

双通道2 A/单通道4 A、可配置同步降压DC-DC调节器

ADP2114

产品特性

可配置2 A/2 A或3 A/1 A双路输出负载组合或合并为单路4 A 输出

高效率:可达95%

输入电压(V_{IN}): 2.75 V至5.5 V

可选固定输出电压: 0.8 V、1.2 V、1.5 V、1.8 V、2.5 V、3.3 V或可调输出电压(最低0.6 V)

±1.5%精度基准电压源

可选开关频率: 300 kHz、600 kHz、1.2 MHz或在200 kHz至2 MHz 同步

驱动电路压摆率经过优化, 可降低电磁干扰

外部同步输入或内部时钟输出

两相、180°相移PWM通道

快速瞬态响应电流模式

轻负载时以跳脉冲模式或强制PWM模式工作

输入欠压闭锁(UVLO)

独立使能输入和电源良好(PGOOD)输出

过流和热过载保护

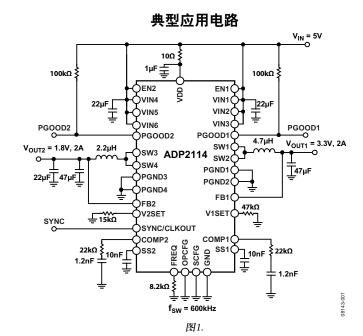
外部可编程软启动

32引脚5 mm×5 mm LFCSP封装

受ADIsimPower™设计工具支持

应用

终端负载调节器 电信和网络系统 消费类电子设备 工业和仪器仪表 医疗


概述

ADP2114是一款多功能同步降压开关稳压器,可满足各种客户终端负载的要求。两个PWM通道既可配置为分别提供2 A和2 A(或3 A/1 A)电流的两路独立输出,也可配置为提供4 A电流的单路交错式输出。为降低输入纹波电流和输入电容,两个PWM通道的相位偏移180°。ADP2114可提供高效率,开关频率最高可达2 MHz。在轻负载时,ADP2114可以设置为以跳脉冲模式工作,以获得更高效率,或者以强制PWM模式工作,以便降低电磁干扰(EMI)。

ADP2114的栅极压摆率经过优化设计,可降低电磁辐射,因而可以为敏感的高性能信号链电路提供电源。开关频率可以设置为300 kHz、600 kHz、1.2 MHz,或者与外部时钟同步,以便将系统噪声降至最低。双向同步引脚也可以配置为90°错相输出时钟,从而实现可堆叠多相功率解决方案。

Rev. B Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADP2114输入电压范围为2.75 V至5.5 V,通过外部电阻,可以独立设置各通道的固定输出电压(0.8 V、1.2 V、1.5 V、1.8 V、2.5 V或3.3 V)。使用电阻分压器,则输出电压也可设置为低至0.6 V。该器件的工作温度范围为-40℃至+125℃结温范围。

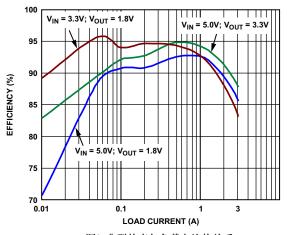


图2. 典型效率与负载电流的关系

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2009–2012 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

目录

特性	
应用	
概述	
应用电路	
修订历史	
技术规格	3
绝对最大额定值	
ESD警告	
引脚配置和功能描述	
典型性能参数	
电源电流	13
负载瞬态响应	12
波特图	
简化功能框图	20
工作原理	2
ADIsimPower设计工具	2
控制架构	2
欠压闭锁(UVLO)	21
使能/禁用控制	2
软启动	2
电源良好	22
脉冲跳过模式	22
打嗝模式电流限制	23
修订历史	
2012年11月—修订版A至修订版B	
更改订购指南部分	3
2012年8月—修订版0至修订版A	
更改特性部分	
增加"ADIsimPower设计工具"部分	
更新"外形尺寸"	37

热过载保护	23
最大占空比工作	23
同步	23
转换器配置	24
选择输出电压	24
设置振荡器频率	25
同步和CLKOUT	25
工作模式配置	26
外部元件选择	27
输入电容选择	27
VDD RC滤波器	27
电感选择	27
输出电容选择	28
控制环路补偿	28
设计示例	30
通道1配置与组件选择	30
通道2配置与组件选择	31
系统配置	32
应用电路	33
功耗与散热考虑	35
电路板布局建议	36
外形尺寸	37
江府华志	37

2009年7月-版本0: 初始版

技术规格

如未特别指定,则VDD = VINx = EN1 = EN2 = 5.0 V。除非另有说明,最大规格值和最小规格值相对于 -40° C至+125 $^{\circ}$ C。典型值为 $T_{_{\parallel}}$ = 25 $^{\circ}$ C下。所有极端温度限值都采用标准统计质量控制通过相关性予以保证。

表1.

VDD (欠压闭锁阈值 VDD (VDL) VDD (VDL) 2,75 (2.55) 2.55 (2.75) V 欠压闭锁迟滞 静态电流 IDDCD (DDCD) EN1 = VDD = 5 V, EN2 = GND, VFR1 = VDD, OPCFG = GND 0.18 (1.7) V DDCD (DDCD) IDDCD = 5 V, EN1 = GND, VFR2 = VDD, OPCFG = GND 1.7 (2.5) mA JDDCD (DDCD + GND) EN1 = EN2 = VDD = 5 V, VFR2 = VFR1 = VDD, OPCFG = GND 1.7 (2.5) mA JDDCD (DCD + GND) EN1 = EN2 = VDD = 5 V, VFR2 = VFR1 = VDD, OPCFG = GND 1.7 (2.5) mA JEN1 = EN2 = VDD = 5 V, VFR2 = VFR1 = VDD, OPCFG = GND 1.7 (2.5) mA JEN1 = EN2 = GND, VDD = VINX = 2.75 V至5.5 V 1.0 (10 µA) mA WEX (DF) ARROWS (D	参数	符号	条件	最小值	典型值	最大值	单位
欠圧用領領値 UVLO V _{DD} 下降 V _{DE} 下降 (DD _{Ch1} (DD _{Ch2} (DD _{Ch2} (DD _{Ch3} (DD _{Ch3} (DD _{Ch4} (DD _{Ch3} (DD _{Ch4} (DD _{Ch4} (D	电源						
次压 大田 大田 大田 大田 大田 大田 大田 大	VDD偏置电压	VDD		2.75		5.5	V
大田荷徳辺滞	欠压闭锁阈值	UVLO	V _{pp} 上升		2.65	2.75	V
かあされ流			55	2.35	2.47		
DPCrG = GND	欠压闭锁迟滞				0.18		V
IDD _{Ch1 = Ch2}	静态电流	IDD _{Ch1}			1.7	2.5	mA
Seminary Semina		IDD _{Ch2}			1.7	2.5	mA
FB1、FB2輸入偏置电流		IDD _{Ch1+Ch2}			3.0	4.0	mA
FB1、FB2输入偏置电流	关断电流	IDD _{SD}			1.0	10	μΑ
政通过82 KQ电阻接GND 日記報出、V _{FE} 1.2V、V1SET、V2SET通过	误差积分器(OTA)						
勝等	FB1、FB2输入偏置电流	I _{FB}			1	65	nA
跨导			固定输出,V _{FBx} = 1.2 V,V1SET、V2SET通过		11	15	μΑ
比较器等电流阈值	跨导	g _M	_,,		550		μA/V
比较器箝位商电压	比较器电压范围						
L	比较器零电流阈值	$V_{COMP, ZCT}$	通过设计保证		1.12		V
比较器箝位低电压	比较器箝位高电压		VDD = VINx = 2.75 V至5.5 V		2.36	2.45	V
新出电圧精度	比较器箝位低电压	$V_{COMP, LO}$	VDD = VINx = 2.75 V至5.5 V	0.65	0.70		V
或通过82 kΩ电阻接GND	输出特性						
V2SET = VDD或通过82 kΩ电阻接GND	输出电压精度	V _{FB}		0.597	0.600	0.603	V
或通过4.7 k $\hat{\Omega}$ 、8.2 k $\hat{\Omega}$ 、15 k $\hat{\Omega}$ 、27 k $\hat{\Omega}$ 、47 k $\hat{\Omega}$ 电阻接GND 固定输出, $T_{j}=-40^{\circ}$ C至+125 $^{\circ}$ C、V1SET、V2SET=GND或通过4.7 k $\hat{\Omega}$ 、8.2 k $\hat{\Omega}$ 、15 k $\hat{\Omega}$ 、27 k $\hat{\Omega}$ 、47 k $\hat{\Omega}$ 接GND 女力 = VINx = 2.75 V至5.5 V 0.05 9%/V VDD = VINx = 2.75 V至5.5 V 0.03 9%/A 振荡器 ボ충器 ボ方類率 「「「「「「「「「「「「「」」」」」」」 「「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「「」」」」 「「」」」 「「」」」」 「「」」」 「「」」」」 「「」」」」 「「」」」」 「「」」」」 「「」」」 「「」」」」 「「」」」」 「「」」」」 「「「」」」」 「「」」」」 「「」」」」 「「」」 「「」」」 「「」」 「「」」 「「」」」 「「」」」 「「」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」」 「「」」 「「」」」 「「」」 「「」」 「「」」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「」」 「」」 「「」」 「「」」 「」」 「」」 「」 「「」」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「				0.594	0.600	0.606	V
		$V_{\sf FB\; ERROR}$	或通过4.7 kΩ、8.2 kΩ、15 kΩ、27 kΩ、	-1.0		+1.0	%
线性调整率 负载调整率 VDD = VINx = 2.75 V至 5.5 V VDD = VINx = 2.75 V至 5.5 V VDD = VINx = 2.75 V至 5.5 V 0.03 %/V %/A 振荡器 所有振荡器参数的电压环境为VDD = 2.75 V 至 5.5 V 255 300 345 kHz 开关频率 FREQ 通过8.2 kΩ电阻接GND 510 600 690 kHz FREQ 通过27 kΩ电阻接GND 1020 1200 1380 kHz FREQ 与GND连接 400 1000 kHz FREQ 与GND连接 400 1000 kHz FREQ 通过8.2 kΩ电阻接GND 800 2000 kHz			V2SET=GND或通过4.7kΩ、8.2kΩ、15kΩ、	-1.5		+1.5	%
负载调整率 VDD = VINx = 2.75 V至5.5V 0.03 %/A 振荡器 所有振荡器参数的电压环境为VDD = 2.75 V至5.5 V 2.55 300 345 kHz 开关频率 FREQ与GND连接 FREQ通过8.2 kΩ电阻接GND 510 600 690 kHz FREQ通过27 kΩ电阻接GND 1020 1200 1380 kHz 同步频率范围 f _{SYNC} = 2 × f _{SW} FREQ与GND连接 400 1000 kHz FREQ与GND连接 FREQ通过8.2 kΩ电阻接GND 800 2000 kHz	线性调整率				0.05		%/V
振荡器			VDD = VINx = 2.75 V至5.5V		0.03		%/A
开关频率fswFREQ与GND连接 FREQ通过8.2 kΩ电阻接GND FREQ通过27 kΩ电阻接GND255 510 600 1020345 600 1200kHz 690 1380同步频率范围fsyncfsync2×fsw FREQ与GND连接 FREQ通过8.2 kΩ电阻接GND4001000kHz	振荡器						
FREQ通过8.2 kΩ电阻接GND 510 600 690 kHz FREQ通过27 kΩ电阻接GND 1020 1200 1380 kHz f _{SYNC} f _{SYNC} = 2 × f _{SW} FREQ与GND连接 400 1000 kHz FREQ通过8.2 kΩ电阻接GND 800 2000 kHz	开关频率	f _{sw}		255	300	345	kHz
同步频率范围FREQ通过27 kΩ电阻接GND102012001380kHzf _{SYNC} f _{SYNC} = 2 × f _{SW} FREQ与GND连接 FREQ通过8.2 kΩ电阻接GND4001000kHz		SVV					
同步频率范围 $ f_{SYNC} = 2 \times f_{SW} \\ FREQ与GND连接 \\ FREQ通过8.2 kΩ电阻接GND \\ 800 2000 kHz $							
FREQ与GND连接 400 1000 kHz FREQ通过8.2 kΩ电阻接GND 800 2000 kHz	同步频率范围	foors					
FREQ通过8.2 kΩ电阻接GND 800 2000 kHz	F427XTTIGE	SYNC		400		1000	kH7
同步输入脉冲宽度 100 ns	同 <u>华龄</u> / 脉冲塞座		ITEQ			-1 000	

参数	符号	条件	最小值	典型值	最大值	单位
SYNC引脚与GND之间的电容	C _{SYNC}			5		рF
SYNC输入逻辑低电平	V_{IL_SYNC}				8.0	٧
SYNC输入逻辑高电平	V_{IH_SYNC}		2.0			٧
通道间的相移				180		度
CLKOUT频率	f_{CLKOUT}	$f_{CLKOUT} = 2 \times f_{SW}$				
		FREQ与GND连接	510	600	690	kHz
		FREQ通过8.2 kΩ电阻接GND	1020	1200	1380	kHz
		FREQ通过27 kΩ电阻接GND	2040	2400	2760	kHz
CLKOUT正向脉冲时间	t _{CLKOUT}		100			ns
CLKOUT上升或下降时间	-CLKOUT	C _{CLKOUT} = 20 pF		10		ns
限流		所有限流参数的电压环境为VDD = VINx =				
PK VIL		2.75 V至5.5 V				
峰值输出电流限值(通道1)	I _{LIMIT1}	OPCFG与GND连接,或者通过4.7 kΩ电阻	2.4	3.3	4.0	Α
THE INVENTED TO SERVICE OF	LIIVIIII	接GND				
		OPCFG通过8.2 kΩ或15 kΩ电阻接GND	3.5	4.5	5.3	Α
峰值输出电流限值(通道2)	I _{LIMIT2}	OPCFG与GND连接,或者通过4.7 kΩ电阻	2.4	3.3	4.0	Α
	LIIVIII Z	接GND				
		OPCFG通过8.2 kΩ或15 kΩ电阻接GND	1.2	1.9	2.6	Α
电流检测放大器增益	G_{CS}			4		A/V
打嗝时间		$f_{SW} = 300 \text{ kHz}$	10	13.6	17	ms
进入打嗝模式前的累计限流周期数				8		周其
开关节点特性						
高端,P沟道R _{DS ON} 1		VDD = VINx = 3.3 V		68		mΩ
D3 ON		VDD = VINx = 5.0 V		52		mΩ
低端,N沟道R _{DS ON} 1		VDD = VINx = 3.3 V		32		mΩ
DSON		VDD = VINx = 5.0 V		27		mΩ
开关最小导通时间	SW _{ON MIN}	VDD = VINx = 2.75 V至5.5 V		107		ns
开关最小关断时间	SW _{OFF MIN}	VDD = VINx = 5.5 V		192		ns
717000 170010110	OFF MIIN	VDD = VINx = 2.75 V		255		ns
开关最大漏电流		VDD = VINx = 2.75 V至5.5 V,ENx = GND,		0.1	15	μΑ
A CAN COL		T _. = −40°C至+115°C		0.1	13	μ, ι
ENABLE输入						
EN1、EN2逻辑低电平	EN _{LOW}	VDD = VINx = 2.75 V至5.5 V			0.8	V
EN1、EN2逻辑高电平	EN _{HI}	VDD = VINx = 2.75 V至5.5 V	2			V
EN1、EN2输入漏电流	I _{EN LEAK}	VDD = VINx = ENx = 2.75 V至 5.5 V,		0.1	1	μΑ
Contagnation of the	*EN_LEAK	$T_J = -40^{\circ}\text{C}\Xi + 115^{\circ}\text{C}$		٠	•	M' '
热关断						
热关断阈值	T _{TMSD}			150		°C
热关断迟滞	=			25		°C
软启动						
SS1、SS2引脚电流	I _{SS1} , I _{SS2}	VDD = VIN x = 2.75 V至5.5 V,V _{sc} = 0 V	4.8	6.0	7.8	μΑ
软启动阈值电压	V _{SS_THRESH}	VDD = VINx = 2.75 V至5.5 V VDD = VINx = 2.75 V至5.5 V		0.65		V
软启动下拉电流	* SS_THRESH	VDD = VINx = 2.75 V至5.5 V, EN = GND	0.5	5.05		mA
电源良好		所有电源良好参数的电压环境为VDD=	0.5			,
电你区灯		別有电源良好多数的电压环境为VDD				
过压PGOODx上升阈值 ²		V.1.7 2.7.5 V.E. 5.5 V		116		%
过压PGOODx工件阈值 过压PGOODx下降阈值 ²			100	108	114	%
欠压PGOODx上升阈值 ²			85	92	97	% %
			03		21	% %
欠压PGOODx下降阈值 ²				84		
PGOODx延迟		V VDD		50	1	μs
PGOODx漏电流		$V_{PGOODx} = VDD$		0.1	1	μΑ
PGOODx低饱和电压		$I_{PGOODx} = 1 \text{ mA}$		50	110	m۷

¹ 引脚对引脚测量。

² 阈值以标称输出电压的百分比表示。

绝对最大额定值

表2.

参数	额定值
VDD至GND	-0.3 V至+6 V
VIN1, VIN2, VIN3, VIN4, VIN5, VIN6至 PGND1, PGND2, PGND3, PGND4	-0.3 V至+6 V
EN1, EN2, SCFG, FREQ, FB1, FB2, SYNC/ CLKOUT, PGOOD1, PGOOD2, V1SET, V2SET, COMP1, COMP2, SS1, SS2至GND	−0.3 V至(VDD + 0.3 V)
FB1, FB2至GND	-0.3V至+3.6V
SW1, SW2, SW3, SW4至PGND1、PGND2、 PGND3, PGND4	-0.3 V至(VDD+0.3 V)
PGND1, PGND2, PGND3, PGND4至GND	±0.3 V
VIN1, VIN2, VIN3, VIN4, VIN5, VIN6至VDD	±0.3 V
θ _{JA} ,JEDEC 1S2P PCB、自然对流	34°C/W
工作结温范围	-40℃至+125℃
存储温度范围	-65°C至+150°C
最高引脚焊接温度(10秒)	260°C

注意,超出上述绝对最大额定值可能会导致器件永久性 损坏。这只是额定最值,并不能以这些条件或者在任何其 它超出本技术规范操作章节中所示规格的条件下,推断器 件能否正常工作。长期在绝对最大额定值条件下工作会影 响器件的可靠性。

绝对最大额定值仅适合单独应用, 但不适合组合使用。

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高 能量ESD时,器件可能会损坏。因此,应当采取适当 的ESD防范措施,以避免器件性能下降或功能丧失。

引脚配置和功能描述

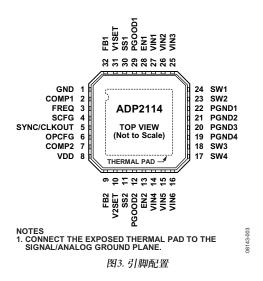


表3. 引脚功能描述

表3. 引脚功能描述				
引脚编号	引脚名称	描述		
1	GND	内部模拟、数字电路的接地引脚。在连接到电源地前,将GND连接到数字/模拟接地层。		
2	COMP1	通道1的误差放大器输出引脚。在COMP1与GND之间连接一个串联RC网络,以便补偿通道1。为实现多相操作, 须将COMP1和COMP2连接在一起。		
3	FREQ	频率选择输入。在该引脚与GND之间连接一个电阻,以便设置适当的开关频率(见表5)。		
4	SCFG	同步配置输入。SCFG可将SYNC/CLKOUT引脚配置为输入或输出引脚。将该引脚连接到VDD,以便将 SYNC/CLKOUT配置为输出端。将该引脚连接到GND,以便将SYNC/CLKOUT配置为输入端。		
5	SYNC/ CLKOUT	可配置双向引脚(利用SCFG引脚进行配置,参见引脚4的详细说明)。SYNC/CLKOUT配置为输出引脚时,其上可提供相移90°、相当于两倍开关频率的缓冲时钟。该引脚配置为输入引脚时,可接收与转换器同步的外部时钟。为实现稳定工作,须选择引脚3描述中提到的频率选择电阻,使频率接近期望开关频率。		
6	OPCFG	工作配置输入。通过一个电阻将该引脚与GND相连,以便根据表7来设置系统工作模式。该引脚可用于选择每个电源通道的限流峰值,以及使能或禁用跳脉冲模式。		
7	COMP2	通道2的误差放大器输出引脚。在COMP2与GND之间连接一个串联RC网络,以便补偿通道2。对于多相配置, 应将COMP1和COMP2连接在一起。		
8	VDD	电源输入引脚。ADP2114内部电路的电源。在VDD与VINx之间尽可能靠近ADP2114处放置一个10 Ω电阻。 VDD至GND接1 μF或更大的旁路电容。		
9	FB2	通道2的反馈电压输入引脚。若要获得固定输出电压,将FB2与V _{OUT2} 相连。要得到可调输出电压,可将该引脚与位于V _{OUT2} 和GND之间的电阻分压器相连。可调电压选项的基准电压为0.6 V。采用多相配置时,应将FB2 连接到FB1后再连接到V _{OUT} 。		
10	V2SET	通道2的输出电压设置引脚。要选择VOUT2的固定输出电压选项(0.8V、1.2V、1.5V、1.8V、2.5V或3.3V),须通过一个电阻将该引脚与GND相连,要选择可调输出电压,须将该引脚与VDD相连。输出电压选择参见表4。		
11	SS2	通道2的软启动输入引脚。在SS2与GND之间放置一个电容,以设置软启动周期。若电容为10 nF,则软启动周期为1 ms。为实现多相配置,须将SS2与SS1相连。		
12	PGOOD2	通道2的开漏电源良好输出引脚。将一个100 kΩ上拉电阻连接到VDD或任何其它电压不超过5.5 V的引脚,则 当通道2超出调节范围时,PGOOD2引脚处于低电平状态。		
13	EN2	通道2的使能输入引脚。将EN2驱动至高电平状态,可打开通道2的转换器,将EN2驱动至低电平状态,可关闭通道2的转换器。将EN2与VDD相连,以便通过VDD启动。采用多相配置时,须将EN2与EN1相连。		

引脚编号	引脚名称	描述
14	VIN4	电源输入引脚。通道2的高端内部功率MOSFET电源。
15	VIN5	电源输入引脚。通道2的高端内部功率MOSFET电源。
16	VIN6	电源输入引脚。通道2的高端内部功率MOSFET电源。
17	SW4	开关节点输出引脚。通道2的P沟道功率开关和N沟道同步整流器的漏极。将SW3与SW4相连,然后,在SW 与输出电压端之间连接一个输出LC滤波器。
18	SW3	开关节点输出引脚。通道2的P沟道功率开关和N沟道同步整流器的漏极。将SW3与SW4相连,然后,在SW 与输出电压端之间连接一个输出LC滤波器。
19	PGND4	电源地。通道2的低端内部功率MOSFET电源。
20	PGND3	电源地。通道2的低端内部功率MOSFET电源。
21	PGND2	电源地。通道1的低端内部功率MOSFET电源。
22	PGND1	电源地。通道1的低端内部功率MOSFET电源。
23	SW2	开关节点输出引脚。通道1的P沟道功率开关和N沟道同步整流器的漏极。将SW1与SW2相连,并在SW与输 出电压端之间连接一个输出LC滤波器。
24	SW1	开关节点输出引脚。通道1的P沟道功率开关和N沟道同步整流器的漏极。将SW1与SW2相连,并在SW与输 出电压端之间连接一个输出LC滤波器。
25	VIN3	电源输入引脚。通道1的高端内部功率MOSFET电源。
26	VIN2	电源输入引脚。通道1的高端内部功率MOSFET电源。
27	VIN1	电源输入引脚。通道1的高端内部功率MOSFET电源。
28	EN1	通道1的使能输入引脚。将EN1驱动至高电平状态,可打开通道1的转换器,将EN1驱动至低电平状态,可关 闭通道1的转换器。将EN1与VDD相连,以便通过VDD启动。采用多相配置时,须将EN1与EN2相连。
29	PGOOD1	通道1的开漏电源良好输出引脚。将一个100 kΩ上拉电阻连接到VDD或任何其它电压不超过5.5 V的引脚,则 当通道1超出调节范围时,PGOOD1引脚处于低电平状态。
30	SS1	通道1的软启动输入引脚。在SS1与GND之间放置一个电容,以设置软启动周期。若电容为10 nF,则软启动周期为1 ms。为实现多相配置,须将SS1与SS2相连。
31	V1SET	通道1的输出电压设置引脚。要选择V _{OUT1} 的固定输出电压选项(0.8 V、1.2 V、1.5 V、1.8 V、2.5 V或3.3 V),须通过一个电阻将该引脚与GND相连,要选择可调输出电压,须将该引脚与VDD相连。输出电压选择参见表4。
32	FB1	通道1的反馈电压输入引脚。若要获得固定输出电压,将FB1与VOUT1相连。要得到可调输出电压,可将该引脚与位于V _{OUT} 和GND之间的电阻分压器相连。采用多相配置时,应将FB1连接到FB2后再连接到V _{OUT} 。
	EPAD (EP)	裸露散热焊盘。连接到信号/模拟接地层。

典型性能参数

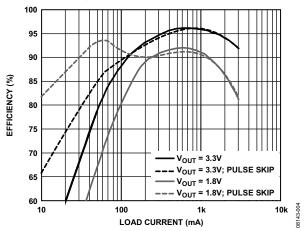


图4. 通道1效率与负载的关系 $(V_{_{
m IN}}=5~V,~f_{_{
m SW}}=300~{
m kHz};$ $V_{_{
m OUT}}=3.3~V,~Cooper~Bussmann电感DR1050-8R2-R,~8.2~\mu H,~15~m\Omega;$ $V_{_{
m OUT}}=1.8~V,~TOKO~FDV0620-4R7M电感、4.7~\mu H,~53~m\Omega)$

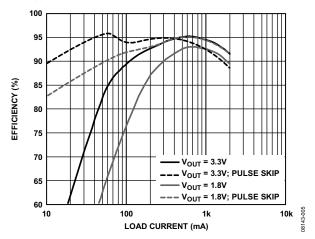


图5. 通道2效率与负载的关系 $(V_{\rm IN}=5~V,~f_{\rm SW}=600~{\rm kHz};~V_{\rm OUT}=3.3~V,~TOKO~FDV0620-4R7M电感、4.7~\muH、53~m\Omega;~V_{\rm OUT}=1.8~V,~TOKO~FDV0620-2R2M电感、2.2~\muH、30~m\Omega)$

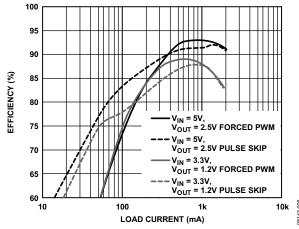


图6. 效率与负载的关系(f_{sw} = 1.2 MHz; TOKO FDV0620-1R0M电感、1.0 μH、14 mΩ)

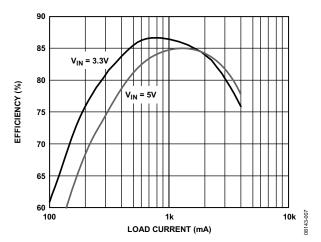


图7. 效率,双相组合输出($V_{\rm OUT}$ = 0.8 $V_{\rm v}$ $f_{\rm SW}$ = 1.2 MHz; TOKO FDV0620-1R0M电感、1.0 μ H、14 μ M、10

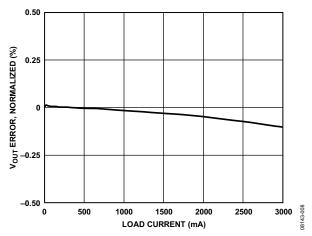


图8. 负载调整率(通道1): $V_{IN} = 5 \text{ V}$ 、 $f_{SW} = 600 \text{ kHz}$ 、 $T_{A} = 25 ^{\circ}\text{C}$

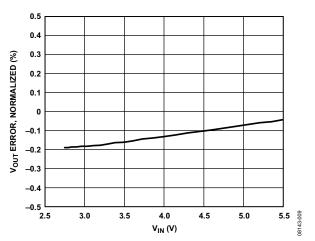


图9. 电压调整率(通道1): 负载电流为3 A、 f_{sw} = 600 kHz

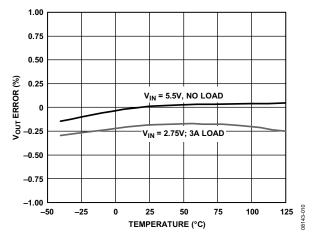


图10. 输出电压与温度的关系(通道1): $V_{OUT} = 0.6 \ V_{\odot} \ f_{SW} = 600 \ kHz$

图11. 负载调整率(通道2): $V_{IN}=5~V$ 、 $f_{SW}=300~kHz$ 、 $T_{A}=25^{\circ}C$

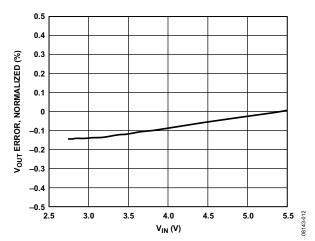


图12. 电压调整率(通道2): 负载电流为1 A、f_{sw} = 600 kHz

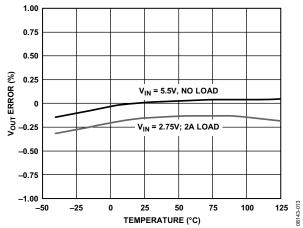
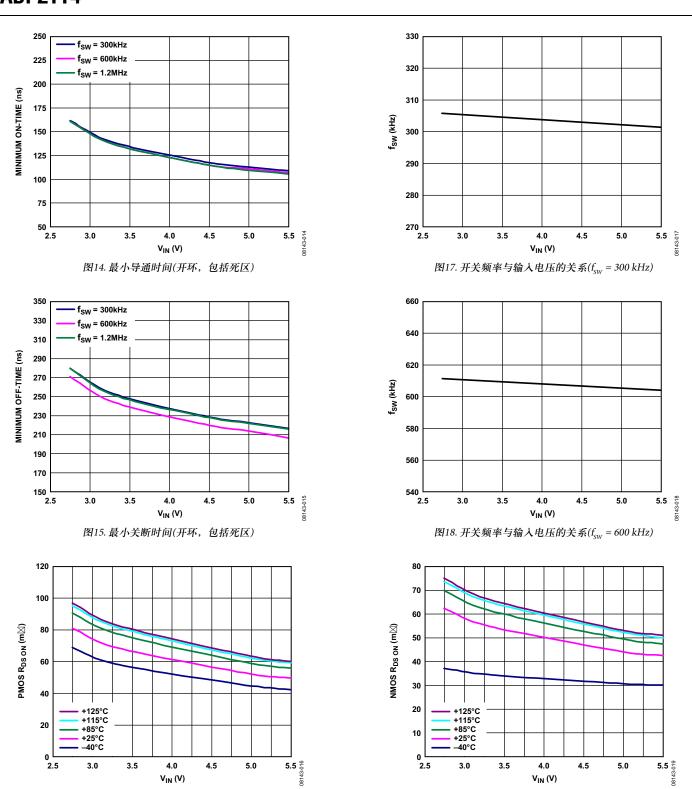



图13. 输出电压与温度的关系(通道2): $V_{OUT}=1.5~V,~f_{SW}=600~k{\rm Hz}$

 $V_{IN}(V)$ 图19. 低端NMOS电阻与输入电压的关系,包括金线

 $V_{IN}(V)$

图16. 高端PMOS电阻与输入电压的关系,包括金线

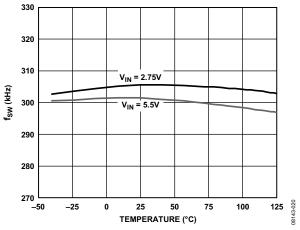


图20. 开关频率与温度的关系 $(f_{sw} = 300 \text{ kHz})$

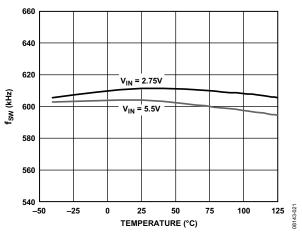


图21. 开关频率与温度的关系 $(f_{sw} = 600 \text{ kHz})$

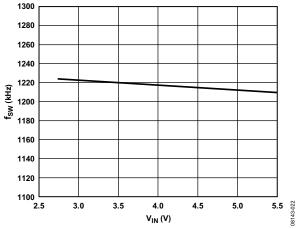


图22. 开关频率与输入电压的关系 $(f_{sw} = 1.2 \text{ MHz})$

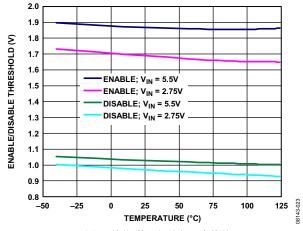


图23. 使能/禁用阈值与温度的关系

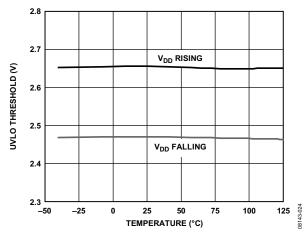


图24. 欠压闭锁(UVLO)阈值与温度的关系

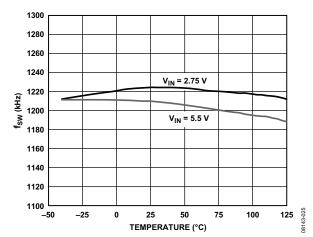
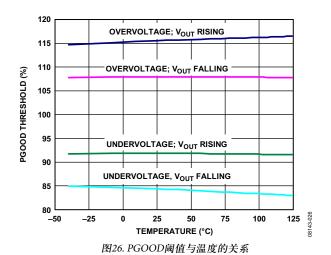
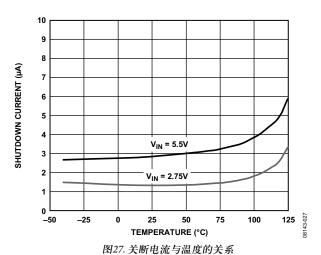
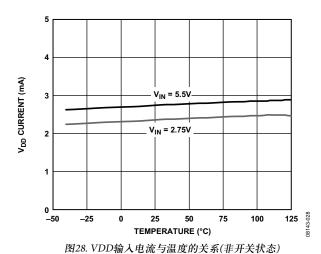
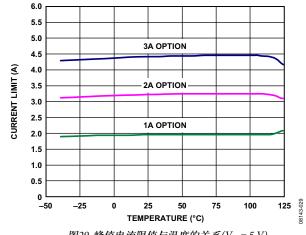
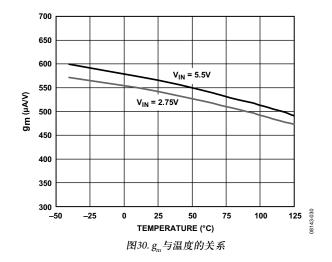






图25. 开关频率与温度的关系(f_{sw} = 1.2 MHz)



Rev. B | Page 12 of 40

电源电流

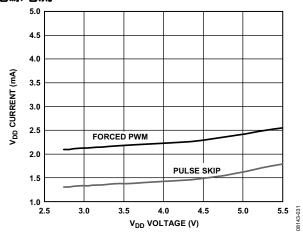


图31. V_{DD} 电源电流,无负载,通道1: V_{OUT} = 1.5 V, 通道2关断, f_{SW} = 1.2 MHz

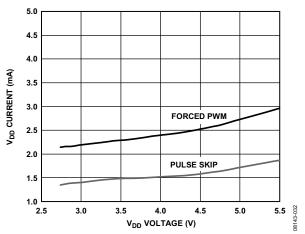


图 32. $V_{\rm DD}$ 电源电流,无负载,通道2: $V_{\rm OUT}$ = 0.8 V,通道1关断, $f_{\rm SW}$ = 1.2 MHz

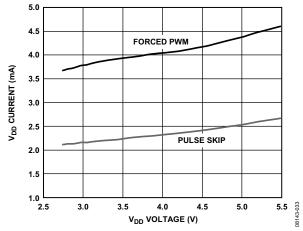


图33. $V_{\rm DD}$ 电源电流,无负载,通道1: $V_{\rm OUT}$ = 1.5 V,通道2: $V_{\rm OUT}$ = 0.8 V, $_{\rm SW}$ = 1.2 MHz

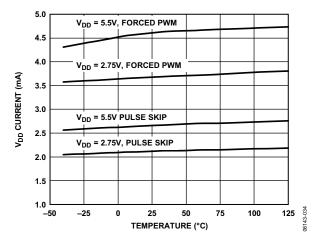


图34. V_{DD} 电源电流与温度的关系,通道1: $V_{OUT}=1.5~V$,通道2: $V_{OUT}=0.8~V$, $f_{\rm sw}=1.2~{\rm MHz}$

负载瞬态响应

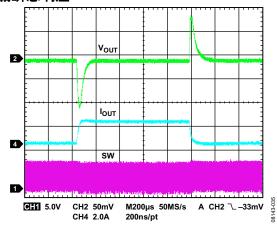


图35. 通道 $1:~V_{_{\rm IN}}$ = $5~V,~V_{_{\rm OUT}}$ = $3.3V,~f_{_{\rm SW}}$ = $600~{\rm kHz};$ 强制PWM(电路详情见表12)

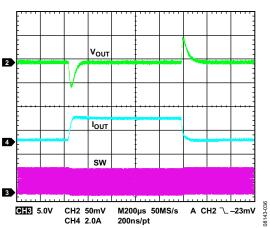


图36. 通道2: $V_{_{IN}}$ = 5 V, $V_{_{OUT}}$ = 1.8 V, $f_{_{SW}}$ = 600 kHz; 强制PWM(电路详情见表12)

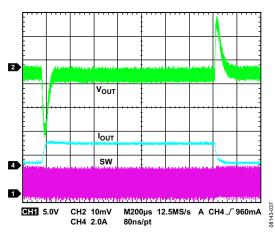


图37. 通道1: $V_{IN} = 5 \ V$, $V_{OUT} = 1.2 \ V$, $f_{SW} = 1.2 \ MHz$; 强制PWM(电路详情见表12)

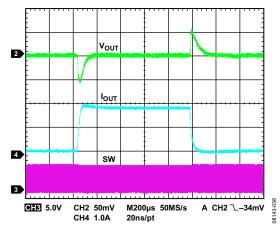


图39. 通道1: $V_{_{\mathrm{IN}}}$ = 3.3 V, $V_{_{\mathrm{OUT}}}$ = 1.2 V, $f_{_{\mathrm{SW}}}$ = 1.2 MHz; 强制PWM(电路详情见表12)

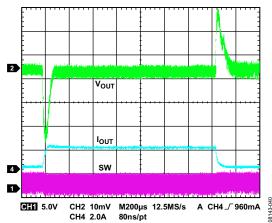


图40. 通道1: V_{IN} = 3.3 V, V_{OUT} = 1.2 V, f_{SW} = 1.2 MHz; 跳脉冲(电路详情见表12)

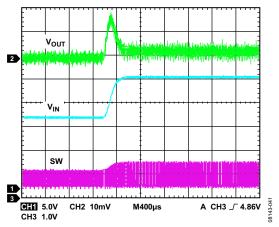


图41. 3.3 V至5 V线路瞬态响应, V_{OUT} = 1.5 V,负载 = 1 A, f_{SW} = 1.2 MHz,跳脉冲使能

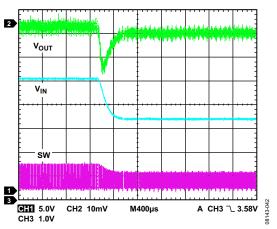


图42.5 V至3.3 V线路瞬态响应, V_{OUT} = 1.5 V,负载 = 1 A, f_{SW} = 1.2 MHz,跳脉冲使能

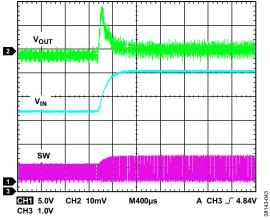


图43. 3.3 V至5 V线路瞬态响应, V_{OUT} = 1.5 V,负载 = 1 A, f_{SW} = 1.2 MHz,强制PWM

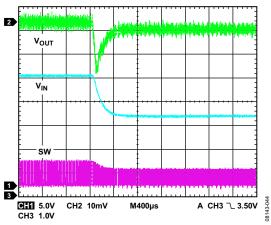


图44.5 V至3.3 V线路瞬态响应, V_{OUT} = 1.5 V,负载 = 1 A, f_{SW} = 1.2 MHz,强制PWM

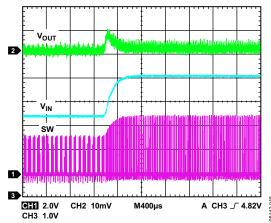


图45. 3.3 V至5 V线路瞬态响应, V_{OUT} = 0.6 V,负载 = 1 A, f_{SW} = 600 kHz,跳脉冲使能

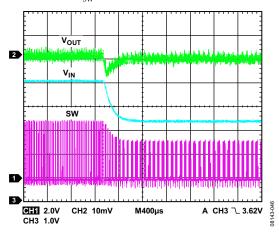


图46.5 V至3.3 V线路瞬态响应, V_{OUT} = 0.6 V,负载 = 1 A, f_{SW} = 600 kHz,跳脉冲使能

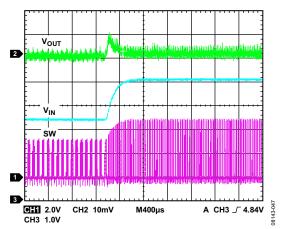


图47. 3.3 V至5 V线路瞬态响应, V_{OUT} = 0.6 V,负载 = 1 A, f_{SW} = 600 kHz,强制PWM

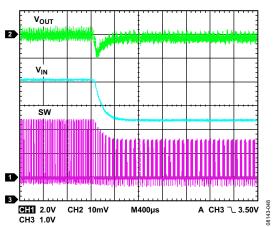


图48.5 V至3.3 V线路瞬态响应, V_{OUT} = 0.6 V,负载 = 1 A, f_{SW} = 600 kHz,强制PWM

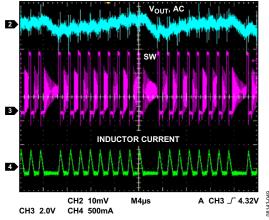


图49. 跳脉冲模式(110 mA负载)

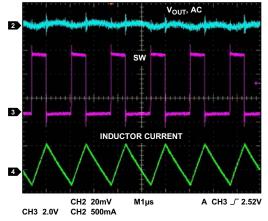


图50. 强制PWM模式、连续导通模式工作、200 mA负载、 $f_{\rm SW}$ = 600 kHz

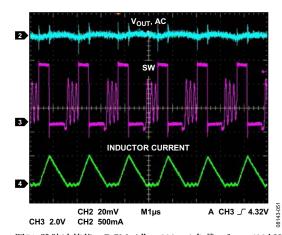


图51. 跳脉冲使能、DCM工作、200 mA负载、 f_{SW} = 600 kHz

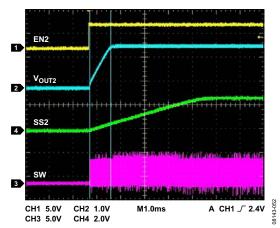


图52. 软启动,通道2 V_{OUT} = 1.8 V, C_{SS} 2 = 10 nF

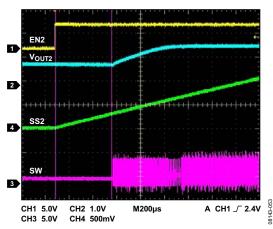


图53. 预充电输出状态下启动

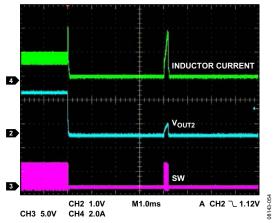


图54. 切入限流(通道2 V_{OUT} = 1.8 V, 2 A配置, f_{SW} = 600 kHz)

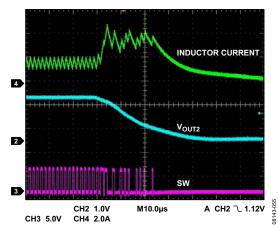


图55. 切入限流(放大,通道2 V_{OUT} = 1.8 V, 2 A配置, f_{SW} = 600 kHz)

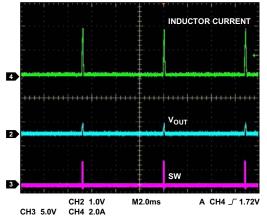


图56. 打嗝模式、 f_{sw} = 600 kHz、打嗝周期6.8 ms

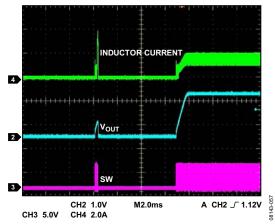


图57. 退出打嗝模式(通道2 $V_{OUT} = 1.8~V,~f_{SW} = 600~kHz)$

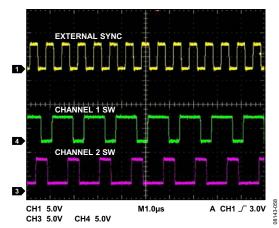


图58. 外部同步、 f_{SYNC} = 1.5 MHz、 f_{SW} = 750 kHz

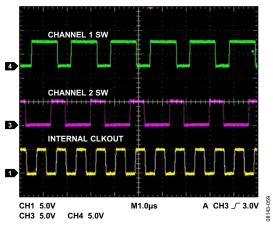


图59. 内部时钟输出、 $f_{SW} = 600~kHz$ 、 $f_{CLKOUT} = 1.2~MHz$

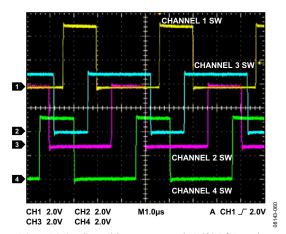


图60. 4通道工作,两个ADP2114(一个器件同步另一个)、90°相移开关节点

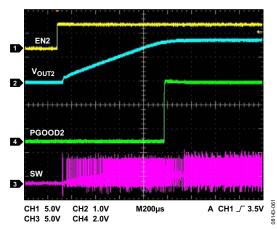


图61. 电源良好信号

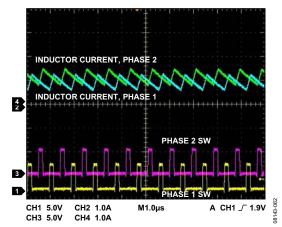


图62. 组合双相输出工作、 $V_{OUT}=1.2~V$ 、 $f_{SW}=1.1~MHz$ 、4~A负载

波特图

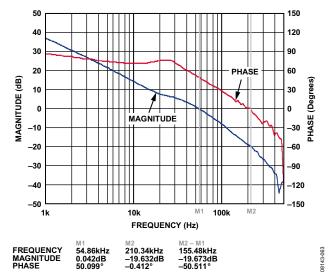


图63. $V_{IN} = 5 \text{ V}$, $V_{OUT} = 3.3 \text{ V}$, 负载 = 2 A, $f_{SW} = 600 \text{ kHz}$, 交越频率 $(f_{CO}) = 55 \text{ kHz}$, 相位裕量50°(电路详情见表12)

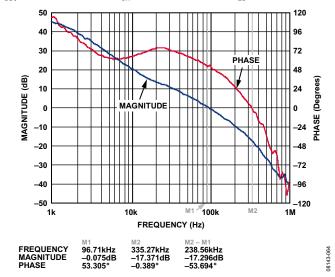


图64. $V_{IN} = 5 \text{ V}$, $V_{OUT} = 1.2 \text{ V}$, 负载 = 2 A, $f_{SW} = 1.2 \text{ MHz}$, 交越频率 $(f_{CO}) = 97 \text{ kHz}$, 相位裕量53°(电路详情见表12)

简化功能框图

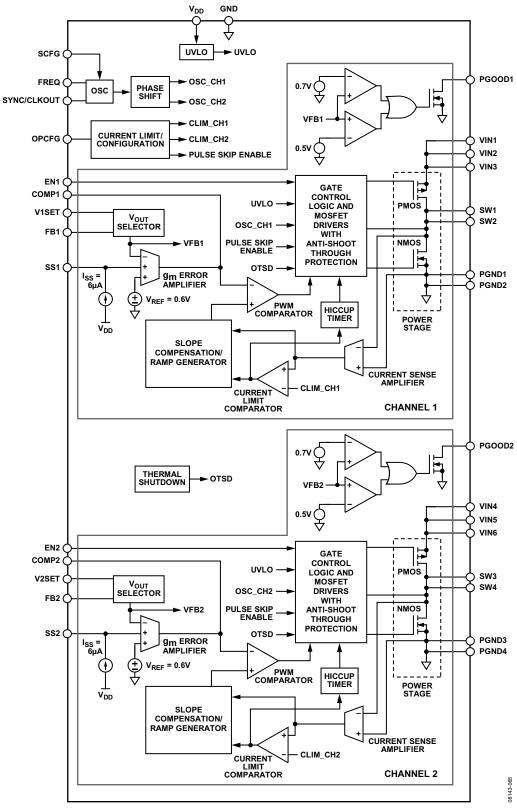


图65. 简化功能框图

工作原理

ADIsimPower设计工具

ADIsimPower设计工具集支持ADP2114。ADIsimPower是一个工具集合,可以根据特定设计目标产生完整的电源设计。利用这些工具,用户只需几分钟就能生成完整原理图、物料清单并计算性能。ADIsimPower可以考虑IC和所有真实外部元件的工作条件与限制,并针对成本、面积、效率和器件数量优化设计。欲了解有关ADIsimPower设计工具的更多信息,请访问www.analog.com/ADIsimPower。该工具集可通过此网站获得,用户也可以通过该工具申请未填充的电路板。

ADP2114是一款高效率、双路固定开关频率、同步降压型DC-DC转换器,采用Flex Mode架构,这是ADI公司专有的峰值电流模式控制架构。该器件的输入电压范围为2.75 V至5.5 V。每个输出通道均能提供低至0.6V的可调输出电压,并提供高达2 A的负载电流。当输出通道连接在一起时,可以180°异相工作,提供高达4 A的负载电流。集成的高端P沟道功率MOSFET和低端N沟道功率MOSFET可在中、高负载下提供高转换效率。跳脉冲模式用于在轻负载条件下提高效率。ADP2114具有高开关频率(最高可达2 MHz)并集成功率开关,可提供高性能、小型封装电源管理解决方案。

ADP2114还具有欠压闭锁(UVLO)、迟滞、软启动和电源良好输出指示等特性,以及输出短路保护和热关断等保护特性。借助外部电阻和电容,可对输出电压、电流限值、开关频率、跳脉冲工作模式和软启动时间进行外部编程。

控制架构

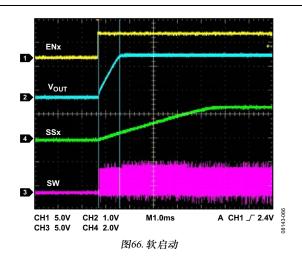
ADP2114由两个降压型DC-DC转换器组成,通过对开关内部高端P沟道功率MOSFET和低端N沟道功率MOSFET时的占空比进行调制,能够提供调节输出电压 $(V_{\text{OUT}1} \pi V_{\text{OUT}2},$ 见图1)。当器件处于稳态时,反馈引脚(FB1或FB2)可感测输出电压 V_{OUT} ,输出电压的衰减程度与V1SET或V2SET引脚所选的输出电压成比例关系。

误差放大器对反馈电压与基准电压(V_{REF} = 0.6 V)之间的误差进行积分,以便在COMP1或COMP2引脚处产生误差电压。当低端N沟道MOSFET开通时,电流检测放大器可检测到谷值电感电流。

内部振荡器在固定的开关频率关断低端N沟道MOSFET,并打开高端P沟道MOSFET。当开通高端P沟道MOSFET时,谷值电感电流信息加到拟合斜坡信号中,并通过PWM比较器与误差电压进行比较。PWM比较器的输出信号可通过调整PWM脉冲后沿来调制占空比。可通过对斜率补偿进行内部编程,将其加到仿真斜坡信号中,并根据V_{IN}、V_{OUT}和开关频率自动选择。这可以防止电感电流在占空比大于50%的环境下出现次谐波震荡。

配有防直通电路的控制逻辑监控并调整低端、高端驱动器输出,从而确保开关先开后合。该监视和控制功能可防止内部高端P沟道功率MOSFET和低端N沟道功率MOSFET同时导通。

欠压闭锁(UVLO)


 V_{DD} 提高时,UVLO阈值为2.65 V, V_{DD} 降低时,UVLO阈值为2.47 V。由于负载条件不断变化,在VDD接近最小工作电压2.75 V时,电压缓慢转换,180 mV迟滞特性可防止转换器重复打开、关闭。

使能/禁用控制

引脚EN1和EN2分别用于独立使能或禁用通道1和通道2。 将ENx驱动至高电平状态,可以打开ADP2114的相应通 道。将ENx驱动至低电平状态,可以关闭ADP2114的相应 通道,将输入电流降至1 μA以下。施加输入电源时,要强制 某通道自动启动,须将相应的ENx引脚与VDD相连。当 ADP2114关闭时,各通道会对软启动电容进行放电,因此, 每次转换器再使能后,将产生新的软启动周期。

软启动

ADP2114的软启动特性允许输出电压以受控方式缓慢提高,从而避免启动期间出现输出电压过冲现象。当电压超过欠压闭锁阈值且使能引脚EN1或EN2拉高至2.0 V以上时,才开始软启动。须将SS1和SS2引脚上的外部电容接地。每个调节通道均有各自的软启动电路。当转换器上电启动后,内部6 μA电流源对外部软启动电容进行充电,从而在SS1或SS2引脚处产生电压斜坡斜率,如图66所示。当软启动斜坡电压大于内部基准电压(0.6 V)时,软启动结束。

软启动电容的电容值与软启动时间 (t_{ss}) 的关系取决于下列公式

$$\frac{V_{REF}}{t_{SS}} = \frac{I_{SS}}{C_{SS}} \tag{1}$$

其中:

 V_{REF} 为内部基准电压(0.6 V)。

 I_{ss} 为软启动电流(6 μ A)。

Css为软启动电容值。

如果在使能通道1或通道2之前对输出电压 V_{OUT1} 或 V_{OUT2} 进行预充电,则控制逻辑在SS1或SS2引脚的软启动电压升至 V_{FB1} 或 V_{FB2} 引脚的预充电输出电压前,使功率MOSFET保持关闭状态,可防止电感电流反向(见图67)。

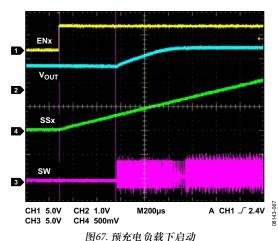


图07. 测光电贝敦下后

电源良好

ADP2114具有开漏电源良好输出引脚(PGOOD1和PGOOD2),用来指示转换器输出电压是否在正常调节范围内。当禁用某一通道后,相应的电源良好信号立刻变为低电平。

电源良好电路可监控FB1或FB2引脚上的输出电压,并与表 1所列的上升、下降阈值进行比较。如果输出电压(V_{OUT1} 或 V_{OUT2})超过目标输出电压(V_{OUT} 1 $_{\text{SET}}$ 或 V_{OUT2} 2 $_{\text{SET}}$)的116%(典型上升限值),PGOOD1或PGOOD2引脚变为低电平状态。在输出电压恢复到目标值的108%(典型值)之前,PGOOD1或PGOOD2引脚始终保持低电平状态。

如果输出电压低于目标输出值的84%,相应的PGOOD1或PGOOD2引脚变为低电平。在输出电压升至目标值的92%之前,PGOOD1或PGOOD2引脚始终保持低电平状态。然后,PGOOD1或PGOOD2引脚被释放,表示输出电压回到电源良好窗口阈值内。

电源良好阈值如图68所示。当检测到超出温度范围时,PGOOD1、PGOOD2输出还将吸收电流。在PGOOD1或PGOOD2与VDD之间连接上拉电阻后,可将这些输出信号用作逻辑电源良好信号。如果不用电源良好功能,可将这些引脚悬空。

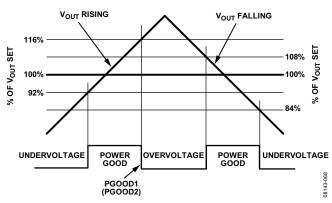


图68. PGOOD1和PGOOD2阈值

跳脉冲模式

ADP2114内置跳脉冲电路;在轻负载时,该电路接通;仅在必要时切换,将输出电压保持在规定范围内。这样可以降低开关损耗,让转换器在轻负载条件下保持较高效率。可通过配置OPCFG引脚来选择跳脉冲模式(见表7说明)。在跳脉冲模式下,当输出电压跌至规定值以下时,ADP2114进入PWM模式,并停留数个振荡器周期,使输出电压升至规定范围。在突发脉冲之间的等待时间内,两个功率开关均断开,由输出电容提供所有负载电流。由于输出电压会不定期地骤降和恢复,因此这种模式下的输出电压纹波大于PWM工作模式下的纹波。

如果利用OPCFG引脚将转换器配置为强制PWM工作模式,则即便在轻负载条件下,器件也以固定开关频率工作。

打嗝模式电流限制

ADP2114采用打嗝模式限流方案。当峰值电感电流超过预设电流限值,并持续8个时钟周期以上时,就会出现打嗝模式限流情况。然后,通道进入休眠状态并停留6.8 ms(600 kHz 开关频率时),这一时间足以使输出放电并降低平均功耗。最后,通道在软启动期间唤醒(参见图69)。如果限流条件再次被触发,通道将进入休眠状态,并在6.8 ms后唤醒。通过配置OPCFG引脚,可以对这两个通道的电流限值进行编程(见表7)。对于2 A/2 A选项,输出电流限值设为每路输出3.3 A。对于3 A/1 A选项,V_{OUT1}和V_{OUT2}引脚的电流输出限值分别设为4.5 A和1.9 A。

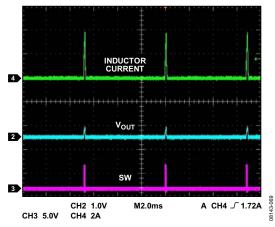


图69. 打嗝模式

热过载保护

ADP2114内部集成一个温度传感器,可监控结温。高电流进入开关或发热的印刷电路版(PCB)均可导致ADP2114的结温迅速升高。当结温达到约150℃时,ADP2114进入热关断,转换器关闭。当结温降至125℃以下,ADP2114执行软启动,恢复正常工作状态。

最大占空比工作

当输入电压降至接近输出电压时,ADP2114顺利切换到最大占空比工作状态,此时,低端N沟道MOSFET处于打开状态,将关断时间缩至最短。在最大占空比工作条件下,由于输出电压是输入电压值和最大占空比限值的乘积,因此,输出电压骤降至调节范围以下。最大占空比限值是开关频率和输入电压的函数,如图72所示。

同步

ADP2114可与外部时钟同步,以便让两个通道在开关频率为输入同步时钟频率的一半频率工作。通过SCFG引脚,可将SYNC/CLKOUT配置为输入SYNC引脚或输出CLKOUT引脚,如表6所示。通过输入SYNC引脚,可让ADP2114与外部时钟同步,以便让两个通道以外部时钟频率的一半、180°异相工作。通过输出CLKOUT引脚,ADP2114可提供外部时钟,其频率是通道开关频率的两倍且存在90°异相。因此,一个配置为CLKOUT的ADP2114可以作为主转换器,为其它所有DC-DC转换器(包括其它ADP2114)提供外部时钟。其它转换器配置为从机,接收外部时钟信号并与之同步。此时钟分配办法可同步系统内的所有DC-DC转换器,并防止产生能导致EMI问题的拍频谐波。

ADP2114经过优化,可为高性能信号链电路供电。开关节点的压摆率受驱动设备尺寸控制。开关节点的压摆率越快,转换损耗越低,但由于存在寄生电感,也会导致严重的 EMI问题。因此,驱动器的压摆率已经过优化,使ADP2114 能与敏感信号链电路中的低压差调节器的性能匹配,同时提供出色的转换效率。

转换器配置

选择输出电压

在V1SET或V2SET引脚与GND之间连接一个适当的电阻(见图70),可在六个固定电压(见表4)中选择一个电压,以便设置输出电压(V_{OUT1} 或 V_{OUT2})。V1SET和V2SET引脚分别设置通道1和通道2的输出电压。反馈引脚FB1 (FB2)应直接与 V_{OUT1} (V_{OUT2})相连。

表4. 输出电压编程

$R_{V1SET}(\Omega) \pm 5\%$	V _{OUT1} (V)	$R_{V2SET}(\Omega) \pm 5\%$	V _{OUT2} (V)
0至 GND	0.8	0至GND	0.8
4.7 k至GND	1.2	4.7 k至GND	1.2
8.2 k至GND	1.5	8.2 k至GND	1.5
15 k至GND	1.8	15 k至GND	1.8
27 k至GND	2.5	27 k至GND	2.5
47 k至GND	3.3	47 k至GND	3.3
82 k至GND	0.6至<1.6	82 k至GND	0.6至<1.6
	(可调)		(可调)
0至VDD	1.6至3.3	0至VDD	1.6至3.3
	(可调)		(可调)

若所需输出电压值(V_{OUT1}或V_{OUT2})在可调整范围(0.6 V至<1.6 V),则通过一个82 kΩ电阻将V1SET或V2SET与GND相连。可调输出电压范围为1.6 V至3.3 V时,将V1SET或V2SET与VDD相连(见表4)。通过输出电压与反馈引脚之间的一个电阻分压器(见图71),可从外部设置ADP2114的可调输出电压。电阻分压器的分压比决定了输出电压,而这些电阻的绝对值决定分压器的漏电流。为降低分压器的漏电流,在计算电阻值时,应考虑使用小的10 nA(最大0.1 μA)反馈偏置电流。当分压器漏电流较高时,反馈偏置电流可忽略不计;但这样在非常轻的负载环境下可能降低系统工作效率。

反馈偏置电流会引起输出电压精度降低,要将降幅限制在 0.05%(最大0.5%)以内,应确保分压器漏电流高于20 μA。要 计算所需的电阻值,首先需利用下式确定底端分压器电阻 (R1)的值:

$$R1 = V_{REF}/I_{STRING} \tag{2}$$

其中:

 V_{REF} 为内部基准电压(0.6 V)。

 I_{STRING} 为电阻分压器漏电流。

确定R1后,根据下式计算顶端电阻R2的值:

$$R2 = RI \left[\frac{V_{OUT} - V_{REF}}{V_{RFF}} \right] \tag{3}$$

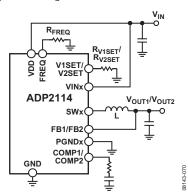


图70. 固定输出配置

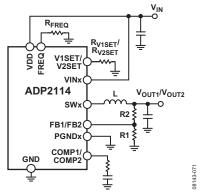
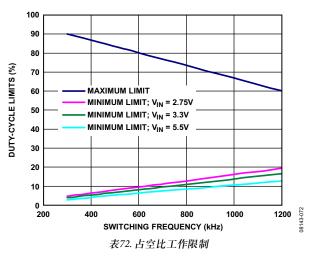


图71. 可调输出配置


设置振荡器频率

ADP2114的两个通道可在以下三种预设开关频率下工作: 300 kHz、600 kHz或1.2 MHz。若要在300 kHz环境下工作, 须将FREQ引脚与GND相连。若在600 kHz或1.2 MHz环境下工作, FREQ引脚与GND之间需连接一个电阻, 如表5所示。

表5. 振荡器频率设置

$R_{FREQ}(\Omega) \pm 5\%$	f _{sw} (kHz)
0至GND	300
8.2 k至GND	600
27 k至GND	1200

开关频率的选择取决于所需DC-DC电压转换率,并受限于图72所示的最小和最大可控占空比。这是因为,为实现电流检测和鲁棒的工作,开启和关闭时间有一个最低要求。开关频率的选择还取决于小型外部元件的需求。对于面积受限的小型电源解决方案,建议采用较高的开关频率。

在占空比接近50%的单路输出、多相应用中,建议采用 1.2 MHz开关频率,以便最大程度地降低相位之间的串扰。

同步和时钟输出(CLKOUT)

ADP2114既可配置为输出内部时钟,也可配置为与SYNC/CLKOUT引脚的外部时钟同步。SYNC/CLKOUT引脚是双向引脚,可通过SCFG引脚配置,如表6所示。

表6. SYNC/CLKOUT配置设定

SCFG	SYNC/CLKOUT
GND	输入
VDD	输出

转换器开关频率 (f_{SW}) 为同步频率 $(f_{SYNC}$ 或 $f_{CLKOUT})$ 的一半(见公式4),它与SYNC/CLKOUT是配置为输入或输出无关。

$$f_{SYNC}f_{CLKOUT} = 2 \times f_{SW} \tag{4}$$

当SYNC/CLKOUT引脚配置为输入引脚时,可通过该引脚提供外部时钟,以便将多个ADP2114器件与同一个外部时钟同步。f_{SYNC}值范围为400 kHz至4 MHz,因此,f_{sw}值范围为200 kHz至2 MHz(见图73)。

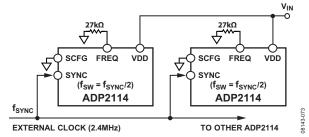


图73. 与外部时钟同步(fSW = 1.2 MHz)

与外部时钟同步时,须恰当地端接FREQ引脚(见表5),以 便将开关频率(f_{sw})设置为接近期望外部时钟频率的二分 之一。

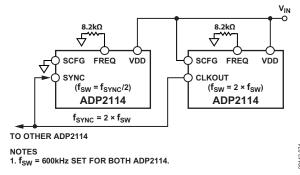


图74. ADP2114与另一个ADP2114同步 (主机的SCFG引脚与VDD连接)

另外,ADP2114的SYNC/CLKOUT引脚还可配置用于输出时钟信号,以便同步多个ADP2114(见图74)。相对于通道的内部时钟,CLKOUT信号具有90°相移,以便让ADP2114主从通道异相(详细说明见图75)。

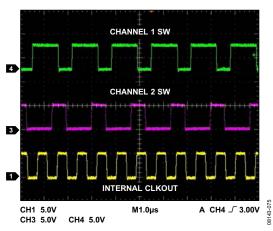


图75. CLKOUT波形

工作模式配置

双通道ADP2114可以在4种模式下工作,具体的模式选择可通过连接OPCFG引脚来决定(见表7)。通过工作模式配置,可设置每个通道的电流限值,并在轻负载条件下使能或禁用进入跳脉冲模式。

若为双相配置,则两个通道的输出端相连,产生单个直流输出信号 V_{OUT} 。对这个单路组合双相输出,只能使用OPCFG选项中的模式2。在该模式下,需要使用两个相位的误差放大器。反馈引脚FB1和FB2相连,补偿引脚COMP1和COMP2相连,软启动引脚SS1和SS2相连,使能引脚EN1和EN2相连。

另外,如需利用电源良好特性,须将PGOOD1与PGOOD2 相连,再通过一个上拉电阻连接至VDD。

当ADP2114与外部时钟同步时,转换器始终以固定频率 CCM工作,且在轻负载条件下不会进入跳脉冲模式。在此 情况下,配置OPCFG引脚时,需选择强制PWM模式。

表7. 限流工作模式与配置

		最大输出电流	峰值电流限制	
模式	$R_{OPCFG}(\Omega) \pm 5\%$	I _{OUT1} (A)/I _{OUT2} (A)	I _{LIMIT1} (A)/I _{LIMIT2} (A)	轻负载条件下的节能
1	0至GND	2/2	3.3/3.3	跳脉冲使能
2	4.7 k至GND	2/2	3.3/3.3	强制PWM
3	8.2 k至GND	3/1	4.5/1.9	跳脉冲使能
4	15 k至GND	3/1	4.5/1.9	强制PWM

外部元件选择

输入电容选择

降压型转换器的输入电流本质上是脉动电流。当高端开关处于断开状态时,转换器的输入电流接近于负载电流。由于该脉动电流产生于合理的高频(300 kHz至1.2 MHz)条件下,因此,输入旁路电容能提供大多数高频电流(纹波电流),从而允许输入电源只提供平均直流电流。输入电容需要一个足够高的纹波电流额定值,以便处理输入纹波;另外,ESR也必须足够低,以便减小输入电压纹波。对于ADP2114,应在每个通道靠近VINx引脚放置一个22 μF、6.3 V X5R陶瓷电容。推荐使用额定电压为6.3 V或10 V的X5R或X7R电介质。Y5V和Z5U电介质的温度和直流偏置特性不佳,建议不要使用。

VDD RC滤波器

建议通过一个低通RC滤波器,将输入电源($V_{\rm IN}$)施加于VDD 引脚(见图76)。将一个10 Ω 电阻串联至 $V_{\rm IN}$,并在VDD与GND 之间连接一个1 μ F、6.3 V X5R(或X7R)陶瓷电容,可以形成一个16 kHz (-3 dB)低通滤波器,从而有效降低开关调节器在输入供电轨上造成的电压毛刺。这样就能为ADP2114内部敏感的模拟、数字电路提供干净的电源,以确保系统稳定工作。

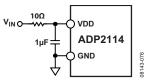


图76. VDD引脚的低通滤波器

电感选择

ADP2114的开关频率高,因此,即使只用小型电感,输出电压的纹波也非常小。电感的大小需权衡效率和瞬态响应决定。小型电感可引起较大的电感电流纹波,能提供出色的瞬态响应,但会降低系统效率。由于ADP2114的开关频率非常高,因此建议使用低磁芯损耗、低EMI的屏蔽铁氧体磁芯电感。

峰峰值电感电流纹波(ΔI_L)通常设置为最大负载电流的1/3,以获得最佳瞬态响应和效率。

$$\Delta I_{L} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times L} \approx \frac{I_{LOAD(MAX)}}{3}$$

$$\Rightarrow L_{IDEAL} = \frac{3 \times V_{OUT} \times (V_{IN} - V_{OUT})}{f_{SW} \times V_{IN} \times I_{LOAD(MAX)}}$$
(5)

其中:

 V_{IN} 为VINx端的输入电压。 V_{OUT} 为所需的输出电压。 f_{SW} 为转换器开关频率。

由于各 V_{OUT} 设置的内部缓增都可测量,因此,内部斜率补偿会对最佳电感值有额外限制,以实现稳定工作。 V_{IN} 、 V_{OUT} 和 f_{sw} 组合的各种限值如表8所列

表8. 电感的最小值与最大值

F _{SW} (kHz)	衣0. 电感时最小值与最大值					
300 5 2.5 5.6 15 300 3.3 2.5 5.6 6.8 300 5 1.8 4.7 12 300 3.3 1.8 4.7 8.2 300 5 1.5 2.2 12 300 3.3 1.5 2.2 8.2 300 5 1.2 2.2 10 300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 300 3.3 3.3 3.3 4.7 600 5 3.3 3.3 4.7 600 5 3.3 3.3 3.3 600 5 1.5 1.5 4.7 600 5 1.5 1.5 4.7 600 5 1.2	f _{sw} (kHz)	V _{IN} (V)	V _{OUT} (V)	最小L (μH)	最大L (μH)	
300 3.3 2.5 5.6 6.8 300 5 1.8 4.7 12 300 3.3 1.8 4.7 8.2 300 5 1.5 2.2 12 300 3.3 1.5 2.2 8.2 300 5 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 300 5 3.3 3.3 4.7 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 4.7 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 5 1.2 1.5 3.3	300	5	3.3	6.8	10	
300 5 1.8 4.7 12 300 3.3 1.8 4.7 8.2 300 5 1.5 2.2 12 300 3.3 1.5 2.2 8.2 300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 5 0.8 1.0 3.3	300	5	2.5	5.6	15	
300 3.3 1.8 4.7 8.2 300 5 1.5 2.2 12 300 3.3 1.5 2.2 8.2 300 5 1.2 2.2 8.2 300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 5 1.8 2.2 6.8 600 5 1.8 2.2 6.8 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 5 1.2 1.5 4.7 600 5 0.8 1.0 3.3 120 5 0.8 1.0 3.3 1200 5 1.8 1.0 3.3	300	3.3	2.5	5.6	6.8	
300 5 1.5 2.2 12 300 3.3 1.5 2.2 8.2 300 5 1.2 2.2 10 300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 5 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.8 1.0 3.3	300	5	1.8	4.7	12	
300 3.3 1.5 2.2 8.2 300 5 1.2 2.2 10 300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 5 1.2 1.5 3.3 600 5 0.8 1.0 3.3 120 5 0.8 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.5 0.8 2.2 <	300	3.3	1.8	4.7	8.2	
300 5 1.2 2.2 10 300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2	300	5	1.5	2.2	12	
300 3.3 1.2 2.2 8.2 300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 4.7 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2	300	3.3	1.5	2.2	8.2	
300 5 0.8 1.5 6.8 300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 5 0.8 0.47 1.5 <	300	5	1.2	2.2	10	
300 3.3 0.8 1.5 6.8 600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	300	3.3	1.2	2.2	8.2	
600 5 3.3 3.3 4.7 600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	300	5	0.8	1.5	6.8	
600 5 2.5 3.3 6.8 600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	300	3.3	0.8	1.5	6.8	
600 3.3 2.5 3.3 3.3 600 5 1.8 2.2 6.8 600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 5 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 5 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 5 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600		3.3	3.3	4.7	
600 5 1.8 2.2 6.8 600 3.3 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600	5	2.5	3.3	6.8	
600 3.3 1.8 2.2 3.3 600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5		3.3	2.5	3.3	3.3	
600 5 1.5 1.5 5.6 600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5		5	1.8	2.2	6.8	
600 3.3 1.5 1.5 4.7 600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600		1.8	2.2	3.3	
600 5 1.2 1.5 4.7 600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600	5	1.5	1.5	5.6	
600 3.3 1.2 1.5 3.3 600 5 0.8 1.0 3.3 600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600	3.3	1.5	1.5	4.7	
600 5 0.8 1.0 3.3 600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5		5	1.2			
600 3.3 0.8 1.0 3.3 1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600	3.3	1.2	1.5	3.3	
1200 5 2.5 1.0 3.3 1200 5 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5		5	0.8	1.0	3.3	
1200 5 1.8 1.0 3.3 1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	600	3.3	0.8	1.0	3.3	
1200 3.3 1.8 1.0 2.2 1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	1200		2.5	1.0	3.3	
1200 5 1.5 0.8 2.2 1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	1200		1.8	1.0	3.3	
1200 3.3 1.5 0.8 2.2 1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5			1.8	1.0	2.2	
1200 5 1.2 0.8 2.2 1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	1200	5	1.5	0.8	2.2	
1200 3.3 1.2 0.8 2.2 1200 5 0.8 0.47 1.5	1200		1.5	0.8	2.2	
1200 5 0.8 0.47 1.5			1.2	0.8		
			1.2			
1200 3.3 0.8 0.47 1.5	1200	5	0.8	0.47	1.5	
	1200	3.3	0.8	0.47	1.5	

为避免饱和,电感的额定电流必须大于最大峰值电感电流 (I_{LPEAK}) ,其计算式如下:

$$I_{L_PEAK} = I_{LOAD_MAX} + \frac{\Delta I_L}{2} \tag{6}$$

其中:

 I_{LOAD_MAX} 为最大直流负载电流。 $\Delta I_{\rm I}$ 为电感纹波电流(峰峰值)。

ADP2114既可应用2 A/2 A限流配置,也可应用3 A/1 A限流配置;因此,两个通道在不同限流配置下的限流阈值有所不同。每个通道所选的电感必须支持芯片输出电流限值峰值,以便在系统产生短路时,芯片能够稳定工作。建议使用下列电感:

- 0.47 μH至4.7 μH: TOKO D53LC和FDV0620系列
- 4.7 μH至12 μH: Cooper Bussman DR1050系列和Wurth Elektronik WE-PDF系列

输出电容选择

输出电容选择将影响输出电压纹波和转换器的环路动态性能。ADP2114设计采用小型低ESR、低ESL陶瓷输出电容,因此,很容易满足苛刻的输出电压纹波要求。推荐使用额定电压为6.3 V或10 V的X5R或X7R电介质。Y5V和Z5U电介质的温度和直流偏置特性不佳,建议不要使用。最小输出电容COUT MIN根据公式7和公式8计算。

可接受的最大输出电压纹波为:

$$\Delta V_{RIPPLE} \cong \Delta I_L \times \left(ESR + \frac{1}{8 \times f_{SW} \times C_{OUT_MIN}} \right)$$
 (7)

因此,

$$C_{OUT_MIN} \cong \frac{\Delta I_L}{8 \times f_{SW} \times (\Delta V_{RIPPLE} - \Delta I_L \times ESR)}$$
(8)

其中:

 ΔV_{RIPPLE} 为允许的峰峰值输出电压纹波(伏特)。

 ΔI , 为电感纹波电流。

ESR为电容的等效串联电阻(欧姆)。

fsw为转换器开关频率(赫兹)。

若有阶跃负载,应根据阶跃值来选择输出电容值。对于阶 跃负载所引起的最大可接受输出电压降/过冲,

$$C_{OUT_MIN} \cong \Delta I_{OUT_STEP} \times \left(\frac{3}{f_{SW} \times \Delta V_{DROOP}}\right)$$
 (9)

其中:

 $\Delta I_{OUT\ STEP}$ 为负载阶跃值(安培)。

fsw为开关频率(赫兹)。

 ΔV_{DROP} 为负载阶跃的最大允许输出电压降/过冲(伏特)。

注意,上述公式的计算结果为近似值,并基于以下假设:

- 电感值由峰峰电流值决定,而峰峰电流为最大负载电流的30%。
- 内部MOSFET开关上的压降和电感直流电阻的压降可忽略不计。
- 公式9成立的前提是环路根据负载阶跃调整电感电流前需要三个开关周期。

选择由公式8、公式9计算得出的最大输出电容。由于较高的直流电压会降低有效电容,因此,为转换器的输出滤波器实际选用陶瓷电容时,需要选择标称容量比计算结果高20%至30%的电容。另外,电容的额定电压必须高于转换器的输出电压。

建议采用下列输入、输出陶瓷电容:

- Murata GRM21BR61A106KE19L, 10 μF, 10 V, X5R, 0805
- TDK C2012X5R0J226M, 22 μF, 6.3 V, X5R, 0805
- Panasonic ECJ-4YB0J476M, 47 μF, 6.3 V, X5R, 1210
- Murata GRM32ER60J107ME20L, 100 μF, 6.3 V, X5R, 1210

控制环路补偿

ADP2114使用峰值电流模式控制架构,因此具有出色的负载和线路瞬态响应性能。外部电压环路通过一个具有简单外部RC网络的跨导放大器提供补偿。该RC网络位于COMP1或COMP2引脚与GND之间,如图77所示。



图78为基本控制环路框图。

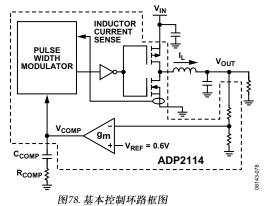


图78中虚线框内的模块和元件均嵌入ADP2114的每个通 道内。

控制环路可以分为以下三部分:

- V_{OUT} 至 V_{COMP}
- V_{COMP}至I_L
- I_L至V_{OUT}

与之对应的三个传递函数如下:

$$\frac{V_{COMP}(s)}{V_{OUT}(s)} = \frac{V_{REF}}{V_{OUT}} \times g_m \times Z_{COMP}(s)$$
(10)

$$\frac{I_L(s)}{V_{COMP}(s)} = G_{CS} \tag{11}$$

$$\frac{V_{OUT}(s)}{I_I(s)} = Z_{FILT}(s) \tag{12}$$

其中:

g_m为误差放大器跨导(550 μs)。

 G_{CS} 为电流检测增益(4 A/V)。

V_{OUT}为转换器输出电压。

Vppp,为内部基准电压(0.6 V)。

 $Z_{COMP}(s)$ 为RC补偿网络的阻抗,该RC补偿网络可在原点与零点之间形成一个极点(见公式13)。

$$Z_{COMP}(s) = \frac{1 + s \times R_{COMP} \times C_{COMP}}{s \times C_{COMP}}$$
(13)

Z_{filt}(s)为输出滤波器的阻抗,表示为:

$$Z_{FILT}(s) = \frac{R_{LOAD}}{1 + s \times R_{LOAD} \times C_{OUT}}$$
(14)

其中, s为角频率(s = $2\pi f$)。

总环路增益值H(s)由上述三个传递函数值相乘得出,计算公式如下:

$$H(s) = g_{\scriptscriptstyle M} \times G_{\scriptscriptstyle CS} \times \frac{V_{\scriptscriptstyle REF}}{V_{\scriptscriptstyle OMT}} \times Z_{\scriptscriptstyle COMP}(s) \times Z_{\scriptscriptstyle FILT}(s) \tag{15}$$

选择开关频率 (f_{sw}) 、输出电压 (V_{OUT}) 、输出电感(L)和输出电容 (C_{OUT}) 值时,单位交越频率需约等于开关频率的1/12。

在交越频率下,开环传递函数具有单位增益。这可导出公式16,用于计算交越频率下的补偿网络阻抗。

$$Z_{COMP}(f_{CROSS}) = \frac{2 \times \pi \times f_{CROSS} \times C_{OUT}}{g_m \times G_{CS}} \times \frac{V_{OUT}}{V_{REF}}$$
(16)

为确保在交越频率下有足够的相位裕度,须将补偿器零点设为交越频率的1/8,见公式17。

$$f_{ZERO} = \frac{1}{2 \times \pi \times R_{COMP} \times C_{COMP}} \approx \frac{f_{CROSS}}{8}$$
 (17)

联立求解公式16和公式17,得出补偿电阻值和补偿电容值,如公式18和公式19所示。

$$R_{COMP} = 0.9 \times \left(\frac{(2\pi)F_{CROSS}}{G_m G_{CS}}\right) \times \left(\frac{C_{OUT}V_{OUT}}{V_{REF}}\right)$$
(18)

$$C_{COMP} = \frac{1}{2 \times \pi \times f_{ZEPO} \times R_{COMP}}$$
 (19)

图77中所示电容 $C_{\rm C2}$ 与反馈环路中的补偿电阻 $(R_{\rm COMP})$ 形成一个极点,确保环路增益持续滚降,从而远远超过单位增益交越频率。 $C_{\rm C2}$ 值通常设为补偿电容 $(C_{\rm COMP})$ 的1/40。

设计示例

本设计示例使用"控制环路补偿"部分所述的外部元件选择程序。

表9. 双通道降压型DC-DC转换器要求

参数	技术规格	额外要求
输入电压V _{IN}	5.0 V ±10%	无
通道1 V _{оит1}	3.3 V、2 A、1%	最大负载阶跃:
	V _{out} 纹波(p-p)	1 A至2 A,
		最大降幅为5%
通道2 V _{OUT2}	1.8 V、 2 A、 1%	最大负载阶跃:
	V _{out} 纹波(p-p)	1 A至2 A,
		最大降幅为5%
跳脉冲特性	使能	无

通道1配置与元件选择

配置通道1须完成下列步骤:

- 1. 为获得目标输出电压(V_{OUT} = 3.3 V), 须通过一个47 kΩ电阻 将V1SET引脚与GND连接(见表4)。由于选择了一个固定 输出电压,因此,必须将反馈引脚(FB1)直接与通道1的输 出端(V_{OUT}))相连。
- 2. 估计占空比(D)范围。理想情况下:

$$D = \frac{V_{OUT}}{V_{IN}} \tag{20}$$

由此可得出3.3 V输出电压、标称输入电压(V_{IN} = 5.0 V)下的占空比 D_{NOM} = 0.66。

最大输入电压 $(V_{IN}$ 最大值= 5.5 V,比标称值高10%)下的最小占空比 D_{MIN} = 0.60。

最小输入电压(V_{IN} 最小值=4.5 V,比标称值低10%)下的最大占空比 D_{MAX} = 0.73。

然而,实际占空比将大于计算值,能够补偿转换器的功率 损耗。因此,对于最大负载,须将计算值加5%至7%。

根据预估的占空比范围,按照最小、最大占空比限值来选择开关频率,如图72所示。

对于通道 $1\,V_{\rm IN}=5\,V$ 和 $V_{\rm OUT}=3.3\,V$ 组合,最大占空比为0.8,选择 $f_{\rm SW}=600\,$ kHz。该频率选项能够提供最小尺寸的解决方案。如果需要更高的效率,可选择 $300\,$ kHz选项。然而,由于电感和输出电容更大,因此,转换器的PCB面积也会较大。

3. 利用公式5选择电感。

$$L = \frac{(V_{IN} - V_{OUT})}{\Delta I_I \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}}$$

在公式5中, $V_{IN} = 5 V$ 、 $V_{OUT} = 3.3 V$ 、 $\Delta I_L = 0.3 \times I_L = 0.6 A$ 、 $f_{SW} = 600 \text{ kHz}$,故L = 3.11 μ H。

因此, 当公式3中的 $L = 3.3 \mu H$ (最接近的标准值)时, $\Delta I_{_{\rm I}} = 0.566 \, A_{_{\rm O}}$

尽管所需最大输出电流为2A,但限流条件下的最大峰值电流为3.3 A(见表7)。因此,为保证电路可靠工作,电感应具有3.3 A峰值电流和3 A平均电流对应的额定值。

4. 利用公式8和公式9选择输出电容。

$$C_{OUT_MIN} \cong \frac{\Delta I_L}{8 \times f_{SW} \times (\Delta V_{RIPPLE} - \Delta I_L \times ESR)}$$

$$C_{OUT_MIN} \cong \Delta I_{OUT_STEP} \times \left(\frac{3}{f_{SW} \times \Delta V_{DROOP}}\right)$$

公式8基于输出纹波(ΔV_{RIPPLE}),公式9基于瞬态负载性能要求,在本例中,最大偏差为5%。如前所述,执行上述计算,然后根据计算出的较大电容来选择电容。

本例中,需要将下列值代入公式8和公式9中的变量:

$$\Delta I_{_{\rm I}} = 0.566 \text{ A}$$

 $f_{sw} = 600 \text{ kHz}$

 $\Delta V_{\text{RIPPLE}} = 33 \text{ mV} (3.3 \text{ V} \dot{\mathbf{m}} 1\%)$

ESR = 3 mΩ(陶瓷电容的典型值)

$$\Delta I_{OUT STEP} = 1 A$$

$$\Delta V_{DROOP} = 0.165 \text{ V}(3.3 \text{ V的5%})$$

基于输出纹波的计算(见公式8)得出C_{OUT} = 4.0 μF, 而基于 瞬态负载的计算(见公式9)则得出C_{OUT} = 30 μF。为了同时 满足两种要求,应选择后者。如前面"控制环路补偿"部分 所述,直流偏置会降低电容值,因此,需要选择较高的 电容值。在此例中,下一个较高值为47 μF, 其最小额定电压为6.3 V。

5. 利用公式15计算反馈环路的补偿元件值:

$$H(s) = g_M \times G_{CS} \times \frac{V_{REF}}{V_{OUT}} \times Z_{COMP}(s) \times Z_{FILT}(s)$$

本例中,需要将下列值代入公式18中的变量:

 $g_{m} = 550 \, \mu s$

 $G_{CS} = 4A/V$

 $V_{RFF} = 0.6 \text{ V}$

 $V_{OUT} = 3.3 \text{ V}$

 $C_{OUT} = 0.8 \times 47 \,\mu$ F(考虑直流偏置,电容值降低20%)。

根据公式18,

 $R_{COMP} = 27 \text{ k}\Omega.$

将 R_{COMP} 代入公式19中,可得: $C_{COMP} = 1000 pF$ 。

表10. 通道1电路设置

电路参数	设置	值
输出电压(V _{out})	步骤1	3.3 V
基准电压(V _{REF})	固定,典型值	0.6 V
误差放大器跨导(gm)	固定,典型值	550 μs
电流检测增益(G _{cs})	固定,典型值	4 A/V
开关频率(f _{sw})	步骤2	600 kHz
交越频率f _c	1/12 f _{sw}	50 kHz
零点频率(f _{zero})	1/8 f _{CROSS}	6.25 kHz
输出电感(L _{out})	步骤3	3.3 μΗ
输出电容(C _{out})	步骤4	47 μF, 6.3 V
补偿电阻(R _{COMP})	公式18	27 kΩ
补偿电容(C _{COMP})	公式19	1000 pF

通道2配置与元件选择

配置通道2须完成下列步骤:

- 1. 为获得目标输出电压(V_{OUT}=1.8 V), 须通过一个15 kΩ电阻 将V2SET引脚与GND连接(见表4)。由于选择了一个固定 输出电压,因此,必须将反馈引脚(FB2)直接与通道2的 输出端(V_{OUT})相连。
- 2. 估计占空比(D)范围(见公式20)。理想情况下:

$$D = \frac{V_{OUT}}{V_{IN}}$$

由此可得出 $1.8 \, \text{V}$ 输出电压、标称输入电压($\text{V}_{\text{IN}} = 5.0 \, \text{V}$)下的占空比 $\text{D}_{\text{NOM}} = 0.36$ 。

最大输入电压(V_{IN} 最大值= 5.5 V,比标称值高10%)下的最小占空比 D_{MIN} = 0.33。

最小输入电压(V_{IN} 最小值= 4.5 V,比标称值低10%)下的最大占空比 D_{MAX} = 0.4。

然而,实际占空比将大于计算值,能够补偿转换器的功率损耗。因此,对于最大负载,须将计算值加5%至7%。

根据通道1的要求,应将开关频率(f_{sw})设置为600 kHz, 以便满足上述占空比范围的需要。因此,该开关频率可 以接受。

3. 利用公式5选择电感。

$$L = \frac{(V_{IN} - V_{OUT})}{\Delta I_L \times f_{SW}} \times \frac{V_{OUT}}{V_{IN}}$$

在公式5中, $V_{IN} = 5 \text{ V}$ 、 $V_{OUT} = 1.8 \text{ V}$ 、 $\Delta I_{L} = 0.3 \times I_{L} = 0.6 \text{ A}$ 、 $f_{cw} = 600 \text{ kHz}$, 故L = 2.9 μ H。

因此, 当公式3中的 $L = 3.3 \mu H$ (最接近的标准值)时, $\Delta I_{_{\rm I}} = 0.582 \, A_{_{\rm O}}$

尽管所需最大输出电流为2 A,但限流条件下的最大峰值电流为3.3 A(见表7)。因此,为保证电路在所有条件下都能可靠工作,电感应具有3.3 A峰值电流和3 A平均电流对应的额定值。

4. 利用公式8和公式9选择输出电容。

$$C_{OUT_MIN} \cong \frac{\Delta I_L}{8 \times f_{SW} \times (\Delta V_{RIPPLE} - \Delta I_L \times ESR)}$$

$$C_{OUT_MIN} \cong \Delta I_{OUT_STEP} \times \left(\frac{3}{f_{SW} \times \Delta V_{DROOP}}\right)$$

公式8基于输出纹波(ΔV_{RIPPLE}),公式9基于瞬态负载性能要求,在本例中,最大偏差为5%。如前所述,执行上述计算,然后根据计算出的较大电容来选择电容。

本例中,需要将下列值代入公式8和公式9中的变量:

 $\Delta I_{T} = 0.582 \text{ A}$

 $f_{sw} = 600 \text{ kHz}$

 $\Delta V_{RIPPLE} = 18 \text{ mV} (1.8 \text{ V的 } 1\%)$

ESR = 3 mΩ(陶瓷电容的典型值)

 $\Delta I_{OUT STEP} = 1 A$

 $\Delta V_{DROOP} = 0.09 \text{ V} (1.8 \text{ V的5%})$

基于输出纹波的计算(见公式8)得出 C_{OUT} = 7.7 μ F,而基于瞬态负载的计算(见公式9)则得出 C_{OUT} = 55 μ F。为了同时满足两种要求,应选择后者。如前面"控制环路补偿"部分所述,直流偏置会降低电容值;因此,需要选择较高的电容值。本例中,选择一个47 μ F/6.3 V电容与一个22 μ F/6.3 V电容并联,以满足需要。

5. 利用公式15计算反馈环路的补偿元件值:

$$H(s) = g_m \times G_{CS} \times \frac{V_{REF}}{V_{OUT}} \times Z_{COMP}(s) \times Z_{FILT}(s)$$

本例中,需要将下列值代入公式18中的变量:

$$g_{m} = 550 \,\mu s$$

$$G_{cs} = 4$$

$$V_{REF} = 0.6 \text{ V}$$

$$V_{OUT} = 1.8 \text{ V}$$

C_{OUT} = 0.8×(47+22) μF(考虑直流偏置,电容值降低20%)。

根据公式18,

 $R_{COMP} = 22 \text{ k}\Omega.$

将 R_{COMP} 代入公式19中,可得: $C_{COMP} = 1100 \text{ pF}$ 。

表11. 通道2电路设置

电路参数	设置	值
输出电压(V _{OUT})	标称值	1.8 V
基准电压(V _{REF})	典型值	0.6 V
误差放大器跨导(gm)	典型值	550 μs
电流检测增益(G _{cs})	典型值	4 A/V
开关频率(f _{sw})	步骤2	600 kHz
交越频率f _{cross}	1/12 f _{sw}	50 kHz
零点频率(f _{ZERO})	1/8 f _{CROSS}	6.25 kHz
输出电感(L _{out})	步骤3	3.3 μF
输出电容(C _{OUT})	步骤4	47 μF + 22 μF
补偿电阻(R _{COMP})	公式18	22 kΩ
补偿电容(C _{COMP})	公式19	1100 pF

系统配置

在该设计示例中,进一步配置ADP2114须完成下列步骤:

- 1. 通过一个 $8.2 \text{ k}\Omega$ 电阻将FREQ引脚连接到GND,将开关 频率(f_{sw})设置为600 kHz(见表5)。
- 2. 将SCFG与VDD连接,利用CLKOUT信号使ADP2114与 电路板上其它的转换器同步。
- 3. 在2 A/2 A最大输出电流环境下,将OPCFG引脚连接至GND,以便在轻负载条件下使能跳脉冲模式(见表7)。

图79为本部分所描述的设计示例中的ADP2114配置示意图。

表12中列出了各种常见的输入输出电压组合中建议采用的 电感、输出电容和补偿元件值。

表12.L、C_{оит}和元件值选择表

f _{sw} (kHz)	V _{IN} (V)	V _{OUT} (V)	最大负载(A)	L (µH)	C _{OUT} (μF)	$R_{COMP}(k\Omega)$	C _{COMP} (pF)
300	5	3.3	2.0	6.8	69 (47 + 22)	20	2400
300	5	2.5	2.0	6.8	100	22	2400
300	5	1.8	2.0	6.8	147 (100 + 47)	22	2400
300	5	1.2	2.0	4.7	200 (2 × 100)	20	2400
600	5	3.3	2.0	3.3	47	27	1000
600	5	2.5	2.0	3.3	57 (47 + 10)	24	1100
600	5	1.8	2.0	3.3	69 (47 + 22)	22	1100
600	5	1.2	2.0	2.2	100	20	1200
1200	5	2.5	2.0	1.8	32 (22 + 10)	27	470
1200	5	1.8	2.0	1.8	44 (2 × 22)	27	470
1200	5	1.2	2.0	1.2	57 (47 + 10)	24	510
1200	5	0.8	2.0	1.0	100	27	470

应用电路

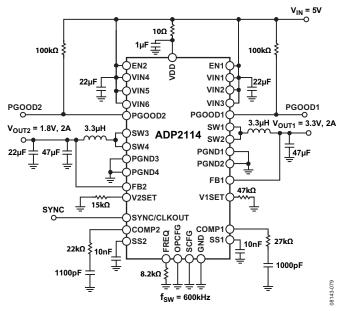
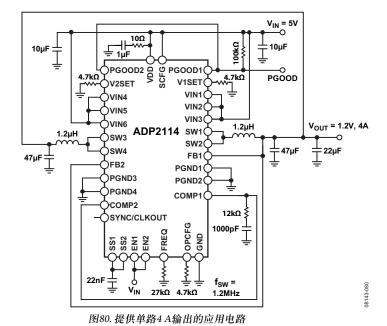



图79. 提供2 A/2 A输出的应用电路

Rev. B | Page 33 of 40

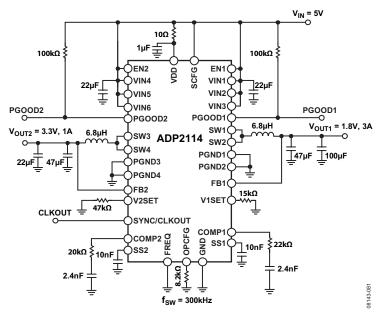


图81. 提供3 A/1 A输出的应用电路

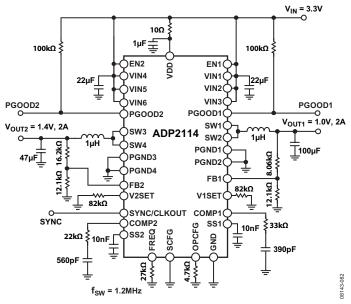


图82. 可调输出应用电路

功耗与散热考虑

ADP2114双开关调节器的功耗是影响两个DC-DC转换器效 率的主要因素。效率的计算公式如下:

$$Efficiency = \frac{P_{OUT}}{P_{IN}} \times 100\%$$
 (21)

其中:

 P_{N} 为输入功率。

 P_{OUT} 为输出功率。

功率损耗计算如下: $P_{LOSS} = P_{IN} - P_{OUT}$

降压型DC-DC转换器的功率损耗约为:

$$P_{LOSS} = P_D + P_L \tag{22}$$

其中:

P_D为ADP2114的功耗。

 P_{r} 为电感功耗。

若磁芯损耗忽略不计,则电感损耗可通过下式估算:

$$P_L \cong I_{OUT}^2 \times DCR_L \tag{23}$$

其中:

 I_{OUT} 为直流负载电流。

DCR, 为电感串联电阻。

ADP2114的功耗(Pn)包括功率开关传导损耗、开关损耗和 各个通道的转换损耗。

功率开关传导损耗是输出电流(I_{OUT})流经具有内部电阻 (RDSON)的PMOSFET和NMOSFET功率开关造成的。传导 性功率损耗的计算公式如下:

$$P_{COND} = [R_{DSON-P} \times D + R_{DSON-N} \times (1 - D)] \times I_{OUT}^{2}$$
(24)

其中,占空比D=V_{OUT}/V_{IN}。

开关损耗与驱动器产生的牵引电流有关,驱动器以开关频 率打开和关闭电源器件。开关功率损耗的计算公式如下:

$$P_{SW} = (C_{GATE-P} + C_{GATE-N}) \times V_{IN}^2 \times f_{SW}$$
 (25)

其中:

 C_{GATE-P} 为PMOSFET栅极电容。

 C_{GATE-N} 为NMOSFET栅极电容。

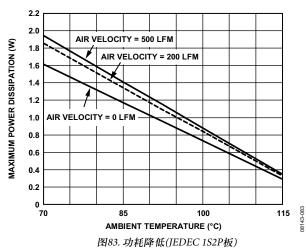
转换损耗是由于无法即刻打开或关闭P沟道功率MOSFET 造成的。转换损耗计算公式如下:

$$P_{TRAN} = V_{IN} \times I_{OUT} \times (t_{RISE} + t_{FALL}) \times f_{SW}$$
 (26)

其中,t_{rise}和t_{fall}为开关节点SW的上升时间和下降时间。 在ADP2114中,开关节点的上升时间和下降时间约为5 ns。

调节器产生的功耗可导致芯片的结温(T,)高于环境温度(T,)。

$$T_J = T_A + T_R \tag{27}$$


其中,温度升幅(T。)与封装中的功耗(Pa)成正比。

比例系数取决于芯片的结温与环境温度之间的热阻。

$$T_R = \theta_{IA} \times P_D \tag{28}$$

其中, θ_{14} 为结至环境热阻(在JEDEC 1S2P板中,该值为 34°C/W, 见表2)。

设计特殊环境温度范围应用时,利用公式24、公式25和公 式26, 计算两个通道的传导损耗、开关损耗和转换损耗造 成的预期ADP2114功耗(PD),并借助公式27和公式28估算 温度升幅。只有根据公式27估算出的ADP2114芯片结温低 于125°C时,才能保证两个转换器可靠工作。因此,较高 的环境温度会降低系统的功耗。图83显示在不同的气流条 件下,环境温度升高,功耗下降。曲线以下的部分代表 ADP2114双调节器的安全工作范围。

电路板布局建议

要使ADP2114的各个通道获得最佳性能,良好的电路板布局至关重要。不良的电路布局会降低输出纹波的质量和调节作用,还会影响EMI和电磁兼容性能。以下是关于最佳布局的指导性建议:

- 使用独立的模拟和电源接地层。将敏感模拟电路(如输出分压元件)的接地基准端连接至模拟地。另外,将电源元件(如输入电容和输出电容)的接地基准端连接至电源地。将两个接地层与ADP2114的裸露焊盘相连。
- 将每个通道的输入电容尽可能靠近VINx引脚,将另一端与最近的电源接地层相连。
- 为实现低噪声和较高的瞬态性能,建议在VINx和VDD 之间配置一个滤波器。将一个1 μF、10 Ω低通输入滤波 器置于VDD引脚与VINx引脚之间,尽量靠近GND引脚。
- 确保高电流环路走线尽可能短而宽。使从C_{IN}通过L、C_{OUT}和电源接地层再回到C_{IN}的高电流路径尽可能短。为达到上述的目的,应确保输入电容和输出电容共用同一电源接地层。此外,还应使从PGNDx引脚通过L和C_{OUT}再回到电源接地层的高电流路径尽可能短。为此,应确保ADP2114的PGNDx引脚连接到PGND层并尽可能靠近输入和输出电容(见图84)。
- 将ADP2114的裸露焊盘与一个较大的铜层相连,以便最

- 大程度地发挥其散热性能。利用JEDEC标准JESD51-7中介绍的方法,可实现热传导。
- 将反馈电阻分压网络尽可能靠近FBx引脚配置,以免受噪声影响。应尽量缩短反馈电阻分压器顶部与输出端之间的走线,同时确保走线远离高电流走线和开关节点SWx,以免受噪声影响。为降低噪声影响,应在FBx走线的两侧各放置一个模拟接地层,并确保其尽可能小,以便降低寄生电容。

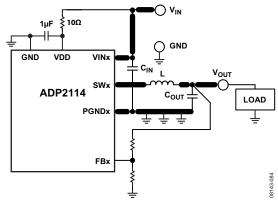


图84. PCB电路中的高电流走线

外形尺寸

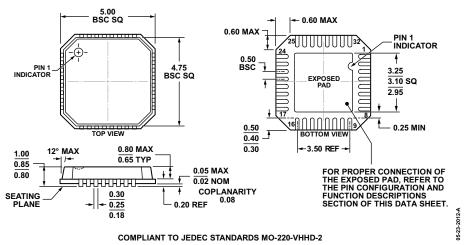


图85. 32引脚引脚架构芯片级封装[LFCSP_VQ] 5 mm×5 mm, 超薄体 (CP-32-2) 图示尺寸单位: mm

订购指菌

り 次つ1日 円					
型号'温度范围'		温度范围 ²	封装描述	封装选项	订购数量
	ADP2114ACPZ-R7	-40°C至+85°C	32引脚引脚架构芯片级封装[LFCSP_VQ]	CP-32-2	1,500
	ADP2114ACPZ-R2	-40°C至+85°C	32引脚引脚架构芯片级封装[LFCSP_VQ]	CP-32-2	250
	ADP2114-2PH-EVALZ		单路输出,双相交错,1.2 V、4 A,		
			1.2 MHz开关频率,强制PWM		
	ADP2114-EVALZ		双路输出, 3.3 V、2 A和1.8 V、2 A,		
			600 kHz开关频率、跳脉冲使能		

¹Z=符合RoHS标准的器件。 ²工作结温范围: -40℃至+125℃。

注释

注释

Δ	N	P21	1	4
$\overline{}$	_			_

注释

