 ZopaTXi

TX2

e, -

)
B=c1s [orr] °
3 SEL®

X

@cfo

Wiring the Breakout for SPI

The PN532 chip and breakout is designed to be used by 3.3V systems. To use it with
a 5V system such as an Arduino, a level shifter is required to convert the high
voltages into 3.3V. If you have a 3.3V embedded system you won't have to use the
shifter of coursel!

To begin, we'll solder in the header to the breakout board. You'll need two small 3-pin
pieces of header and one 8-pin piece. You can break these off of a large piece.

©Adafruit Industries Page 6 of 52

Solder the two small pieces to the SELO and SEL1 pads. These are interface selectors
for the chip. Depending on how the jumpers are inserted the chip will talk in TTL
serial, i2c or SPI. Also solder a strip to the end so you can plug it into a breadboard.

©Adafruit Industries Page 7 of 52

Wire up the 4050 level shifter chip to the Arduino as shown. The notch in the 4050 is
at the 'top' in this image.

« Arduino digital pin 2 is connected to 4050 pin 9 (orange wire)
« Arduino digital pin 3 is connected to 4050 pin 1(yellow wire)
« Arduino digital pin 4 is connected to 4050 pin 14 (green wire)

On the breakout board

« 3.3Vin is connected to the Arduino 3.3V pn

+ SCK is connected to 4050 pin 10 (orange wire)
« MISO is connected to Arduino pin 5 (blue wire)
« MOSI is connected to 4050 pin 12 (yellow wire)
« SSEL is connected to 4050 pin 15& (green wire)
« GND connects to Arduino ground (black wire)

Also connect 4050 pin #1to 3.3V and pin #8 to ground.

Click to see a larger image. The red power wire should be connected to the 3.3v pin
on the Arduino!

©Adafruit Industries Page 8 of 52

>
)
o
c
=
z
o

Also, we need to select SPI as the interface so on SEL1 place the jumper in the ON
position. for SELO place the jumper in the OFF position.

That's it! Later on you can change what Arduino pins you are using but for the
beginning test we suggest matching our wiring.

If you are using the breakout in I2C mode, you will also need to add two 1.5K
pullups on the SCL/SDA lines, since the breakout and the Arduino don't include

the pullups. Simply solder or add a 1.5K resistor between SCL and 3.3V, and SDA
and 3.3V, and then connect the breakout as you normally would.

Shield Wiring

Solder the Headers

The first step is to solder the headers to the shield. Cut the header strip to length and
insert the sections (long pins down) into an Arduino. Then place the shield on top and
solder each pin.

©Adafruit Industries Page 9 of 52

PNS32 RFID/NES
13.56Mp

For 12C leave SEL® and SELL open
For SPI close SEL® and SELL

D00
« 10uef,
&0 B

s

12

Using the Adafruit NFC Shield with 12C

The Adafruit NFC shield is designed to be used using the 12C by default. 12C only
uses two pins (Analog 4 and 5 which are fixed in hardware and cannot be changed) to
communicate and one pin as an 'interrupt' pin (Digital 2 - can be changed however).
What is nice about I2C is that it is a 'shared' bus - unlike SPl and TTL serial - so you
can put as many sensors as you'd like all on the same two pins, as long as their
addresses don't collide/conflict. The Interrupt pin is handy because instead of
constantly asking the NFC shield "is there a card in view yet? what about now?"
constantly, the chip will alert us when a NFC target comes into the antenna range.

The shield is drop-in compatible with any Classic Arduino (UNO, Duemilanove,
Diecimilla, etc using the ATmega168 or '328) as well as any Mega R3 or later.

©Adafruit Industries Page 10 of 52

Mega R2 Arduinos work as well but you need to solder a wire from the (https://
adafru.it/aUS)SDA (https://adafru.it/aUS) and (https://adafru.it/aUS)SCL (https://
adafru.it/aUS)plThoIes to the Mega's I2C—pins on Digital #20 and E(https://
adafru.it/aus)

Using with the Arduino Leonardo and Yun

The IRQ pin is tied to Digital pin #2 by default. However, on the Arduino
Leonardo and Yun, digital #2 is used for 12C which will not work. If using with a

Leonardo or Yun, cut the trace beween the IRQ pin and Digital #2 and solder a
wire from IRQ pin to Digital #4 or higher. Then change the example code so the
the IRQ pin is declared as the new pin (say #6) not #2

Here are some photos of setting the IRQ pin to digital 6. First, use a sharp hobby knife
to cut the trace from IRQ to 2

Solder a wire from IRQ to #6

©Adafruit Industries Page 11 of 52

http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega
http://arduino.cc/en/Main/ArduinoBoardMega

Arduino Library

Which Library?

In the past there were two separate Arduino libraries for using the Adafruit NFC
boards. One library supported the breakout over a SPI connection, and the other
library supported the breakout or shield over an 12C connection. However both of
these libraries have been merged into a single Arduino library, Adafruit-PN532 (https:/
/adafru.it/eHi).

The Adafruit PN532 library has the ability to read MiFare cards, including the hard-
coded ID numbers, as well as authenticate and read/write EEPROM chunks. It can
work with both the breakout and shield using either a SPI or 12C connection.

Library Installation

Download the Adafruit PN532 library from github (https://adafru.it/aSX). Uncompress
the folder and rename the folder Adafruit_PN532. Inside the folder you should see
the Adafruit_PN532.cpp and Adafruit_PN532.h files. Install the Adafruit_PN532 library
foler by placing it in your arduinosketchfolder/libraries folder. You may have to create

the libraries subfolder if this is your first library. You can read more about installing
libraries in our tutorial (https://adafru.it/aYG).

Restart the Arduino IDE. You should now be able to select File > Examples >
Adafruit_PN532 > readMifare sketch.

©Adafruit Industries Page 12 of 52

https://github.com/adafruit/Adafruit-PN532/
https://github.com/adafruit/Adafruit-PN532
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries
http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries

If you're using the NFC breakout with a SPI connection that uses the wiring shown on
previous pages you can immediately upload the sketch to the Arduino and skip down
to the Testing MiFare (https://adafru.it/kAc) section.

If you're using the NFC shield, or are using the breakout with an |12C connection then
you must make a small change to configure the example for 12C. Scroll down to these
lines near the top of the sketch:

// Uncomment just one 1line below depending on how your breakout or shield
// 1is connected to the Arduino:

// Use this line for a breakout with a SPI connection:
Adafruit PN532 nfc(PN532 SCK, PN532 MISO, PN532 MOSI, PN532 SS);

// Use this line for a breakout with a hardware SPI connection. Note that
// the PN532 SCK, MOSI, and MISO pins need to be connected to the Arduino's
// hardware SPI SCK, MOSI, and MISO pins. On an Arduino Uno these are

// SCK = 13, MOSI = 11, MISO = 12. The SS line can be any digital IO pin.
//Adafruit PN532 nfc(PN532 SS);

// Or use this line for a breakout or shield with an I2C connection:
//Adafruit PN532 nfc(PN532 IRQ, PN532 RESET);

Change them so the second line is uncommented and the first line is commented.
This will configure the sketch to make the library use 12C for communication with the
NFC shield or breakout. The modified code should look like:

// Uncomment just one_line below depending on how your breakout or shield
// is connected to the Arduino:

// Use this line for a breakout with a SPI connection:
//Adafruit PN532 nfc(PN532 SCK, PN532 MISO, PN532 MOSI, PN532 SS);

// Use this line for a breakout with a hardware SPI connection. Note that
// the PN532 SCK, MOSI, and MISO pins need to be connected to the Arduino's
// hardware SPI SCK, MOSI, and MISO pins. On an Arduino Uno these are

// SCK = 13, MOSI = 11, MISO = 12. The SS line can be any digital IO pin.
//Adafruit PN532 nfc(PN532 SS);

// Or use this line for a breakout or shield with an I2C connection:
Adafruit PN532 nfc(PN532 IRQ, PN532 RESET);

Then upload the example to the Arduino and continue on. Note that you need to
make a similar change to pick the interface for any other NFC example from the
library.

Testing MiFare

In the serial monitor, you should see that it found the PN532 chip. Then you can place
your tag nearby and it will display the 4 byte ID code (this one is OXAE 0x4C OxFO
0x6C) and then the integer version of all four bytes together. You can use this number
to identify each card. Recently NXP made so many cards that they actually ran

©Adafruit Industries Page 13 of 52

file:///home/adafruit-pn532-rfid-nfc/arduino-library#testing-mifare

through all 4 Bytes (2732) so the number is not guaranteed to be absolutely unique.
However, the chances are extremely slim you will have two cards with the same ID so
as long as you aren't using these cards for anything terribly important (like money
transfer) its fine to use the number as a unique identifier

CcoM27 M=)

|| G

Hello!
Found chip PNS3Z
Firmware wver. 1.6 =
Supports 7
Found 1 tags
Sens Response: 0Oxd
Sel Response: 0x8
OxAE 0Ox4C OxFO Ox6C

Read card $2924277868

Autoscroll Carriage return v] [9600 baud v

Python & CircuitPython

It's easy to use the PN532 breakout and shield with Python and CircuitPython, and
the Adafruit CircuitPython PN532 (https://adafru.it/DJz) module. This module allows
you to easily write Python code that reads and writes data from and to RFID/NFC tags.

You can use this breakout with any CircuitPython microcontroller board or with a
computer that has GPIO and Python thanks to Adafruit_Blinka, our CircuitPython-for-
Python compatibility library (https://adafru.it/BSN).

CircuitPython Microcontroller Wiring

First assemble a PN532 breakout or shield exactly as shown on the previous pages.

Here's an example of wiring a Feather MO to the breakout with 12C:

©Adafruit Industries Page 14 of 52

https://github.com/adafruit/Adafruit_CircuitPython_PN532
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Board 3V to breakout 3.3V

Board GND to breakout GND

Board SCL to breakout SCL

Board SDA to breakout SDA

Board D6 to breakout RSTOUT_N

I2C requires external pull ups on SCL and
SDA!

|
.
.

I!n.uep%

You must set the jumpers to enable I12C on
your PN532! For 12C:

SELO = ON
SEL1= OFF

Here's an example of wiring a Feather MO to the breakout using SPI:

Board 3V to breakout 3.3V
Board GND to breakout GND
Board MISO to breakout MISO
Board MOSI to breakout MOSI
Board SCK to breakout SCK
Board D5 to breakout SSEL

You must set the jumpers to enable SPI on
your PN532! For SPI:

SELO = OFF
SEL1=ON

Here's an example of wiring a Feather MO to the breakout using UART:

©Adafruit Industries Page 15 of 52

https://learn.adafruit.com//assets/70026
https://learn.adafruit.com//assets/70026
https://learn.adafruit.com//assets/70030
https://learn.adafruit.com//assets/70030

Board 3V to breakout 3.3V
Board GND to breakout GND
Board RX to breakout TX
Board TX to breakout RX

i'!m;ep%

You must set the jumpers to enable UART
on your PN532! For UART:

SELO = OFF
SEL1= OFF

Here's an example of wiring a Metro MO to the shield using 12C:

Assemble the shield as shown in the
previous pages, and plug into your Metro
MO.

You must set the jumpers to enable I12C on
your PN532! For 12C:

SELO = ON
SEL1= OFF

Python Computer Wiring

Since there's dozens of Linux computers/boards you can use we will show wiring for
Raspberry Pi. For other platforms, please visit the guide for CircuitPython on Linux to
see whether your platform is supported (https://adafru.it/BSN).

This breakout is designed to work with 12C, SPI and UART, however 12C AND

UART DO NOT WORK RELIABLY ON RASPBERRY PI. If you're using the PN532
with Raspberry Pi, use SPI!

Here's the Raspberry Pi wired with SPI:

©Adafruit Industries Page 16 of 52

https://learn.adafruit.com//assets/70031
https://learn.adafruit.com//assets/70031
https://learn.adafruit.com//assets/70025
https://learn.adafruit.com//assets/70025
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

Pi 3V to breakout 3.3V

Pi GND to breakout GND
Pi MOSI to breakout MOSI
Pi MISO to breakout MISO
Pi SCLK to breakout SCK
Pi D5 to breakout SSEL

You must set the jumpers to enable SPI on
your PN532! For SPI:

SELO = OFF
SEL1=ON

We don't recommand using 12C, but here's the Raspberry Pi wired with 12C:

Pi 3V to breakout 3.3V

Pi GND to breakout GND

Pi SCL to breakout SCL

Pi SDA to breakout SDA

Pi D6 to breakout RSTPD_N
Pi D12 to breakout P32

You must set the jumpers to enable I12C on
your PN532! For 12C:

SELO = ON
SEL1= OFF

We don't recommand using UART, but here's the Raspberry Pi wired with UART:

Pi 3V to breakout 3.3V
Pi GND to breakout GND
Pi RXD to breakout TX
Pi TXD to breakout RX

You must set the jumpers to enable UART
on your PN532! For UART:

SELO = OFF
SEL1= OFF

©Adafruit Industries Page 17 of 52

https://learn.adafruit.com//assets/70034
https://learn.adafruit.com//assets/70034
https://learn.adafruit.com//assets/70033
https://learn.adafruit.com//assets/70033
https://learn.adafruit.com//assets/70035
https://learn.adafruit.com//assets/70035

CircuitPython Installation of PN532 Library

Next you'll need to install the Adafruit CircuitPython PN532 (https://adafru.it/DJz)
library on your CircuitPython board.

First make sure you are running the latest version of Adafruit CircuitPython (https://
adafru.it/Amd) for your board.

Next you'll need to install the necessary libraries to use the hardware--carefully follow
the steps to find and install these libraries from Adafruit's CircuitPython library bundle
(https://adafru.it/zdx). Our introduction guide has a great page on how to install the
library bundle (https://adafru.it/ABU) for both express and non-express boards.

Remember for non-express boards like the, you'll need to manually install the
necessary libraries from the bundle:

- adafruit_pn532.mpy
- adafruit_bus_device

Before continuing make sure your board's lib folder or root filesystem has the adafruit
_pn532.mpy, and adafruit_bus_device files and folders copied over.

Next connect to the board's serial REPL (https://adafru.it/Awz) so you are at the

CircuitPython >>> prompt.

Python Installation of PN532 Library

You'll need to install the Adafruit_Blinka library that provides the CircuitPython
support in Python. This may also require enabling 12C on your platform and verifying
you are running Python 3. Since each platform is a little different, and Linux changes

often, please visit the CircuitPython on Linux guide to get your computer ready (https:
//adafru.it/BSN)!

Once that's done, from your command line run the following command:

« sudo pip3 install adafruit-circuitpython-pn532

©Adafruit Industries Page 18 of 52

https://github.com/adafruit/Adafruit_CircuitPython_PN532
https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://github.com/adafruit/Adafruit_CircuitPython_Bundle
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/circuitpython-libraries
https://learn.adafruit.com/welcome-to-circuitpython/the-repl
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux
https://learn.adafruit.com/circuitpython-on-raspberrypi-linux

If your default Python is version 3 you may need to run 'pip' instead. Just make sure
you aren't trying to use CircuitPython on Python 2.x, it isn't supported!

CircuitPython & Python Usage

To demonstrate the usage of the breakout we'll initialize it and read the ID from a tag
using the board's Python REPL.

Run the following code to import the necessary modules and assign the reset pinto a
digital pin on your board. We've used D6:

import board

import busio

from digitalio import DigitalInOut

from adafruit pn532.i2c import PN532 I2C
reset pin = DigitalInOut(board.D6)

On Raspberry Pi, you must also connect a pin to P32 "H_Request" for hardware
wakeup. This avoids 12C clock stretching.

req pin = DigitalInOut(board.D12)

Initialise the 12C object:

i2c

= busio.I2C(board.SCL, board.SDA)
pn532 =

PN532 I2C(i2c, debug=False, reset=reset pin, reqg=req_pin)

Now we can start interacting with NFC/RFID tags using the following functions:

- firmware version - Get the latest firmware version.

« SAM configuration - configure the PN532 to read MiFare cards.

« read passive target - Wait for a MiFare card to be available and return its
UID when found.

« call function - Send specified command to the PN532 and expect up to res
ponse length bytes back in a response.

- mifare classic authenticate block - Authenticate specified block number
for a MiFare classic card.

- mifare classic read block - Read a block of data from the card.

- mifare classic write block - Write a block of data to the card.

« ntag2xx read block - Read a block of data from the card.

« ntag2xx write block - Write a block of data to the card.

©Adafruit Industries Page 19 of 52

First, we'll verify the PN532 is connected and check the firmware.

ic, ver, rev, support = pn532.firmware_version
print('Found PN532 with firmware version: {0}.{1}'.format(ver, rev))

>>> dc, ver, rev, support = pn532.firmware_version

>>> print('Found PN532 with firmware version: {0}.{1}'.format(ver, rev))
Found PN532 with firmware version: 1.6

Now we're going to configure the PN532 to read MiFare cards. Then we'll wait for a
card to be available and print the UID.

First we check to see if a card is available. While we're waiting we'll print . to the
serial output so we know it's still looking. If no card is found, we continue looking.
When a card is found, we print the UID.

pn532.SAM configuration()
while True:
uid = pn532.read passive target(timeout=0.5)
print('.', end="", flush=True)
if uid is None:
continue
print('Found card with UID:', [hex(i) for i in uid])

Touch a MiFare card to the breakout!

with UID: 'Oxd0', '0x39']
with UID: 'Oxd0', '0x39']

with UID: '0xd0', '0x39']
with UID: '0xd0', '0x39']
with UID: '0xd0', '0x39']

That's all there is to reading the UID from a card with CircuitPython and the PN532!
For more information, check out the documentation (https://adafru.it/DJA).

Full Example Code

This example shows connecting to the PN532 with I2C (requires clock
stretching support), SPI, or UART. SPI is best, it uses the most pins but
is the most reliable and universally supported.

After initialization, try waving various 13.56MHz RFID cards over it!

import board
import busio
from digitalio import DigitalInOut

©Adafruit Industries Page 20 of 52

https://circuitpython.readthedocs.io/projects/pn532/en/latest/api.html

NOTE: pick the import that matches the interface being used
#
from adafruit pn532.i2c import PN532 I2C

from adafruit pn532.spi import PN532 SPI
from adafruit pn532.uart import PN532 UART

I2C connection:
i2c = busio.I2C(board.SCL, board.SDA)

Non-hardware
pn532 = PN532 I2C(i2c, debug=False)

With I2C, we recommend connecting RSTPD N (reset) to a digital pin for manual
harware reset

reset pin = DigitalInOut(board.D6)

On Raspberry Pi, you must also connect a pin to P32 "H Request" for hardware
wakeup! this means we don't need to do the I2C clock-stretch thing

req pin = DigitalInOut(board.D12)

pn532 = PN532 I2C(i2c, debug=False, reset=reset pin, reg=req pin)

SPI connection:

spi = busio.SPI(board.SCK, board.MOSI, board.MISO)
cs_pin = DigitalInOut(board.D5)

pn532 = PN532 SPI(spi, cs pin, debug=False)

UART connection
uart = busio.UART(board.TX, board.RX, baudrate=115200, timeout=100)
pn532 = PN532 UART(uart, debug=False)

HHH O HHHHR

ic, ver, rev, support = pn532.firmware version
print("Found PN532 with firmware version: {0}.{1}".format(ver, rev))

Configure PN532 to communicate with MiFare cards
pn532.SAM configuration()

print("Waiting for RFID/NFC card...")
while True:
Check if a card is available to read
uid = pn532.read passive target(timeout=0.5)
print(".", end="")
Try again if no card is available.
if uid is None:
continue
print("Found card with UID:", [hex(i) for i in uid])

Python Docs

Python Docs (https://adafru.it/DHy)

About NFC

NFC (Near Field Communication)

NFC (Near Field Communication) is a set of short-range (typically up to 10cm) wireless
communication technologies designed to offer light-weight and secure
communication between two devices. While NFC was invented by NXP (Phillips at the
time), Nokia and Sony, the main body behind the NFC 'standard' today is the E

©Adafruit Industries Page 21 of 52

https://circuitpython.readthedocs.io/projects/pn532/en/latest/
http://www.nfc-forum.org/home/

Forum (https://adafru.it/aSy), who are responsible for publishing and maintaining a
variety of standards relating to NFC technology.

NFC operates at 13.56MHz, and is based around an "initiator" and "target" model
where the initiator generates a small magnetic field that powers the target, meaning
that the target does not require a power source. This means of communication is
referred to as Passive Communication, and is used to read and write to small,
inexpensive 13.56MHz RFID tags based on standards like ISO14443A. Active
communication (peer-to-peer) is also possible when both devices are powered, where
each device alternately creates its own magentic field, with the secondary device as a
target and vice versa in continuous rotation.

Passive Communication: ISO14443A Cards (Mifare, etc.)

While the PN53x family of transceivers from NXP are compatible with a number of
13.56MHz RFID card standards, by far the most popular standard is ISO14443A. A
variety of manufacturers produce ISO14443A compatible cards or chips, but the most
common are based around the Mifare family from NXP. Mifare Classic and Mifare
Ultralight are probably the most frequently encountered and useful for basic projects,
though many tags with improved security and encryption also exist (Mifare DESFire,
etc.). All of the tags sold at adafruit.com are Mifare Classic 1K, meaning that they
contains 1K (1024 bytes) of programmable EEPROM memory which can be read and
modified in passive mode by the initiator device (the PN532).

While all ISO14443A cards share certain common characteristics on the highest level
(defined by the four part standard), each set of Mifare chips (Classic, Ultralight, Plus,
DESFire, etc.) has it's own features and peculiarities. The two most common formats
are described below.

« Mifare Classic (https://adafru.it/cl7): These cards are extremely common, and
contain 1K or 4K of EEPROM, with basic security for each 64 byte (1K/4K cards)
or 256 byte (4K cards) sector.

- Mifare Ultralight (https://adafru.it/cl7): Contains 512 bytes of EEPROM, including
32-bits of OTP memory. These tags are inexpensive, often come in sticker

format and are are frequently used for transportation ticketing, concert tickets,
etc.

Active Communication (Peer-to-Peer)

Active or "Peer-to-Peer" communication is still based around the Initiator/Target model
described earlier, but both devices are actively powered and switch roles from being
an Initiator or a Target during the communication. When one device is initiating a
conversation with the other, it enables it's magnetic field and the receiving device

©Adafruit Industries Page 22 of 52

http://www.nfc-forum.org/home/
http://learn.adafruit.com/adafruit-pn532-rfid-nfc
http://learn.adafruit.com/adafruit-pn532-rfid-nfc

listens in (with it's own magnetic field disabled). Afterwards, the target/recipient
device may need to respond and will in turn activate it's own magnetic field and the
original device will be configured as the target. Despite two devices being present,
only one magnetic field is active at a time, with each device constantly enabling or
disabling its own magnetic field.

ToDo: Add better description of active mode, but | need to test it out a bit first myself!

NFC Data Exchange Format (NDEF)

The NFC Data Exchange Format (NDEF) is a standardised data format that can be
used to exchange information between any compatible NFC device and another NFC
device or tag. The data format consists of NDEF Messages and NDEF Records. The
standard is maintained by the NFC Forum and is freely available for consultation but
requires accepting a license agreement to download (https://adafru.it/aSA).

The NDEF format is used to store and exchange information like URIs, plain text, etc.,
using a commonly understood format. NFC tags like Mifare Classic cards can be
configured as NDEF tags, and data written to them by one NFC device (NDEF
Records) can be understood and accessed by any other NDEF compatible device.
NDEF messages can also be used to exchange data between two active NFC devices
in "peer-to-peer" mode. By adhering to the NDEF data exchange format during
communication, devices that would otherwise have no meaningful knowledge of each
other or common language are able to share data in an organised, mutually
understandable manner.

The NDEF standard includes numerous Record Type Definitions (RTDs) that define
how information like URIs should be stored, and each NDEF device, tag or message
can contained multiple RTDs. Standard RTD definitions are described in "NFC Record
Type Definition (RTD) Specification” maintained by the NFC Forum.

* NDEF Overview (https://adafru.it/cl7): This page offers a more detailed explanation of
NDEF, including how Mifare Classic cards can be used to store NDEF messages.

NOTE: The dedicated NDEF page is still a work in progress and some information is
currently incomplete.

©Adafruit Industries Page 23 of 52

http://www.nfc-forum.org/specs/spec_list/
http://learn.adafruit.com/adafruit-pn532-rfid-nfc

Reading

For more details about NFC/RFID and this chip we suggest the following fantastic
resources:

« RFID selection guide (https://adafru.it/Cc3) - a lot of details about RFID in
general

« Nokia's Introduction to NFC (https://adafru.it/aSD)- a lot of details about NFC in
general

« NXP S50 chip datasheet (https://adafru.it/aSE) , the chip inside MiFare classic
tags

« NXP PN532 Short Form Datasheet (https://adafru.it/aSF)

« NXP PN532 Long Form Datasheet (https://adafru.it/aSG)

« NXP PN532 User Manual (https://adafru.it/aSH)

« NXP PN532 App Note (https://adafru.it/Cc4)

« Using PN532 with libnfc (https://adafru.it/aSJ)

« NFC Glossary (https://adafru.it/aSK)

MiFare Cards & Tags

MiFare is one of the four 13.56MHz card 'protocols' (FeliCa is another well known one)
All of the cards and tags sold at the Adafruit shop use the inexpensive and popular
MiFare Classic chipset

MiFare Classic Cards

MIFARE Classic cards come in 1K and 4K varieties. While several varieties of chips
exist, the two main chipsets used are described in the following publicly accessible
documents:

« MF1S503x Mifare Classic 1K data sheet (https://adafru.it/aSL)
« MF1S70yyX MIFARE Classic 4K data sheet (https://adafru.it/aSM)

Mifare Classic cards typically have a 4-byte NUID that uniquely (within the numeric
limits of the value) identifies the card. It's possible to have a 7 byte IDs as well, but the
4 byte models are far more common for Mifare Classic.

EEPROM Memory

Mifare Classic cards have either 1K or 4K of EEPROM memory. Each memory block
can be configured with different access conditions, with two seperate authentication
keys present in each block.

©Adafruit Industries Page 24 of 52

http://www.adafruit.com/datasheets/rfid%20guide.pdf
http://www.adafruit.com/datasheets/Introduction_to_NFC_v1_0_en.pdf
http://www.adafruit.com/datasheets/S50.pdf
http://www.adafruit.com/datasheets/pn532ds.pdf
http://www.adafruit.com/datasheets/pn532longds.pdf
http://www.adafruit.com/datasheets/pn532um.pdf
http://www.adafruit.com/datasheets/PN532C106_Application%20Note_v1.2.pdf
http://www.microbuilder.eu/Blog/11-02-19/Using_libnfc_with_the_PN532_Linux.aspx
http://www.nfc-research.at/index.php?id=40
http://www.nxp.com/documents/data_sheet/MF1S503x.pdf
http://www.nxp.com/documents/data_sheet/MF1S70YYX.pdf

Mifare Classic cards are divided into section called sectors and blocks. Each "sector"
has individual access rights, and contains a fixed number of "blocks" that are
controlled by these access rights. Each block contains 16 bytes, and sectors contains
either 4 blocks (1K/4K cards) for a total of 64 bytes per sector, or 16 blocks (4K cards
only) for a total of 256 bytes per sector. The card types are organised as follows:

- 1K Cards - 16 sectors of 4 blocks each (sectors 0..15)
« 4K Cards - 32 sectors of 4 blocks each (sectors 0..31) and 8 sectors of 16 blocks
each (sectors 32..39)

4 Block Sectors

1K and 4K cards both use 16 sectors of 4 blocks each, with the bottom 1K of memory
on the 4K cards being organised identically to the 1K models for compatability
reasons. These individual 4 block sectors (containing 64 byts each) have basic
security features are can each be configured with seperate read/write access and two
different 6-byte authentication keys (the keys can be different for each sector). Due to
these security features (which are stored in the last block, called the Sector Trailer),
only the bottom 3 blocks of each sector are actually available for data storage,
meaning you have 48 bytes per 64 byte sector available for your own use.

Each 4 block sector is organised as follows, with four rows of 16 bytes each for a total
of 64-bytes per sector. The first two sectors of any card are shown:

Sector Block Bytes
Description

1 3 [------- KEY A------- 1 [Access Bits] [------- KEY B------- 1
Sector Trailer
2 [Data 1
Data
1 [Data]
Data
0 [Data]
Data
0 3 [------- KEY A------- 1 [Access Bits] [------- KEY B------- 1
Sector Trailer
2 [Data]
Data
1 [Data]
Data
0 [Manufacturer Data]

Manufacturer Block

©Adafruit Industries Page 25 of 52

Sector Trailer (Block 3)
The sector trailer block contains the two secret keys (Key A and Key B), as well as the
access conditions for the four blocks. It has the following structure:

Sector Trailer Bytes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[Key A 1 [Access Bits] [Key B 1

For more information in using Keys to access the clock contents, see Accessing Data
Blocks further below.

Data Blocks (Blocks 0..2)

Data blocks are 16 bytes wide and, depending on the permissions set in the access
bits, can be read from and written to. You are free to use the 16 data bytes in any way
you wish. You can easily store text input, store four 32-bit integer values, a 16
character uri, etc.

Data Blocks as "Value Blocks"

An alternative to storing random data in the 16 byte-wide blocks is to configure them
as "Value Blocks". Value blocks allow performing electronic purse functions (valid
commands are: read, write, increment, decrement, restore, transfer).

Each Value block contains a single signed 32-bit value, and this value is stored 3
times for data integrity and security reasons. It is stored twice non-inverted, and once
inverted. The last 4 bytes are used for a 1-byte address, which is stored 4 times (twice
non-inverted, and twice inverted).

Data blocks configured as "Value Blocks" have the following structure:

Value Block Bytes

0 1 2 3 4 5) 6 7 8 9 10 11 12 13 14 15
[Value] [~Value] [Value] [A ~A A ~A]

Manufacturer Block (Sector O, Block 0)

Sector O is special since it contains the Manufacturer Block. This block contains the
manufacturer data, and is read-only. It should be avoided unless you know what you
are doing.

16 Block Sectors

16 block sectors are identical to 4 block sectors, but with more data blocks. The same
structure described in the 4 block sectors above applies.

©Adafruit Industries Page 26 of 52

Sector Block Bytes

Description
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
32 15 [eocoooe KEY A------- 1 [Access Bits] [CEEELEE KEY B------- 1

Sector Trailer 32

14 [Data]
Data

13 [Data]
Data

2 [Data]
Data

1 [Data]
Data

0 [Data]
Data

Accessing EEPROM Memory

To access the EEPROM on the cards, you need to perform the following steps:

1. You must retrieve the 4-byte NUID of the card (this can sometimes be 7-bytes
long as well, though rarely for Mifare Classic cards). This is required for the
subsequent authentication process.

2. You must authenticate the sector you wish to access according to the access
rules defined in the Sector Trailer block for that sector, by passing in the
appropriate 6 byte Authentication Key (ex. OxFF OxFF OxFF OxFF OxFF OxFF for
new cards).

3. Once authenication has succeeded, and depending on the sector permissions,
you can then read/write/increment/decrement the contents of the specific block.
Note that you need to re-authenticate for each sector that you access, since
each sector can have it's own distinct access keys and rights!

Note on Authentication

Before you can do access the sector's memory, you first need to "authenticate"
according to the security settings stored in the Sector Trailer. By default, any new card
will generally be configured to allow full access to every block in the sector using Key
A and a value of OxFF OxFF OxFF OxFF OxFF OxFF. Some other common keys that you
may wish to try if this doesn't work are:

OXFF OXFF OXFF OXFF OXFF OXFF
0XD3 OXF7 0XD3 OXF7 OXD3 OXF7
OXAO0 OXA1l OXA2 OXA3 0XA4 OXA5
0XBO OXB1 0XB2 OXB3 0XB4 OXB5
0X4D OX3A 0X99 OXC3 0X51 OXDD
0X1A 0X98 0X2C OX7E 0X45 OX9A
OXAA OXBB OXCC OXDD OXEE OXFF

©Adafruit Industries Page 27 of 52

0X00 O0XO0 0X00 O0XO00 O0XO0 6X00
OXAB OXCD OXEF 0X12 0X34 0X56

Example of a New Mifare Classic 1K Card

The follow memory dump illustrates the structure of a 1K Mifare Classic Card, where
the data and Sector Trailer blocks can be clearly seen:

R Start of Memory Dump-------------------------- 1
------------------------ Sector @-------------------------
Block 8E 02 6F 66 85 08 04 00 62 63 64 65 66 67 68 69 ?.0f?...bcdefghi

00 00 00 OO0 0O OO OO OO 0O OO 0O OO0 00 00 00 OO0
00 00 00 0O OO OO FF 07 80 69 FF FF FF FF FF FF y.?1yyyyyy
------------------------ Sector 1-----------“--“-“-----------

4 00 00 00 OO0 00 OO0 OO0 OO OO OO OO OO0 00 00 00 OO0
Block 5 00 00 00 00 00 00 OO0 00 OO 0O OO 00 00 60 00 00ccvvunn.

6

7

0

Block 1 00 00 00 00 00 GO 0O 00 00 00 00 G0 00 00 00 00
2
3

00 00 00 OO 0O OO OO OO OO OO 0O OO0 00 00 00 OO0cvvvvn..
00 00 00 0O 0O OO FF 07 80 69 FF FF FF FF FF FF y.?21yyyyyy
------------------------ Sector 2-----------“--““----------

Block 8 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 00 00 0v ...
Block 9 00 00 00 00 00 00 00 0O 0O OO OO OO0 00 00 00 00
Block 10 00 00 00 00 00 00 OO 00 OO OO OO 00 00 60 00 0v v,
Block 11 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?2iyyyyyy
------------------------ Sector 3-----------mmma oo

Block 12 00 00 00 00 00 00 OO 00 OO OO OO 00 00 60 00 0
Block 13 00 00 00 00 00 00 OO0 00 OO OO0 0O 00 00 60 00 00
Block 14 00 00 00 00 00 00 00 00 0O 0O 0O OO0 00 00 00 00c.....
Block 15 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?1yyyyyy
------------------------ Sector 4-----------mmmme -

Block 16 00 00 00 00 00 00 00 0O 0O 0O OO0 OO0 00 00 00 00
Block 17 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 00
Block 18 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 00cvu...
Block 19 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?71yyyyyy
------------------------ Sector 5------------ie e

Block 20 00 00 00 00 00 00 OO0 00 OO 00 OO 00 00 00 00 00cv....
Block 21 00 00 00 00 00 00 00 OO0 0O 0O OO0 0O 00 00 00 00
Block 22 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 O
Block 23 00 00 00 00 0O 00 FF 07 80 69 FF FF FF FF FF FF y.?21yyyyyy
------------------------ Sector 6-----------“---“--~---~------

Block 24 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 O
Block 25 00 00 00 00 00 00 00 0O 0O OO OO OO 00 00 00 00ccuv..n.
Block 26 00 00 00 00 00 00 OO OO0 OO OO OO 00 00 00 00 0v ..
Block 27 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?2iyyyyyy
------------------------ Sector 7-------------eee -

Block 28 00 00 00 00 00 00 OO OO0 OO OO OO 00 00 00 00 00v v,
Block 29 00 00 00 00 00 00 OO0 00 OO OO0 OO 00 00 60 00 00 v,
Block 30 00 00 00 00 00 00 00 0O 0O 0O OO0 OO0 00 00 00 0
Block 31 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?71yyyyyy
------------------------ Sector 8-----------miea o

Block 32 00 00 00 00 00 00 00 0O 0O OO OO0 OO 00 00 00 00
Block 33 00 00 00 00 00 00 OO0 OO0 OO OO OO 00 00 00 00 0
Block 34 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 00
Block 35 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?1yyyyyy
------------------------ Sector 9--------------mi oo

Block 36 00 00 00 00 00 00 OO0 00 OO OO0 OO 00 00 00 00 00cvu...
Block 37 00 00 00 00 00 00 00 OO0 0O 0O OO0 OO 00 00 00 00
Block 38 00 00 00 00 00 00 OO OO0 OO OO OO 00 00 60 00 0cvvu...
Block 39 00 00 00 00 OO0 OO0 FF 07 80 69 FF FF FF FF FF FF y.?21yyyyyy
------------------------ Sector 10-------------“------------

Block 40 00 00 00 00 00 00 OO0 OO0 OO OO OO 00 00 00 00 00
Block 41 00 00 00 00 00 00 OO0 00 OO 00 0O 00 00 00 00 00c.....
Block 42 00 00 00 00 00 00 OO 00 OO 0O OO 00 00 00 00 0cvvvunn.
Block 43 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF y.?2iyyyyyy
------------------------ Sector 1l-------c-mmmmmmm e et

©Adafruit Industries Page 28 of 52

00 00 00 00
00 00 00 00
00 00 00 00
00 FF 07 80
Sector 12
00 00 00 00
00 00 00 00
00 00 00 00
00 FF 07 80
Sector 13
00 00 00 00
00 00 00 00
00 00 00 00
00 FF 07 80
Sector 14
00 00 00 00
00 00 00 00
00 00 00 00
00 FF 07 80
Sector 15
00 00 00 00
00 00 00 00
00 00 00 00
00 FF 07 80
End of Memory

MiFare Ultralight Cards

MiFare Ultralight cards typically contain 512 bits (64 bytes) of memory, including 4

bytes (32-bits) of OTP (One Time Programmable) memory where the individual bits

can be written but not erased.

MFOICU1 MiFare Ultralight Functional Specification (https://adafru.it/aSN)

MiFare Ultralight cards have a 7-byte UID that uniquely identifies the card.

EEPROM Memory

MiFare Ultralight cards have 512 bits (64 bytes) of EEPROM memory, including 4 byte
(32 bits) of OTP memory. Unlike Mifare Classic cards, there is no authentication on a
per block level, although the blocks can be set to "read-only" mode using Lock Bytes

(described below).

EEPROM memory is organised into 16 pages of four bytes eachs, in the following

order:
Page Description
0 Serial Number (4 bytes)
1 Serial Number (4 bytes)
2 Byte 0: Serial Number
Byte 1: Internal Memory
Byte 2..3: lock bytes
3 One-time programmable memory (4 bytes)

4..15 User memory (4 bytes)

©Adafruit Industries

Page 29 of 52

http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf

Here are the pages and blocks arranged in table format:

Page Block 0O Block 1 Block 2 Block 3

0 [Serial Number]
1 Serial Number]
2 [Serial] - [Intern] - [Lock Bytes 1]
3 [One Time Programmable Memory]
4 [User Data]
5 [User Data]
6 [User Data]
7 [User Data]
8 [User Data]
9 [User Data]
10 [User Data]
11 [User Data 1
12 [User Data]
13 [User Data]
14 [User Data]
15 [User Data]

Lock Bytes (Page 2)

Bytes 2 and 3 of page 2 are referred to as "Lock Bytes". Each page from 0x03 and
higher can individually locked by setting the corresponding locking bit to "1" to
prevent further write access, effectively making the memory read only.

For more information on the lock byte mechanism, refer to section 8.5.2 of the
datasheet (referenced above).

OTP Bytes (Page 3)

Page 3 is the OTP memory, and by default all bits on this page are set to 0. These bits
can be bitwise modified using the MiFare WRITE command, and individual bits can be
set to 1, but can not be changed back to O.

Data Pages (Page 4-15)

Pages 4 to 15 are can be freely read from and written to, provided there is no conflict
with the Lock Bytes described above.

After production, the bytes have the following default values:

Page Byte Values

0 1 2 3
4 OxFF OxFF OxFF OxFF
5..15 0Ox00 0Ox00 0x00 0x00

©Adafruit Industries Page 30 of 52

Accessing Data Blocks

In order to access the cards, you must following two steps:

1. 'Connect' to a Mifare Ultralight card and retrieve the 7 byte UID of the card.
2. Memory can be read and written directly once a passive mode connection has
been made. No authentication is required for Mifare Ultralight cards.

Read/Write Lengths

For compatability reasons, "Read" requests to a Mifare Ultralight card will retrieve 16
bytes (4 pages) at a time (which corresponds to block size of a Mifare Classic card).
For example, if you specify that you want to read page 3, in reality pages 3,4, 5 and 6
will be read and returned, and you can simply discard the last 12 bytes if they aren't
needed. If you select a higher page, the 16 byte read will wrap over to page 0. For
example, reading page 14 will actually return page 14, 15, 0 and 1.

"Write" requests occur in pages (4 bytes), so there is no problem with overwriting data
on subsequent pages.

About the NDEF Format

NDEF (NFC Data Exchange Format)

The NFC Data Exchange Format (NDEF) is a standardised data format that can be
used to exchange information between any compatible NFC device and another NFC
device or tag. The data format consists of NDEF Messages and NDEF Records. The
standard is maintained by the NFC Forum and is freely available for consultation but
requires accepting a license agreement to download (https://adafru.it/aSA).

The NDEF format is used to store and exchange information like URIs, plain text, etc.,
using a commonly understood format. NFC tags like Mifare Classic cards can be
configured as NDEF tags, and data written to them by one NFC device (NDEF
Records) can be understood and accessed by any other NDEF compatible device.
NDEF messages can also be used to exchange data between two active NFC devices
in "peer-to-peer" mode. By adhering to the NDEF data exchange format during
communication, devices that would otherwise have no meaningful knowledge of each
other or common language are able to share data in an organised, mutually
understandable manner.

©Adafruit Industries Page 31 of 52

http://www.nfc-forum.org/specs/spec_list/

NDEF Messages

NDEF Messages are the basic "transportation" mechanism for NDEF records, with
each message containing one or more NDEF Records.

NDEF Records

NDEF Records contain a specific payload, and have the following structure that
identifies the contents and size of the record:

Bit 7 6 5 4 3 2 1 0
(M1 [ME] [CF] [SR] [IL] [™]
[TYPE LENGTH]
[PAYLOAD LENGTH]
[ID LENGTH]
[RECORD TYPE]
[ID 1
[PAYLOAD]

Record Header (Byte 0)

The record header contains a number of important fields, including a 3-bit field that
identifies the type of record that follows (the Type Name Format or TNF):

TNF: Type Name Format Field

The Type Name Format or TNF Field of an NDEF record is a 3-bit value that describes
the record type, and sets the expectation for the structure and content of the rest of
the record. Possible record type names include:

TNF Value Record Type

0x00 Empty Record
Indicates no type, id, or payload is associated with this NDEF
Record.
This record type is useful on newly formatted cards since every NDEF
tag
must have at least one NDEF Record.
0x01 Well-Known Record

Indicates the type field uses the RTD type name format. This type
name is used

to stored any record defined by a Record Type Definition (RTD), such
as storing

RTD Text, RTD URIs, etc., and is one of the mostly frequently used
and useful

record types.

0x02 MIME Media Record
Indicates the payload is an intermediate or final chunk of a chunked

©Adafruit Industries Page 32 of 52

NDEF Record

0x03 Absolute URI Record
Indicates the type field contains a value that follows the absolute-
URI BNF
construct defined by RFC 3986
0x04 External Record
Indicates the type field contains a value that follows the RTD
external
name specification
0x05 Unknown Record
Indicates the payload type is unknown
0x06 Unchanged Record

Indicates the payload is an intermediate or final chunk of a chunked
NDEF Record

IL: ID LENGTH Field

The IL flag indicates if the ID Length Field is preent or not. If this is set to O, then the
ID Length Field is ommitted in the record.

SR: Short Record Bit

The SR flag is set to one if the PAYLOAD LENGTH field is 1 byte (8 bits/0-255) or less.
This allows for more compact records.

CF: Chunk Flag

The CF flag indicates if this is the first record chunk or a middle record chunk.
ME: Message End

The ME flag indicates if this is the last record in the message.

MB: Message Begin

The MB flag indicates if this is the start of an NDEF message.

Type Length

Indicates the length (in bytes) of the Record Type field. This value is always zero for
certain types of records defined with the TNF Field described above.

©Adafruit Industries Page 33 of 52

Payload Length

Indicates the length (in bytes) of the record payload. If the SR field (described above)
is setto 1in the record header, this value will be one byte long (for a payload length
from 0-255 bytes). If the SR field is set to O, this value will be a 32-bit value occupying
4 bytes.

ID Length

Indicates the length in bytes of the ID field. This field is present only if the IL flag
(described above) is set to 1in the record header.

Record Type

This value describes the 'type' of record that follows. The values of the type field must
corresponse to the value entered in the TNF bits of the record header.

Record ID

The value of the ID field if an ID is included (the IL bit in the record header is set to 1).
If the IL bit is set to O, this field is ommitted.

Payload

The record payload, which will be exactly the number of bytes described in the
Payload Length field earlier.

Well-Known Records (TNF Record Type 0x01)

Probably the most useful record type is the "NFC Forum Well-Known Type" (TNF Type
0x01). Record types that adhere to the "Well-Defined" type are each described by
something called an RTD or Record Type Definition. Some of the current Well-Defined
RTDs are:

URI Records (0x55/'U")

The "Well Known Type" for a URI record is Ox55 ('U'), and this record type can be used
to store a variety of useful information such as telephone numbers (tel:), website
addresses, links to FTP file locations, etc.

URI Records are defined in the document "URI Record Type Definition" from the NFC
Forum, and it has the following structure:

Name Offset Size Description

©Adafruit Industries Page 34 of 52

Identifier Code 0 1 byte See table below
URI Field 1 N bytes The rest of the URI (depending on byte 0 above)

The URI Identifier Code is use to shorten the URI length, and can have any of the
following values:

Value Protocol
0x00 No prepending is done ... the entire URI is contained in the URI Field
0x01 http://www.
0x02 https://www.
0x03 http://
0x04 https://
0x05 tel:

0x06 mailto:

0x07 ftp://anonymous:anonymous@
0x08 ftp://ftp.
0x09 ftps://
Ox0A sftp://
0x0B smb://

0x0C nfs://

0x0D ftp://

Ox0E dav://

OxOF news:

0x10 telnet://
0x11 imap:

0x12 rtsp://
0x13 urn:

0x14 pop:

0x15 sip:

0x16 sips:

0x17 tftp:

0x18 btspp://
0x19 btl2cap://
Ox1A btgoep://
0x1B tcpobex://
0x1C irdaobex://
0x1D file://
Ox1E urn:epc:id:
Ox1F urn:epc:tag:
0x20 urn:epc:pat:
0x21 urn:epc:raw:
0x22 urn:epc:
0x23 urn:nfc:

Following the URI Identifier Code is the URI Field. This field provides the URI as per
RFC 3987 and contains the rest of the URI after the value corresponding to the URI
Identifier is prepended (unless the URI ID is Ox00, in which case the complete URI will
be contained in the URI Field).

Test Records
To Do

Smart Poster Records
To Do

©Adafruit Industries Page 35 of 52

Example NDEF Records

Well Known Records

URI Record

An example of a URI record is shown in "Memory Dump of a Mifare Classic 1K Card
with an NDEF Record" below.

Text Record

To Do

Smartposter Record

To Do

Absolute URI Record

To Do

Using Mifare Classic Cards as an NDEF Tag

Mifare Classic 1K and 4K cards can be configured as NFC Forum compatible NDEF
tags, but they must be organised in a certain manner to do so. The requirements to
make a Mifare Classic card "NFC Forum compliant" are described in the following App
Note from NXP:

AN1304 - NFC Type MIFARE Classic Tag Operation (https://adafru.it/aSP)

While the App Note above is the authoritative source on the matter, the following
notes may also offer a quick overview of the key concepts involved in using Mifare
Classic cards as NFC Forum compatible 'NDEF' tags:

Mifare Application Directory (MAD)

In order to form a relationship between the sector-based memory of a Mifare Classic
card and the individual NDEF records, the Mifare Application Directory (MAD)
structure is used. The MAD indicates which sector(s) contains which NDEF record.
The definitive source of information on the Mifare Application Directory is the
following application note:

AN10787 - MIFARE Application Directory (MAD) (https://adafru.it/aSQ)

For reference sake, the two types of MADs (depending on the size of the card in
question) are defined below:

©Adafruit Industries Page 36 of 52

http://www.nxp.com/documents/application_note/AN1304.pdf
http://www.nxp.com/documents/application_note/AN10787.pdf

Mifare Application Directory 1 (MAD1)

MAD1 can be used in any Mifare Classic card regardless of the size of the EEPROM,
although if it is used with cards larger than 1KB only the first 1IKB of memory will be
accessible for NDEF records.

The MAD1 is stored in the Manufacturer Sector (Sector 0x00) on the Mifare Classic
card.

Mifare Application Directory 2 (MAD?2)

MAD?2 can only be used on Mifare Classic cards with more than 1KB of storage (Mifare
Classic 4K cards, etc.). It is NOT compatible with cards containing only 1KB of memory!

The MAD?2 is stored in sectors 0x00 (the Manufacturer Sector) and 0x10.

MAD Sector Access

The sectors containing the MAD1 (0x00) and MAD2 (0Ox00 and 0x10) are protected
with a KEY A and KEY B (if you're not familiar with this concept, consult the Mifare
Classic summary elsewhere in the PN532/NFC wiki). To ensure that these sectors can
be read by any application, the following common KEY A should always be used:

Public KEY A of MAD Sectors

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
OxAO OxAl OxA2 OxA3 0xA4 OxA5

The MAD sector may optionally be write-protected using KEY B if you wish to limit the
ability of customers to modify the card contents. The public KEY A will ensure that
they can always read the data.

Storing NDEF Messages in Mifare Sectors

NDEF messages/records may be stored in any sector of the Mifare card, other than
the sector(s) use by the MAD or sectors beyond the 1K range if a MAD1 table is used.

When a sector is used to store NDEF records, it is referred to as an NFC Sector. As
with the MAD Sector(s) described above, these sectors must always be accessible in
at least read-only mode, and as such a common public KEY A also exists for NFC
Sectors, though it is not the same KEY A used in the MAD sector(s):

Public KEY A of NFC Sectors

©Adafruit Industries Page 37 of 52

BYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
0xD3 OxF7 0xD3 OxF7 0xD3 OxF7

In order to store an NDEF Message on the Mifare Classic card, the message needs to
be wrapped inside something called a TLV Block. The basic structure of a TLV Block is
described below.

TLV Blocks

TLV is an abbreviation for three different fields: T for Tag Field, L for Length Field and
V for Value Field. A TLV Block consist of one or more bytes, depending on which of
these three fields is present. Note that the TLV Block will always be at least one byte
since the T Field is mandatory in every case.

Tag Field
The Tag Field (or T Field) is the only mandatory field, and uses a single-byte to
identify the type of TLV block accordingly to a pre-determined table of values:

TLV Block Types

Block Type Value Description

NULL 0x00 These blocks should be ignored

NDEF Message 0x03 Block contains an NDEF message
Proprietary OXFD Block contains proprietary information
Terminator OxFE Last TLV block in the data area

Length Field
The Length Field (or L Field) contains the size (in bytes) of the value field. The Length
Field can be organised in two different ways, using either one or three bytes.

The one byte format simple contains a single byte value from 0x00..0xFF.

The three byte format consists of the following format:

Byte 0: Always OxFF to indicate that we are using the three byte format
Byte 1..2: Can be a value between 0x00FF and OXFFFE

Both the one byte and three byte format must be supported for NFC Forum and NDEF
compatability.

Value Field

The Value Field (or V Field) is only present if the Length Field (described above) is
present and not equal to Ox0O. If the Length Field is not equal to O, the Value Fields
will contain N bytes of data in the format indicated by the T Field above.

The value field is where the payload (an NDEF Message, for example) is stored.

©Adafruit Industries Page 38 of 52

Terminator TLV
The Terminator TLV is the last TLV block in the data area, and consist of a single byte:
OxOFE (see the TLV Block Type table above). This TLV Block in mandatory.

Memory Dump of a Mifare Classic 1K Card with an NDEF
Record

[Start of Memory Dump]
------------------------ Sector @-------------------------

Block © 3E 39 AB 7F D3 88 04 00 47 41 16 57 4D 10 34 08 >9«0?..GA.WM.4.
Block 1 14 01 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 ...4.4.4.4.4.4.4
Block 2 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 03 E1 .4.4.4.4.4.4.4.4
Block 3 00 00 00 00 00 00 78 77 88 C1 00 00 00 00 00 0O xw?A. ...
------------------------ SACEEF dl=cccsccsccsscoscssccoocss B

Block 4 00 00 03 11 D1 01 0D 55 01 61 64 61 66 72 75 69N..U.adafrui
Block 5 74 2E 63 6F 6D FE 00 00 00 00 00 00 00 00 00 00 t.comp..........
Block 6 00 00 00 00 00 0O 00 00 00 GO 0O 00 00 00 60 60
Block 7 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 @.

------------------------ Sector 2--------------meee oo

Block 8 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 00 00 00
Block 9 00 00 00 00 00 00 00 0O 0O 0O OO0 0O 00 00 00 00
Block 10 00 00 00 00 OO0 00 OO OO0 OO OO OO 00 00 60 00 O
Block 11 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 ?7@......
------------------------ Sector 3----------mmmm o

Block 12 00 00 00 00 00 00 OO 00 OO OO OO 00 00 60 00 0
Block 13 00 00 00 00 00 00 00 0O 0O OO 0O OO 00 00 00 OO0cvun.n.
Block 14 00 00 00 00 00 00 OO OO0 OO 0O OO 60 00 00 00 00ccvvunn.
Block 15 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 7@......
------------------------ Sector 4-------ccmmmm e

Block 16 00 00 00 00 00 00 OO OO0 OO 0O OO 00 00 00 00 00 v,
Block 17 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 00 00 0
Block 18 00 00 00 00 00 00 00 0O 0O 0O OO0 OO0 00 00 00 00
Block 19 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 @......
------------------------ Sector 5---------mmmi e

Block 20 00 00 00 00 00 00 00 0O 0O 0O 0O OO 00 00 00 00c....
Block 21 00 00 00 00 00 00 0O OO0 OO OO OO 00 00 60 00 0
Block 22 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 00
Block 23 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 7@......
------------------------ Sector 6-----------“--------------

Block 24 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 00
Block 25 00 00 00 00 00 00 00 OO0 0O 0O OO0 OO0 00 00 00 00
Block 26 00 00 00 00 00 00 OO0 OO0 OO OO OO 00 00 60 00 00 v,
Block 27 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 ?7@......
------------------------ Sector 7-----------“““-“---------

Block 28 00 00 00 00 00 00 OO 00 OO OO OO 00 00 60 00 0
Block 29 00 00 00 00 00 00 OO0 00 OO 00 0O 00 00 60 00 00cvu...
Block 30 00 00 00 00 00 00 00 0O GO OO OO0 0O 00 00 00 00
Block 31 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 @......
------------------------ Sector 8-------------------------

Block 32 00 00 00 00 OO0 00 OO OO0 OO OO OO 00 00 60 00 00
Block 33 00 00 00 00 00 00 OO 00 OO OO OO 00 00 60 00 60cvu...
Block 34 00 00 00 00 00 00 00 0O 0O 0O 0O OO0 00 00 00 00ccv..n.
Block 35 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 7@......
------------------------ Sector 9----------mmmmi e

Block 36 00 00 00 00 00 00 00 0O 0O OO 0O OO 00 00 00 00
Block 37 00 00 00 00 00 00 OO 00 OO OO OO 00 00 60 00 0vvuvu.n.
Block 38 00 00 00 00 00 00 OO0 00 OO OO0 OO 00 00 00 00 0 v,
Block 39 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 00 ?7@......
------------------------ Sector 10----------“---“------------

Block 40 00 00 00 00 00 00 OO0 00 OO OO OO 00 00 60 00 00
Block 41 00 00 00 00 00 00 00 0O 0O OO OO0 OO0 00 00 00 0co....
Block 42 00 00 00 00 00 00 OO 00 OO OO OO 00 00 00 00 O v,
Block 43 00 00 00 00 00 00 7F 07 88 40 00 00 00 00 00 60 ?7@......

©Adafruit Industries Page 39 of 52

NDEF Records

The above example contains two records, both located in sector 1 (sector O contains

the MAD).

Record 1

Sector 11-------------------------

00 00 00 00
00 00 00 00
00 00 00 00
00 7F 07 88

Sector 12--------cc-ccmmmacnaanann

00 00 00 00
00 00 00 00
00 00 00 00
00 7F 07 88

Sector 13-------------------------

00 00 00 00
00 00 00 00
00 00 00 00
00 7F 07 88

Sector 14-------------------------

00 00 00 00
00 00 00 00
00 00 00 00
00 7F 07 88

Sector 15----------------oooooo -

00 00 00 00
00 00 00 00
00 00 00 00
00 7F 07 88

End of Memory

The first record on the card can be identified by looking at the first byte of block 4 in

sector 1.

Block 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Char Value

Every record on the Mifare card starts with the TLV Block (described above), and the
first byte of the TLV Block (the Tag Field) indicates that this is a NULL Block type
(value 0x00). The second byte is the Length Field, and is O. Since there is no payload
for this record (Length = 0), the third byte of the TLV block is not present (the Value

Field).

This record was likely inserted when the card was first formatted to ensure that at
least one record is present.

Record 2

The second record on the card starts at byte Ox02 of block 4 and continues into block

5.

©Adafruit Industries

Page 40 of 52

Block 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Char Value

04 03 11 D1 01 6D 55 01 61 64 61 66 72 75 69 N..U.adafrui
05 74 2E 63 6F 6D t.com

Starting with the TLV Block data in the first two bytes, we can determine the following:

Byte(s) Value Description

04:02 0x03 Field Type (0x03 = NDEF Message)
04:03 Ox11 Length Field (17 bytes)

This indicates to us that the record contains an NDEF Message (value 0x03), and that
the message is 17 bytes long (Ox11 in hexadecimal =17 in decimal value). This means
that our NDEF message is contained in the next 17 bytes (04:04..05:04). The NDEF
record can then be analysed as follows:

Byte(s) Value Description
04:04 OxD1 This byte is the **NDEF Record Header**, and indicates that
this is

an NFC Forum Well Known Record (0x01 in the first 3 bits),
and that this is the first and last record (MB=1, ME=1),

and that this is a short record (SR = 1) meaning the payload
length is less than or equal to 255 chars (len=one byte).

TNF = 0x01 (NFC Forum Well Known Type)

IL =0 (No ID present, meaning there is no ID Length or ID
Field either)

SR =1 (Short Record)

CF =0 (Record is not 'chunked')

ME =1 (End of message)

MB =1 (Beginning of message)

04:05 0x01 This byte is the **Type Length** for the Record Type Indicator
(see above for more information), which is 1 byte (0x55/'U'

below)

04:06 0x0D This is the payload length (13 bytes)

04:07 0x55 Record Type Indicator (0x55 or 'U' = URI Record)

04:08 0x01 This is the **start of the record payload**, which contains the
URI Identifier ("http://www.") since this is a URI Well-Defined
Record Type (see Well-Defined Records above). This will be
prepended to the rest of the URI that follows in the rest of

the
message payload

04:09..05:04 ... The remainder of the URI ("adafruit.com"), which combined with

the

pre-pended value from byte 04:08 yields: http://
www.adafruit.com

TLV Terminator

Block 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 Char Value

The final byte (block 5, byte 5), with the value OxFE, is the TLV Terminator and
indicates that this is the end of the TLV Block.

©Adafruit Industries Page 41 of 52

Using with LibNFC

Using the PN532 Breakout Boards with libnfc

libnfc (https://adafru.it/aSR) is a mature, cross-platform, open-source NFC library that
can be easily configured to work with the PN532 Breakout Board. While Linux is
probably the easiest platform to use libnfc with, it can be configured for the Mac and
Windows as well, though you may need to dig around on the libnfc Community
Forums for some specific details on compiling .dlls for Windows, etc.

If you want to test the PN532 Breakout Board out with libnfc, this simple tutorial

should walk you through the absolute basics of compiling and configuring libnfc, and
using some of the canned example SW included in the library.

This is only for using the PN532 breakout with an FTDI cable or FTDI Friend to a

proper computer. You cannot run LIbDNFC on an Arduino or other microcontroller

libnfc In Linux (Ubuntu 10.10 used in this
example)

Step One: Download libnfc

Download the latest version of libnfc from Google Code (https://adafru.it/aSS) (ex.
"libnfc-1.4.1.tar.gz") and extract the contents of the file as follows:

$ wget http://libnfc.googlecode.com/files/libnfc-x.x.x.tar.gz
$ tar -xvzf libnfc-x.x.x.tar.gz
$ cd libnfc-x.x.x

Step Two: Configure libnfc for PN532 and UART

libnfc currently only supports communication over UART, using any inexpensive USB
to UART adapter like the FTDI Friend or a TTL FTDI cable. Before compiling, however,

©Adafruit Industries Page 42 of 52

http://www.libnfc.org/
http://code.google.com/p/libnfc/downloads/list

you will need to configure libnfc to include support for UART and the PN532 chipset,
which can be done with the following commmand (executing in the folder where the
above archive was unzipped):

$./configure --with-drivers=pn532 uart --enable-serial-autoprobe

Note: If you also wish to include debug output, you can add the '-enable-serial-
autoprobe' flag (minus the single quotes) to the configure options

S E kevin@VirtualBox-UbuntuDev: ~/Projects/libnfc-1.4.1

File Edit View Search Terminal Help

ig.status: creating Doxyfile

.status: creating Makefile

.status: creating cmake modules/Makefile
ig.status: creating examples/Makefile
ig.status: creating examples/pn53x-tamashell-scripts/Makefile

.status: creating include/Makefile
ig.status: creating include/nfc/Makefile
ig.status: creating libnfc.pc
ig.status: creating libnfc/Makefile
ig.status: creating libnfc/buses/Makefile
ig.status: creating libnfc/chips/Makefile
ig.status: creating libnfc/drivers/Makefile

.status: creating test/Makefile

.status: creating config.h

.status: executing depfiles commands
ig.status: executing libtool commands

Selected drivers:
acrl22..
arygon...
pn531 usb
pn533 usb.......

kevin@VirtualBox-Ub

Step Three: Build and install libnfc

You can build and install libnfc with the following three commands, also run from the
folder where the original archive was unzipped:

$ make clean
$ make
$ make install

Step Four: Check for installed devices

Now that libnfc is (hopefully) built and installed, you can run the 'nfc-list' example to
try to detect an attached NFC board. Make sure the board is connected to the FTDI or
USB/UART adapter, and that it is connected to your PC, and run the following
commands:

$ cd examples
$./nfc-list

This should list the devices that were detected

©Adafruit Industries Page 43 of 52

Step Five: Poll for an ISO14443A (Mifare, etc.) Card

Next, you can use the 'nfc-poll' example to wait 30 seconds for an ISO14443A card or
tag and display some basic information about this card. In the examples folder that we
changed to above, run the following command:

$./nfc-poll

This should give you some basic information on any card that entered the magnetic
field within the specified delay.

@S5 kevin@VirtualBox-UbuntuDev: ~/Projects/libnfc-1.4.1/examples

File Edit View Search Terminal Help

kevin@VirtualBox-UbuntuDev:~/Projects/libnfc-1.4.1/exampless ./nfc-list
/home/kevin/Projects/libnfc-1.4.1/examples/.libs/1t-nfc-1list use libnfc 1.4.1 (r
869)
Connected to NFC device: PN532 (/dev/ttyUSBO) - PN532 v1.6 (0x07)
kevin@VirtualBox-UbuntuDev:~/Projects/libnfc-1.4.1/examples$./nfc-poll
/home/kevin/Projects/libnfc-1.4.1/examples/.libs/1t-nfc-poll use libnfc 1.4.1 (r
869)
Connected to NFC reader: PN532 (/dev/ttyUSB@) - PN532 v1.6 (0x07)
PN532 will poll during 30000 ms
1 target(s) have been found.
T1: ISO/IEC 14443A (106 kbps) target:
ATQA (SENS RES): 00 04

UID (NFCID1): 3e 39 ab 7f

SAK (SEL RES): 08
kevin@virtualBox-UbuntuDev:~/Projects/libnfc-1.4.1/exampless

libnfc With Mac OSX Lion

scott-42 was kind of enough to post some tips on getting libnfc working on a Mac
using an FTDI adapter. A couple simple changes to the code were required (as of
v1.6.0-rc1), with the details here (https://adafru.it/aP1).

Keeping in mind the code changes mentionned above, the following steps should get
libnfc compiling and working via an FTDI type adapter and UART on Lion (using libnfc
1.6.0_rc1):

Download and build libnfc and configure if for PN532
UART (making the code changes above before
running make):

wget http://libnfc.googlecode.com/files/libnfc-1.6.0-rcl.tar.gz
tar -xvzf libnfc-1.6.0-rcl.tar.gz
cd libnfc-1.6.0-rcl

©Adafruit Industries Page 44 of 52

http://forums.adafruit.com/viewtopic.php?f=19&t=22085#p115684

./configure --with-drivers=pn532 uart --enable-serial-autoprobe
sudo make
sudo make install

If everything worked out, switch to the examples folder
and see if you can find the PN532 and wait for an
appropriate tag:

cd examples
Kevins-Mac-mini:examples kevin$./nfc-poll
/Users/kevin/libnfc-1.6.0-rcl/examples/.libs/nfc-poll uses libnfc 1.6.0-rcl
(r1326)
NFC reader: pn532 uart:/dev/tty.usbserial-FTES5WWPB - PN532 v1.6 (0x07) opened
NFC device will poll during 30000 ms (20 pollings of 300 ms for 5 modulations)
ISO/IEC 14443A (106 kbps) target:
ATQA (SENS RES): 00 04
UID (NFCID1): 3e b9 6e 66
SAK (SEL RES): 08

There are some dependencies to get libnfc running, but since it isn't an Adafruit
project and we can't really support it directly ourselves, you will probably have better
luck looking at the libnfc forums (https://adafru.it/aST) for Mac support. There are a
few active users developping on the Mac.

FAQ

Some of the more common questions on the forums related to the PN532 NFC/RFID
Breakout (http://adafru.it/364) and NFC Shield (http://adafru.it/789).

Can | have multiple shields on one Arduino?

Nope, the 12C library can have only one address per bus and the address is not
adjustable! So one shield per Arduino please!

Can | read or write to Mifare tags with the PN532 and
Adafruit Libraries?

Absolutely! The Adafruit libraries include functions to authenticate, read and write
individual blocks to Mifare Classic cards. Before you can read or write a block you
need to authenticate it with the appropriate key, and once the block is
authenticated you can read and write to your hearts content)!

For example, the key functions in the I12C library (https://adafru.it/aSW) (which was
written to go along with the NFC shield (http://adafru.it/789) since it defaults to 12C)
are:

©Adafruit Industries Page 45 of 52

http://www.libnfc.org/community/
http://www.adafruit.com/products/364
http://www.adafruit.com/products/364
http://www.adafruit.com/products/789
https://github.com/adafruit/Adafruit_NFCShield_I2C
http://www.adafruit.com/products/789

uint8 t mifareclassic AuthenticateBlock (uint8 t * uid, uint8 t uidLen,
uint32 t blockNumber, uint8 t keyNumber,
uint8 t * keyData);
uint8 t mifareclassic ReadDataBlock (uint8 t blockNumber, uint8 t * data);
uint8 t mifareclassic WriteDataBlock (uint8 t blockNumber, uint8 t * data);

This is all you need to start reading and writing data, and you can verify the data
using one of many Android applications that support working with Mifare cards (a
search for NFC will turn up plenty).

What level of NDEF support is included in the libraries?

At the moment, all NDEF (https://adafru.it/aXr) features are experimental and
incomplete. Only very basic test code has been written to format a card for NDEF
messages in a way that any NFC-enabled Android phone should be able to
understand it, and it was written and an extremely simple proof of concept.

We would like to improve NDEF support for Mifare tags in the near future and some
initial planning has gone into this, but at the moment our suggestion is to stick to
plain text and 'vanilla' Mifare Classic (https://adafru.it/aXs) reads and writes. You
can read and write Mifare Classic and Mifare Ultralight blocks from Android, and
you don't need to used the more complicated NDEF standard to simply pass data
back and forth via a Mifare Classic or Ultralight card.

Note: Please use the limited NDEF code with care. Formatting cards for NDEF

support is currently a one way operation, and should only be performed on cards
you can dedicate to NDEF use.

Does the PN532 support peer to peer communication to
talk with my smartphone?

Yes, the PN532 supports peer to peer communication, but the SW support for this
isn't implemented in the Adafruit libraries.

Peer to peer communication with Android is possible, for example, but the actual
implementation is quite complicated on the PN532 side. You need to go through a
lot of SW layers to communicate with Android in a way that it understands -- it
would require developing a full NDEF stack for the messages, SNEP and LLCP
stacks, etc. -- which is unfortunately well beyond the scope of what we can offer on
a development board at this price point.

All of the HW requirements for this are met with the Adafruit shield and breakout
board, but the stack implementation is non trivial and would require us to charge a

©Adafruit Industries Page 46 of 52

http://learn.adafruit.com/adafruit-pn532-rfid-nfc/ndef
http://learn.adafruit.com/adafruit-pn532-rfid-nfc/mifare

significant premium for these boards if we implemented this.

We've focused our energy on providing a reliable, proven, properly-tuned HW
reference, and enough of a SW building block to get everyone started, but there
are too many holes to fill in to cover everything NFC can do with a development
board at this price point.

Does the PN532 support tag emulation?

Yes, but in reality it's impossible to implement since it requires an external 'secure
element (https://adafru.it/aXu)' that is very difficult to source (under export control
and general NDA from the few manufacturers of them). If you can get one we'd
love to see it, though!

Can the PN532 read Tag-It tags from TI?

No. The PN532 is designed to be used with 1SO14443 (https://adafru.it/aSU) tags,
with Mifare Classic probably the most common general-purpose tag type in use.

Can | set a delay calling readPassiveTargetlD()?

Note: This question only applies to the 12C Library (https://adafru.it/aSW). The SPI
library (https://adafru.it/aSX) doesn't handle the timing the same way.

readPassiveTargetlD() intentionally waits around in a blocking delay until a card
enters the magnetic field. The reason for this blocking delay is to ensure a well-
understood command/response flow. Once the magnetic field is activated and a
read request is sent via readPassiveTargetID, you can keep sending new
commands to the PN532, but the moment a card or tag enters the field, the PN532
will send a response to the initial read request, even if it's in the middle of some
other response or activity. To avoid having to debug this in SW, a blocking delay
was implemented to keep the command/response pattern as clear as possible.

As a workaround to this blocking-delay limitation,
setPassiveActivationRetries(maxRetries) was added to the latest NFC libraries to
allow you to set a specific timeout after read requests.

By default, the PN532 will wait forever for a card to enter the field. By specifying a
fixed number of retries via MxRtyPassiveActivation (see UM section 7.3.1 describing
the RFConfiguration register, specifically Cfgltem 5) the PN532 will abort the read
request after specified number of attempts, and you can safely send new
commands without worrying about mixing up response frames. To wait forever, set

©Adafruit Industries Page 47 of 52

http://nearfieldcommunication.com/developers/nfc-architecture/
http://nearfieldcommunication.com/developers/nfc-architecture/
http://en.wikipedia.org/wiki/ISO/IEC_14443
https://github.com/adafruit/Adafruit_NFCShield_I2C
https://github.com/adafruit/Adafruit-PN532
https://github.com/adafruit/Adafruit-PN532

MxRtyPassiveActivation to OxFF. To timeout after a fixed number of retries, set
MxRtyPassiveActivation to anything less than OxFF.

Example Sketch:

#include <Wire.h>
#include <Adafruit NFCShield I2C.h>

#define IRQ (2)
#define RESET (3) // Not connected by default on the NFC Shield

Adafruit NFCShield I2C nfc(IRQ, RESET);

void setup(void) {
Serial.begin(115200);
Serial.println("Hello!");

nfc.begin();

uint32 t versiondata = nfc.getFirmwareVersion();
if (! versiondata) {

Serial.print("Didn't find PN53x board");

while (1); // halt
}

// Got ok data, print it out!

Serial.print("Found chip PN5"); Serial.println((versiondata>>24) &
OXFF, HEX);

Serial.print("Firmware ver. "); Serial.print((versiondata>>16) & OxFF,
DEC) ;

Serial.print('."'); Serial.println((versiondata>>8) & OxFF, DEC);

// Set the max number of retry attempts to read from a card
// This prevents us from waiting forever for a card, which is
// the default behaviour of the PN532.
nfc.setPassiveActivationRetries (0OxFF);

// configure board to read RFID tags
nfc.SAMConfig();

Serial.println("Waiting for an IS014443A card");
}

void loop(void) {
boolean success;
uint8 t uid[] = { 06, 0, 0, 0, 0, O, 0 }; // Buffer to store the returned UID
uint8 t uidLength; // Length of the UID (4 or 7 bytes
depending on IS014443A card type)

// Wait for an IS014443A type cards (Mifare, etc.). When one is found

// ‘'uid' will be populated with the UID, and uidLength will indicate

// if the uid is 4 bytes (Mifare Classic) or 7 bytes (Mifare Ultralight)

success = nfc.readPassiveTargetID(PN532 MIFARE IS014443A, &uid[0],
&uidLength);

if (success) {
Serial.println("Found a card!");
Serial.print("UID Length: ");Serial.print(uidLength, DEC);Serial.println("
bytes");
Serial.print("UID Value: ");
for (uint8 t i=0; i < uidLength; i++)
{

}

Serial.println("");

Serial.print(" 0x");Serial.print(uid[i], HEX);

©Adafruit Industries Page 48 of 52

// Wait 1 second before continuing
delay(1000);

else

// PN532 probably timed out waiting for a card
Serial.println("Timed out waiting for a card");
}
}

Hey wait ... isn't there something funny with the SVDD
pin?

Indeed, good eye! Unfortunately, both v1.0 and v1.3 of the breakout boards have a
problem on the schematic. SVDD is connected directly to VDD, but should be left
floating since it is used to power secure modules. This has no effect on the
functionality of the boards, but does cause some extra current to be drawn. It will
be fixed on the next revision of the board, but if you require the use of the secure
modules (rare), you can simply cut the trace to the left of C22, which is the cap
connected to SVDD (just follow the trace straight up from pin 37).

Are there any special requirements to use the PN532
Breakout with the Due?

While the libraries do not officially support the Due yet, some customers have been
able to get them working with some minor changes to the library.

We recommend using the 12C libraries with both the shield and the breakout
boards since the 12C library represents the latest code from Adafruit, and the
shield version should work without too much effort.

There is one caveat combining the breakout, 12C and the Due, though: The Due
includes pullup resistors for 12C0O (SCLO and SDAT1), but there are no pullups
resistors on SCL1 and SDA1. SCL1/SDA1 are the pins used as replacements for the
Uno 12C pins (the pins used on standard shields), so you will need to add two 1.5K
pullups on SCL1 and SDA1 to use the breakout board with 12C1 and the Due. Simply
solder two 1.5K resistors, one from SCL1to 3V3 and another from SDA1 to 3.3V, and
then connect the board the same way you would with an Uno.

This issue only applies to the PN532 Breakout board since the PN532 shield
includes 12C pullup resistors right on board.

©Adafruit Industries Page 49 of 52

Downloads

Files

« SPI and 12C library is available from github (https://adafru.it/aSX)

« Deprecated 12C-only library is available from github (don't recommend) (https://
adafru.it/aSW)

« Fritzing objects available in the Adafruit Fritzing library (https://adafru.it/aP3)

« EagleCAD PCB files for the Shield at https://github.com/adafruit/Adafruit-PN532-
RFID-NFC-Shield (https://adafru.it/dik)

- EagleCAD PCB files for the Breakout at https://github.com/adafruit/Adafruit-
PN532-RFID-NFC-Breakout (https://adafru.it/dil)

Datasheets

For more details about NFC/RFID and this chip we suggest the following fantastic
resources:

« RFID selection guide (https://adafru.it/Cc6)- a lot of details about RFID in general
« Nokia's Introduction to NFC (https://adafru.it/qgPD)- a lot of details about NFC in

general
« Antenna design document (https://adafru.it/qPE)

Breakout v1.6 schematic & print

(click to enlarge)

©Adafruit Industries Page 50 of 52

https://github.com/adafruit/Adafruit-PN532
https://github.com/adafruit/Adafruit_NFCShield_I2C
https://github.com/adafruit/Fritzing-Library
https://github.com/adafruit/Adafruit-PN532-RFID-NFC-Shield
https://github.com/adafruit/Adafruit-PN532-RFID-NFC-Shield
https://github.com/adafruit/Adafruit-PN532-RFID-NFC-Breakout
https://github.com/adafruit/Adafruit-PN532-RFID-NFC-Breakout
https://cdn-shop.adafruit.com/datasheets/rfid%20guide.pdf
https://cdn-shop.adafruit.com/datasheets/Introduction_to_NFC_v1_0_en.pdf
https://cdn-shop.adafruit.com/datasheets/PN532_AntennaDesign_v1.0.pdf

i

Version 1.3 schematic

(click to enlarge)

R [[

©Adafruit Industries Page 51 of 52

PN532 Breakout v1 Schematic

https://adafru.it/d7I

©Adafruit Industries Page 52 of 52

http://learn.adafruit.com/system/assets/assets/000/009/729/original/PN532_Breakout_Schematic_v1.0.pdf?1374440547

	Adafruit PN532 RFID/NFC Breakout and Shield
	Table of Contents
	Overview
	Breakout Wiring
	Shield Wiring
	Arduino Library
	Python & CircuitPython
	Python Docs
	About NFC
	MiFare Cards & Tags
	About the NDEF Format
	Using with LibNFC
	FAQ
	Downloads

	Overview
	Breakout Wiring
	Wiring the Breakout for SPI

	Shield Wiring
	Solder the Headers
	Using the Adafruit NFC Shield with I2C

	Using with the Arduino Leonardo and Yun
	Arduino Library
	Which Library?
	Library Installation
	Testing MiFare

	Python & CircuitPython
	CircuitPython Microcontroller Wiring
	Python Computer Wiring
	CircuitPython Installation of PN532 Library
	Python Installation of PN532 Library
	CircuitPython & Python Usage
	Full Example Code
	Python Docs
	About NFC
	NFC (Near Field Communication)
	Passive Communication: ISO14443A Cards (Mifare, etc.)
	Active Communication (Peer-to-Peer)
	NFC Data Exchange Format (NDEF)
	Reading

	MiFare Cards & Tags
	MiFare Classic Cards
	EEPROM Memory
	4 Block Sectors
	16 Block Sectors
	Accessing EEPROM Memory
	Note on Authentication
	Example of a New Mifare Classic 1K Card
	MiFare Ultralight Cards
	EEPROM Memory
	Lock Bytes (Page 2)
	OTP Bytes (Page 3)
	Data Pages (Page 4-15)
	Accessing Data Blocks
	Read/Write Lengths

	About the NDEF Format
	NDEF (NFC Data Exchange Format)
	NDEF Messages
	NDEF Records
	Record Header (Byte 0)
	Type Length
	Payload Length
	ID Length
	Record Type
	Record ID
	Payload
	Well-Known Records (TNF Record Type 0x01)
	URI Records (0x55/'U')
	Test Records
	Smart Poster Records
	Example NDEF Records
	Using Mifare Classic Cards as an NDEF Tag
	Mifare Application Directory (MAD)
	Mifare Application Directory 1 (MAD1)
	Mifare Application Directory 2 (MAD2)
	MAD Sector Access
	Storing NDEF Messages in Mifare Sectors
	TLV Blocks
	Memory Dump of a Mifare Classic 1K Card with an NDEF Record
	NDEF Records

	Using with LibNFC
	Using the PN532 Breakout Boards with libnfc

	libnfc In Linux (Ubuntu 10.10 used in this example)
	Step One: Download libnfc
	Step Two: Configure libnfc for PN532 and UART
	Step Three: Build and install libnfc
	Step Four: Check for installed devices
	Step Five: Poll for an ISO14443A (Mifare, etc.) Card

	libnfc With Mac OSX Lion
	Download and build libnfc and configure if for PN532 UART (making the code changes above before running make):
	If everything worked out, switch to the examples folder and see if you can find the PN532 and wait for an appropriate tag:

	FAQ
	Can I have multiple shields on one Arduino?
	Can I read or write to Mifare tags with the PN532 and Adafruit Libraries?
	What level of NDEF support is included in the libraries?
	Does the PN532 support peer to peer communication to talk with my smartphone?
	Does the PN532 support tag emulation?
	Can the PN532 read Tag-It tags from TI?
	Can I set a delay calling readPassiveTargetID()?
	Hey wait ... isn't there something funny with the SVDD pin?
	Are there any special requirements to use the PN532 Breakout with the Due?

	Downloads
	Files
	Datasheets
	Breakout v1.6 schematic & print
	Version 1.3 schematic

