

数据手册

低功耗 16 位 250kSPS 八通道 SARADC GAD7689

1. 特性

● 吞吐速度: 250KSPS

● 16 位分辨率,无失码

● 积分非线性:典型值±0.8LSB,最差值

±1.6LSB

● 动态范围: 88dB

● 信噪失真比: 87dB @2KHz

● 总谐波失真: -100dB @2KH

● 内部基准: 2.5V/4.096V 可选

● 外部缓部基准:可达 4.096V

● 外部基准:可达 VDD

● 支持单模拟电源供电 VDD: 3.3V~5.5V

● 逻辑接口供电 VIO: 1.8V~5.5V

通道序列器

● 无流水线延迟

内部温度传感器

● 8 通道多路复用器,可配制输入模式

单端输入

伪差分输入

真全差分输入

单极性输入

双极性输入

● SPI 串行接口

20 引脚 4mmX4mm QFN 封装

● 功耗: 13.0mW @ 5V, 250KSPS

● 待机电流: 50nA

2. 应用

● 电池供电设备

● 多诵道系统监控

● 医疗仪器

● 数据采集

● 仪器仪表

● 过程控制

3. 概述

GAD7689 是 8 通道 16 位电荷再分配逐次逼近型寄存器(SAR)型模数转换器(ADC),采用单电源供电。

GAD7689 拥有多通道低功耗数据采集系统所需的所有组成部分,包括: 无失码的真 16 位 SAR ADC; 用于将输入配置为单端输入、差分输入、单极性或双极输入的 8 通道低串扰多路复用器; 内部低温漂带隙基准源(可选 2.5V 或 4.096V)及缓冲器; 温度传感器; 可选择的单极点滤波器; 以及当多通道依次连续采样时非常有用的序列器。

GAD7689 使用简单的 SPI 兼容接口实现配置 寄存器的写入何转换结果的读取,数字接口使用单独 的供电电源 (VIO),被设定为逻辑电平。功耗与采样 率成正比。

GAD7689 采用小型的 20 引脚 QFN 封装,工作 温度范围为-40°C 至+85°C。

4. 功能框图

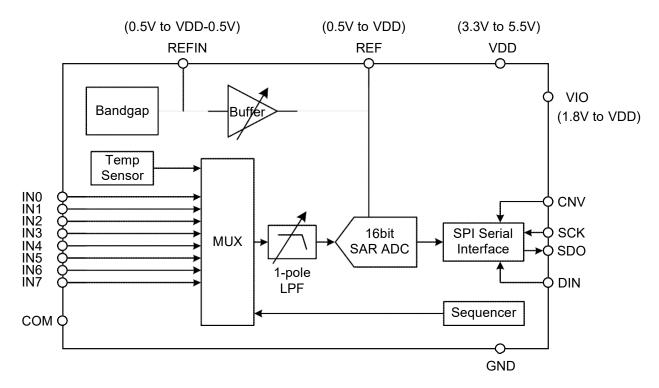


图 1 功能框图

目录

1.	特性	1
2.	应用	1
3.	概述	1
4.	功能框图	2
5.	修订记录	4
6.	订购信息	4
7.	技术规格	
8.	时序规格	7
9.	绝对最大额定值	10
10.	引脚配置和功能描述	11
11.	工作原理	12
12.	输入配置	12
13.	输出码值和理想输入电压	13
14.	典型连接图	13
15.	配置寄存器	15
16.	外形尺寸	16

5. 修订记录

版本	日期	描述
1.0	2022/1	Draft

6. 订购信息

型号 封装描述		封装	起订量	
GAD7689	20-lead QFN(4mmx4mm)	QFN4x4-20	Tray: 490; Reel: 1,500	

7. 技术规格

测试条件: 除非特殊说明 VDD=4.5V 至 5.5V, VIO=1.8V 至 VDD, VREF=VDD, TA = -40°C to +85°C

参数	测试条件	最小值	典型值	最大值	单位
分辨率		16			Bits
模拟输入					
中 正共国	单极性模式	0		+V _{REF}	V
电压范围	双极性模式	-V _{REF} /2		+V _{REF} /2	V
	正输入	-0.1		V _{REF} + 0.1	V
络对绘》 中区	负输入/COM 输入(单极性模式)	-0.1		0.1	V
绝对输入电压	4 th 2 (COM th 2) (TU tU th t# -t)	V _{REF} /2 -		V _{REF} /2 +	
	负输入/COM 输入(双极性模式)	0.1	V _{REF} /2	0.1	V
吞吐速率					
全带宽		0		250	kSPS
1/4 带宽		0		62.5	kSPS
直流精度					
无失码		16			Bits
积分非线性误差(INL)		-1.6	±0.8	+1.6	LSB
微分非线性误差(DNL)		-1	±0.7	1.5	LSB
增益误差		-8	±1	8	LSB
失调误差		-8	±1	8	LSB
交流精度					
动态范围(DR)			89.0		dB
信噪比(SNR)	f _{IN} = 2 kHz, V _{REF} = 5 V	86.0	87.0		dB
	f _{IN} = 2 kHz, V _{REF} =4.096 V, 内部基准	85.0	86.0		dB
信噪失真比(SNDR)	f _{IN} = 2 kHz, V _{REF} = 5 V	85.5	86.5		dB
	f _{IN} = 2 kHz, V _{REF} =4.096 V, 内部基准	84.5	85.5		dB
总谐波失真(THD)	f _{IN} = 2 kHz		-100		dB
无杂散动态范围(SFDR)	f _{IN} = 2 kHz		105		dB
采样动态性能					
-3dB 输入带宽	全带宽		27		MHz
	1/4 带宽		27		MHz
孔径延迟	VDD = 5 V		3.0		ns
内部基准源					
DEE 45 July 1	2.5 V @ 25°C	2.490	2.500	2.510	V
REF 输出电压	4.096 V @ 25°C	4.086	4.096	4.106	V
REFIN 输出电压	2.5 V @ 25°C		1.2		V

	4.096 V @ 25°C		2.3		V
冶					ppm/°
温度漂移			±10		С
输入电压调整率					ppm/
和八七 広 妈 企 平	VDD = 5 V ±5%		±15		V
建立时间	Cref = 10 µF		20		ms
外部基准源					
电压范围	REF 输入	0.5		VDD + 0.3	V
电压 泥固	REFIN 输入 (采用内部缓冲器)	0.5		VDD -0.5	V
漏电流	250 kSPS, REF = 5 V		50		μA
温度传感器					
输出电压	@ 25°C		283		mV
泪庇ヨ恸庇					mV/°
温度灵敏度			2		С
数字输入					
输入电压					
Low (VIL)		-0.3		0.3 ×VIO	V
High (VIH)		0.7 ×VIO		VIO+0.3	V
输入电流					
Low (IIL)		-1		+1	μA
High (IIH)		-1		+1	μA
数字输出					
Low (VIL)					
VoL	Sink current = 500 μA			0.4	V
VoH	Source current = -500 μA	VIO -0.3			V
电源					
VDD	芯片可支持工作的电源范围	3.3		5.5	V
VIO		1.800		VDD + 0.3	٧
待机电流	VDD = VIO = 5 V @ 25°C		50.0		nA
功耗					
	VREF=5.0 V, 外部基准, 250 kSPS,		13.0	18	mW
	VREF=4.096V,内部基准,250 kSPS		15.5	21	mW
温度范围		-40		85	°C

8. 时序规格

测试条件: 除非特殊说明 VDD=4.5V 至 5.5V, VIO=1.8V 至 VDD, VREF=VDD, TA = -40°C to +85°C。

参数1	符号	最小值	典型值	最大值	单位
转换时间: CNV 上升沿至数据有效	tconv		2.0	2.2	μs
采样时间	tacq	1.8	2.0		μs
转换间隔时间	tcyc	4.0			μs
转换期间数据读写时间	t DATA			1.5	μs
SCK					ns
周期	tscк	t _{DSDO} + 12			ns
低电平时间	tsckl	11			ns
高电平时间	tscкн	11			ns
下降沿到数据仍然有效	thspo	4			ns
下降沿到数据有效延迟时间	tospo				
VIO 高于 2.7V				18	ns
VIO 高于 2.3V				23	ns
VIO 高于 1.8V				28	ns
CNV					
脉冲宽度	tcnvh	10			ns
高电平或最后一个 SCK 下降沿至 SDO 高阻	tois			32	ns
低电平至 SCK 上升沿	tclsck	50			
DIN					
CNV 低电平至 SCK 上升沿	tclsck	10			ns
从 SCK 上升沿开始至 DIN 有效建立时间	tsdin	5			ns
从 SCK 上升沿开始的 DIN 有效保持时间	thdin	5			ns

¹ SDO 负载为50pF。

表 2

无繁忙指示器的通用时序

图 2 显示了所有三种模式的时序:转换期间读取/写入(RDC)、转换后读取/写入(RAC)和转换全程读取/写入(RSC),请注意, CFG 和数据回读的选通均为转换结束(EOC)。转换结束时,如果 CNV 为高电平,则繁忙指示器禁用。 数据访问的截止时间为安全的数据读取/写入时间 toata。如果没有在 EOC 之前写入完整的 CFG 字,则 CFG 字被丢弃,当

前配置仍然有效。如果没有在 EOC 之前完全读出转换结果,则转换结果丢失,ADC 以当前转换的 MSB 更新 SDO。当 CNV 在 EOC 之后变为低电平后,SDO 等待 SCK 的第一个时钟沿到来送出 MSB,之后再由 SCK 的下降沿输出从 MSB-1 开始的各个位。如果使用 SPI,则根据时钟极性(CPOL)和时钟相位(CPHA)设置的不同,SCK 空闲时可以为高电平或低电平。图 2 所示为使 SCK 空闲时为低电平,即 CPOL=CPHA=0。由于 MSB 是由 SCK 的第一个沿送出,使用 CPOL=CPHA=0 时会出现 MSB 数据即由第一个(上升)沿送出,又由第一个(上升)沿读取,存在一定的时序风险,所以建议使用 SCK 空闲时为高电平,即 CPOL=CPHA=1,这样所有数据均由 SCK 的下降沿送出,再由上升沿读取,不存在时序风险,如图 3 所示。

无论何种读取/写入模式,上电之后的前三次转换结果都是无意义的,因为有效 CFG 直到第 2 个 EOC 之后才出现,因而需要 2 次哑转换。同样,如果状态机在上电状态期间写入 CFG(如 RDC 所示),则下一个阶段需要重新写入 CFG 寄存器。请注意,在阶段(n-1)写入 CFG 寄存器时,第一个有效数据出现在(n+1)阶段。

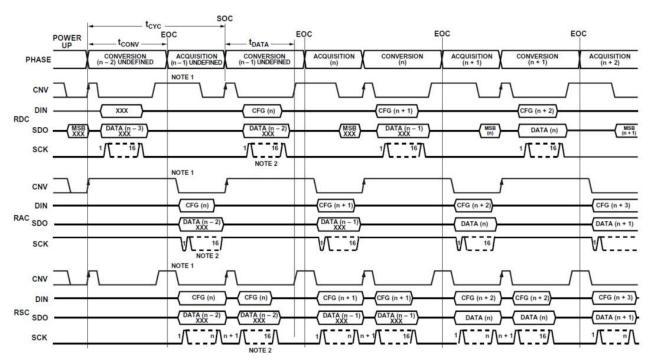


图 2 无繁忙指示器的通用接口时序图

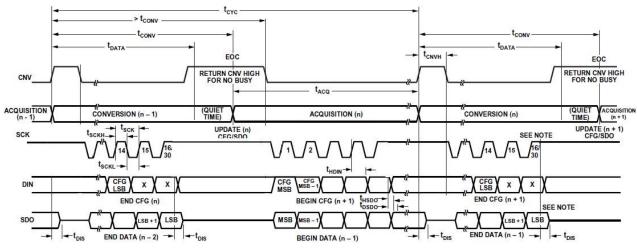


图 3 无繁忙指示器通用串行接口时序

含繁忙指示器的通用时序

图 4 显示了所有三种模式的时序:转换期间读取写入(RDC)、转换后读取/写入(RAC)和转换全程读取/写入(RSC)。请注意, CFG 和数据回读的选通均为转换结束(EOC),如前文所述,数据访问的截止时间为安全的数据读取/写入时间 tDATA,如果没有在 EOC 之前写入完整的 CFG 字,则 CFG 字被丢弃,当前配置仍然有效。转换结束时,如果 CNV为低电平,则繁忙指示器使能。此外,为正确产生繁忙指示,主机必须至少置位 17 个 SCK 下降沿才能使 SDO 返回高阻态,因为 SDO 上的最后一位仍然有效。与"无繁忙指示器的通用时序"部分所述的情况不同,如果没有在 EOC 之前完全读出转换结果,输出的最后一位仍然存在。如果此位为低电平,则无法产生繁忙信号指示,因为繁忙信号指示的产生需要高阻态或一个高到低的位转换。GAD7689 的转换噪声为 4LSB 峰峰值(或更大),因此 LSB 在 50%的时间内为低电平状态。对于 SPI 接口, SPI 主机需要 24 个 SCK 脉冲。如果使用SPI,则根据 CPOL 和 CPHA 设置的不同, SCK 空闲时可以为高电平或低电平。简单的解决办法是令 CPOL=CPHA=1(图中未

显示),使 SCK 空闲时为高电平。

无论何种读取/写入模式,上电之后的前三次转换结果都是无意的,因为有效 CFG 直到第 2 个 EOC 之后才出现,因而需要 2 次哑转换。同样,如果状态机在上电状态期间写入 CFG(如 RDC 所示),则下一个阶段需要重新写入 CFG 寄存器。请注意,在阶段(n-1)写入 CFG 寄存器时,第一个有效数据出现在(n+1)阶段。

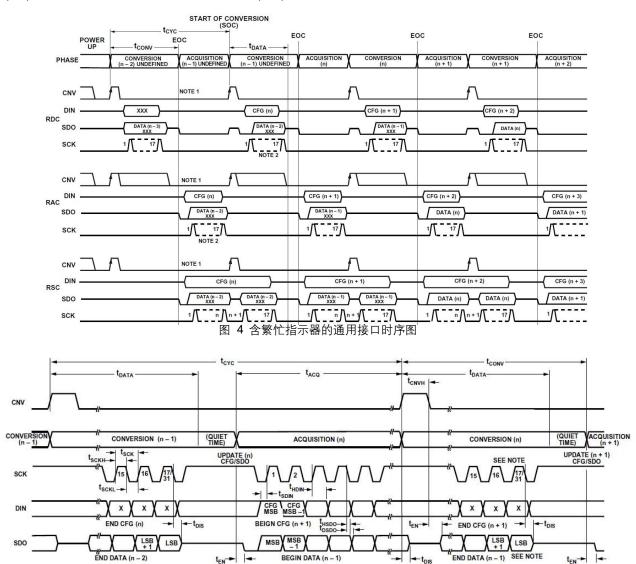


图 5 含繁忙指示器通用串行接口时序

通道序列器

GAD7689 包括了一个通道序列器,可用于重复扫描通道。确定序列器最后一个通道后,以单端或差分对的形式扫描通道,可以包括或者不包括温度传感器。

序列器从 INO 开始,以 CFG[9:7]所设置的 IN[7:0]结束。对于差分对通道,通道配对取决于 CFG[9:7]中设置的最后一个通道。请注意,在序列器模式下,差分对通道的正输入始终为偶数通道,负输入始终为奇数通道。例如,如果 CFG[9:7]=110或者 111,则扫描所有差分对输入时,正输入为INO、IN2、IN4、IN6。

CFG[2:1]用于使能序列器。CFG 寄存器更新后,在读出位 13 的数据时 DIN 必须处于低电平,否则寄存器会再次开始更新。请注意,一旦 CFG 寄存器更新,即便配置芯片工作在相同的序列器模式下,序列器功能都将初始化,并在 CFG 寄存器更新后重新转换 IN0 或 IN0/IN1 差分对。

图 6 详细显示了无繁忙指示器的所有三种模式的时序。对于序列器操作, CNV 会有三次哑转换, 应在上电后(n-3)阶

段设置 CFG 寄存器,在阶段(n-2)序列器设置生效并采集 IN0,第一个有效的转换结果在阶段(n)可用。对 CFG[9:7]所设置的最后一个通道执行转换后,输出内部温度传感器数据(如果使能),然后再次采集 IN0。

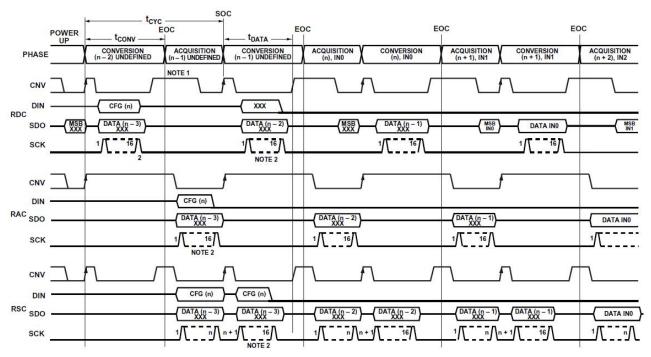


图 6 无繁忙指示器的通道序列器时序

9. 绝对最大额定值

参数	额定值
模拟输入	
INx, COM ₁	GND -0.3 V to VDD + 0.3 V 或 VDD ±130 mA
REF, REFIN	GND -0.3 V to VDD + 0.3 V
电源电压	
VDD, VIO to GND	-0.3 V to +7 V
VIO to VDD	-0.3 V to VDD + 0.3 V
DIN, CNV, SCK to GND	-0.3 V to VIO + 0.3 V
SDO to GND	-0.3 V to VIO + 0.3 V
存储温度	-65°C to +150°C
结温	150°C
Өла 热阻	48°C/W
θ υς 热阻	4.4°C/W

表 3

10. 引脚配置和功能描述

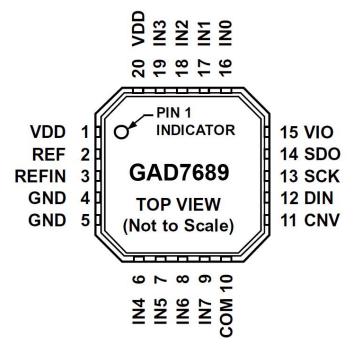
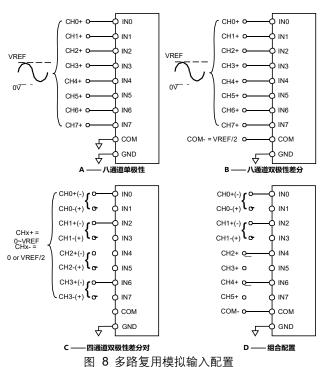


图 7 引脚配置示意图

管脚编号	管脚名称	类型	描述
1,20	VDD	电源	模拟电源,VDD 标称的工作电压范围为 3.3V 至 5.5V。
2	REF	模拟输入/输出	基准输入/输出 需要外接 10uF 去耦电容 使能内部基准
			时,输出 2.5V 或者 4.096V
			禁用内部基准,并使能缓冲器时,输出缓冲过的 REFIN 值
3	REFIN	模拟输入/输出	内部基准输出/基准缓冲输入 使用内部基
			准时,需要 0.1uF 的去耦电容
			使用内部缓冲器时,作为基准输入端提供给 REF 基准电压
4, 5	GND	电源	电源地
6	IN4	模拟输入	模拟输入通道 4
7	IN5	模拟输入	模拟输入通道 5
8	IN6	模拟输入	模拟输入通道 6
9	IN7	模拟输入	模拟输入通道 7
10	СОМ	模拟输入	共模输入通道,所有输入通道可以参考一个 0-VREF/2 V的共模点
11	CNV	数字输入	转换输入,上升沿启动转换,转换期间如果保持低电平,则繁忙指
			示器使能
12	DIN	数字输入	数据输入,用于写入 14 位配置寄存器,可以转换期间和转换完成
			时写入
13	SCK	数字输入	串行数据时钟输入,用于给 SDO 以及 DIN 提时钟,MSB 优先
14	SDO	数字输出	串行数据输出,输出转换结果,单极性模式,转换结果为直接二进
			制,双极性模式,转换结果为二进制补码

15	VIO	电源	输入/输出接口数字电源
16	IN0	模拟输入	模拟输入通道 0
17	IN1	模拟输入	模拟输入通道 1
18	IN2	模拟输入	模拟输入通道 2
19	IN3	模拟输入	模拟输入通道 3
21	EPAD	NC	裸露焊盘不在内部连接。

表 4


11. 工作原理

GAD7689 是 8 通道 16 位电荷再分配逐次逼近寄存器(SAR)型模数转换器(ADC)。该 ADC 最高 250k采样率,每次转换由 CNV 引脚的上升沿触发,转换完成后 ADC进入跟踪输入信号模式,两次转换之间器件关断,处于低功耗状态,所以该产品特别适合采样率低且对功耗很敏感的应用场景,比如电池供电的应用。GAD7689 具有片上转换时钟,转换过程不需要外部时钟。

12. 输入配置

图 8 显示了利用配置寄存器 CFG[12:10]配置模拟输入的不同方法。详情请参考"配置寄存器, CFG部分"。 模拟输入有多种配置方式:

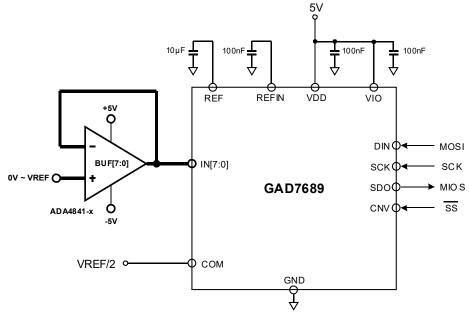
- 1. 图 8-A, 单端单极性方式,以系统地或者 COM=GND 作为参考, CFG[12:10]=111 或者 110, 所有模拟输入电压的范围 为 0-VREF;
- 2. 图 8-B,单极性差分,具有一个共模参考点 COM=VREF/2, CFG[12:10]=010,所有输入范围为0-VREF;
- 3. 图 8-C,双极性差分对,负输入通道以 GND(CFG[12:10]=00X)或者 VREF/2(CFG[12:10]=10X)作为参考,正输入通道通过 CFG[9:7]进行配置,如果使用序列器,则正输入通道始终为 IN0,IN2,IN4,IN6;
- 4. 图 8-D, 输入为以上配置的组合, 可以动态配置。

国芯思辰科技有限公司 https://zhongke-ic.com/

13. 输出码值和理想输入电压

描述	单极性输入 VREF= 4.096 V	输出码值	双极性输入 VREF= 4.096 V	输出码值(补码)
FSR -1 LSB	4.095938 V	0xFFFF	2.047938 V	0x7FFF
Midscale + 1 LSB	2.048063 V	0x8001	62.5 µV	0x0001
Midscale	2.048 V	0x8000	0 V	0x0000
Midscale −1 LSB	2.047938 V	0x7FFF	-62.5 μV	0xFFFF
-FSR + 1 LSB	62.5 µV	0x0001	-2.047938 V	0x8001
-FSR	0 V	0x0000	-2.048 V	0x8000

表 5


14. 典型连接图

注释:

- 1. 该图为单极性典型连接示意图,即输入通道配置寄存器 CFG[12:10]=110 或者 111 模式,IN0 至 IN7 参考 COM = 0V 或者直接参考 GND。
- 2. C_{REF} 通常 使用 1 个 10 微法的陶瓷电容 (X5R)。
- 3. SPI 时序注意参考文档时序章节。

图 9 单极性输入

注释:

- 1. 该图为双极性典型连接示意图,即输入通道配置寄存器 CFG[12:10]=010 模式,IN0 Ξ IN7 参考 COM = VREF/2。
- 2. CREF 通常使用 1 个 10 微法的陶瓷电容(X5R)。
- 3. SPI 时序注意参考文档时序章节。

图 10 双极性输入

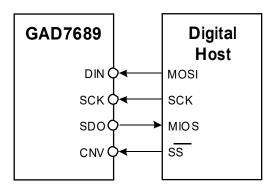


图 11 无繁忙指示器的 GAD7689 与主机连接关系

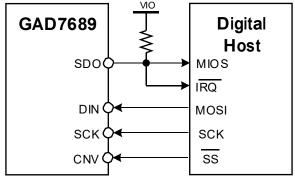
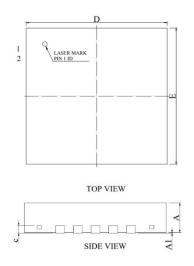


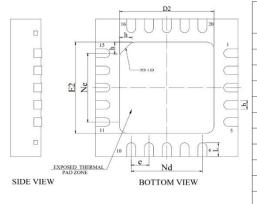
图 12 含繁忙指示器的 GAD7689与主机连接关系

15. 配置寄存器

GAD7689 利用一个 14 位寄存器(CFG[13:0])配置输入,待转通道,单极点滤波器带宽,基准电压源以及通道序列器。 CFG 寄存器通过 14 个 SCK 上升沿锁存于 DIN(MSB 优先),CFG 更新与边沿相关,允许使用异步或同步主机通讯。可以 在转换期间,采集器件或者全程,写入 CFG 寄存器,寄存器的更新发生在转换结束时,写入 CFG 寄存器总是存在一个深度 延迟。注意,使用通用 SPI 的 16bit 写入 CFG[13:0]时,DIN 要低位补 0,而非高位补 0。

CFG 寄存器													
13	12	11	10	9	8	7	6	5	4	3	2	1	0
CFG	INCC	INCC	INCC	INx	INx	INx	BW	REF	REF	REF	SEQ	SEQ	RB


表 6


位数	名称	描述							
[13]	CFG	配置更新							
		0: 保持当	前配置						
		1: 覆盖寄	存器内容						
[12:10]	INCC	输入通道西	2置						
		Bit 12	Bit 11	Bit 10	功能				
		0	0	Х	双极性差分对 INx-以 VREF/2 为参考				
		0	1	0	双极性 INx 以 COM=VREF/2 为参考				
		0	1	1	温度传感器				
		1	0	Х	单极性差分对 INx-以 GND 为参考				
		1	1	0	单极性 INx 以 COM=GND 为参考				
		1	1	1	单极性 INx 以 GND 为参考				
[9:7]	INx	输入通道选择							
		Bit 9	Bit 8	Bit 7	通道				
		0	0	0	INO				
		0	0	1	IN1				
		1	1	1	IN7				
[6]	BW	选择低通源	*波器带宽						
		0: 1/4 带宽	ī						
		1: 全带宽							
[5:3]	REF	基准电压测	原/缓冲器/温原	度传感器设置					
		Bit 5	Bit 4	Bit 3	功能				
		0	0	0	内部基准,REF=2.5V				
		0	0	1	内部基准,REF=4.096V				
		0	1	0	外部基准,温度传感器使能				
		0	1	1	外部基准,内部缓冲器,温度传感器使能				

		1	1	0	外部基准,温度传感器禁用		
		1	1	1	外部基准, 内部缓冲器, 温度传感器禁用		
[2:1]	SEQ	通道序列器					
		Bit 2	Bit 1		功能		
		0	0		禁用序列器		
		0	1		序列器工作器件更新配置		
		1	0		扫描 IN0 至 IN[7:0],然后温度传感器		
		1	1		扫描 IN0 至 IN[7:0]		
[0]	RB	回读 CFG 寄存器					
		0:数据结束	阿阿读当前	配置			
		1: 不回读					
	1	l		= 7			

表 7

16. 外形尺寸

YMBOL	MILLIMETER					
TMDOL	MIN	NOM	MAX			
A	0. 65	0. 75	0.85			
A1	-	0. 02	0. 05			
b	0. 20	0. 25	0. 30			
c	0. 18	0. 20	0. 25			
D	3. 90	4. 00	4. 10			
D2	2. 55	2. 65	2. 75			
е	0. 50BSC					
Ne	2. 00BSC					
Nd	2. 00BSC					
Е	3. 90	4. 00	4, 10			
E2	2. 55	2. 65	2. 75			
L	0.35	0. 40	0. 45			
h	0.30	0.35	0.40			

图 13 QFN4x4-20L 封装 单位:mm

杭州地芯科技有限公司

国芯思辰(深圳)科技有限公司

深圳公司:深圳市福田区石厦街新天世纪商务中心 A 座 1513 室

公司网址:www.zhongke-ic.com

联系电话:0755-82565229