

AN-2061 LM3445 A19 Edison Retrofit Evaluation Board

1 Introduction

The evaluation board included in this shipment converts $85V_{AC}$ to $135V_{AC}$ input and drives five to thirteen series connected LED's at the currents listed in the *Evaluation Board Operating Conditions* section. This is a two-layer board using the bottom and top layer for component placement. The board is surrounded by a larger area allowing for extra test points and connectors for ease of evaluation. The actual board size is contained inside the larger outer area and can be cut out for the smallest size possible. The evaluation board can be modified to adjust the LED forward current and the number of series connected LEDs. The topology used for this evaluation board eliminates the need for passive power factor correction and results in high efficiency and power factor with minimal component count which results in a size that can fit in a standard A19 Edison socket. This board also operates correctly and dims smoothly using most standard triac dimmers. Output current is regulated within ±15% of nominal from circuit to circuit and over line voltage variation. For details on the LM3445 IC, see the *LM3445 Triac Dimmable Offline LED Driver Data Sheet* (SNVS570).

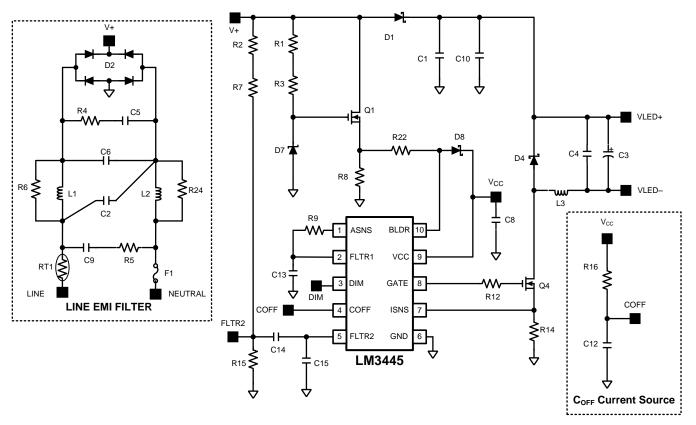
A bill of materials shown in Table 2 describes the parts used on this demonstration board. A schematic and layout have also been included along with measured performance characteristics including EMI/EMC data. The above restrictions for the input voltage are valid only for the demonstration board as shipped with the schematic below. for detailed information regarding the LM3445 device, see the *LM3445 Triac Dimmable Offline LED Driver Data Sheet* (SNVS570). The board is currently set up to drive five to thirteen series connected LEDs, but the evaluation board may be modified to accept more series LEDs. Refer to the tables in this document to modify the board to accept more LEDs and/or adjust for different current levels.

2 Evalution Board Operating Conditions

 $V_{IN} = 85V_{AC}$ to $135V_{AC}$

5 to 13 series connected LEDs as configured with the currents listed below:

- Can drive up to 18 series LEDs (see table)
- I_{LED} = 340 mA (5 LEDs)
- I_{LED} = 300 mA (7 LEDs)
- I_{LED} = 260 mA (9 LEDs)
- I_{LED} = 230 mA (11 LEDs)
- I_{LED} = 205 mA (13 LEDs)

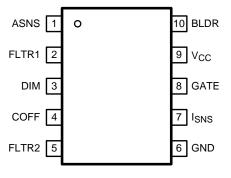

All trademarks are the property of their respective owners.

Simplified LM3445 Schematic

www.ti.com

3 Simplified LM3445 Schematic

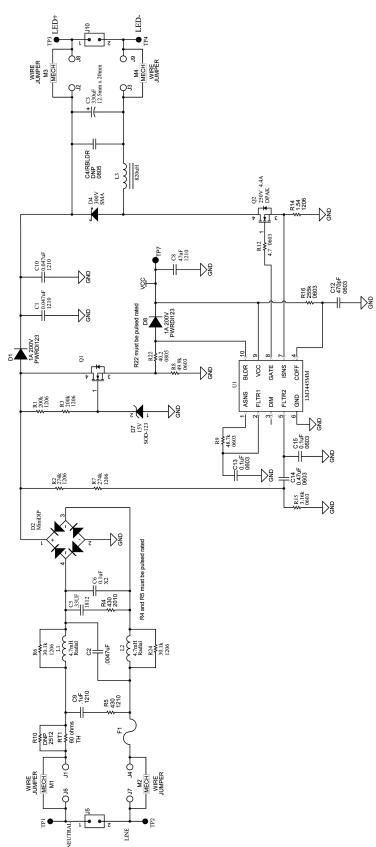
WARNING


The LM3445 evaluation boards have no isolation or any type of protection from shock. Caution must be taken when handling evaluation board. Avoid touching evaluation board, and removing any cables while evaluation board is operating. Isolating the evaluation board rather than the oscilloscope is highly recommended.

WARNING

This LM3445 evaluation PCB is a non-isolated design. The ground connection on the evaluation board is NOT referenced to earth ground. If an oscilloscope ground lead is connected to the evaluation board ground test point for analysis, and AC power is applied, the fuse (F1) will fail open. The oscilloscope should be powered via an isolation transformer before an oscilloscope ground lead is connected to the evaluation board.

4 Pin-Out


Pin No	Name	Description
1	ASNS	PWM output of the triac dim decoder circuit. Outputs a 0 to 4V PWM signal with a duty cycle proportional to the triac dimmer on-time.
2	FLTR1	First filter input. The 120Hz PWM signal from ASNS is filtered to a DC signal and compared to a 1 to 3V, 5.85 kHz ramp to generate a higher frequency PWM signal with a duty cycle proportional to the triac dimmer firing angle. Pull above 4.9V (typical) to tri-state DIM.
3	DIM	Input/output dual function dim pin. This pin can be driven with an external PWM signal to dim the LEDs. It may also be used as an output signal and connected to the DIM pin of other LM3445 or LED drivers to dim multiple LED circuits simultaneously.
4	COFF	OFF time setting pin. A user set current and capacitor connected from the output to this pin sets the constant OFF time of the switching controller.
5	FLTR2	Second filter input. A capacitor tied to this pin filters the PWM dimming signal to supply a DC voltage to control the LED current. Could also be used as an analog dimming input.
6	GND	Circuit ground connection.
7	ISNS	LED current sense pin. Connect a resistor from main switching MOSFET source, ISNS to GND to set the maximum LED current.
8	GATE	Power MOSFET driver pin. This output provides the gate drive for the power switching MOSFET of the buck controller.
9	V _{cc}	Input voltage pin. This pin provides the power for the internal control circuitry and gate driver.
10	BLDR	Bleeder pin. Provides the input signal to the angle detect circuitry as well as a current path through a switched 230Ω resistor to ensure proper firing of the triac dimmer.

Pin-Out

LM3445 Evaluation Board Schematic

5 LM3445 Evaluation Board Schematic

6 Bill of Materials (BOM) LM3445 Evaluation Board

REF DES	Description	MFG	MFG Part Number	
U1	IC DRIVER LED W/TRIAC DIM 10VSSOP	Texas Instruments	LM3445	
C1, C10	Ceramic, 47000pF, 500V, X7R, 1210	Johanson Dielectrics	501S41W473KV4E	
C2	CAP FILM MKP .0047µF 310VAC X2	Vishay/BC Components	BFC233820472	
C3	CAP 470µF 50V ELECT PW RADIAL	Nichicon	UPW1H471MHD	
C4/RBLDR ⁽¹⁾	DNP			
C5	Ceramic, .33µF, 250V, X7R, 1812	TDK Corporation	C4532X7R2E334K	
C6	CAP .10µF 305VAC EMI SUPPRESSION	EPCOS	B32921C3104M	
C8	Ceramic, 47µF, X5R, 16V, 1210	MuRata	GRM32ER61C476ME15L	
C9	Ceramic, .1µF, 250V, X7R, 1210	Taiyo Yuden	QMK325B7104KN-T	
C12	Ceramic, 470pF, 50V, X7R, 0603	MuRata	GRM188R71H471KA01D	
C13, C15	Ceramic, 0.1µF, 16V, X7R, 0603	MuRata	GRM188R71C104KA01D	
C14	Ceramic, 0.47µF, 16V, X7R, 0603	MuRata	GRM188R71C474KA88D	
D1	DIODE SCHOTTKY 1A 200V PWRDI 123	Diodes Inc.	DFLS1200-7	
D2	Bridge Rectifier, Vr = 400V, Io = 0.8A, Vf = 1V	Diodes Inc.	HD04-T	
D4	DIODE FAST 1A 300V SMA	Fairchild Semi conductor	ES1F	
D7	DIODE ZENER 15V 500MW SOD-123	Fairchild Semi conductor	MMSZ5245B	
D8	DIODE SCHOTTKY 1A 200V PWRDI 123	Diodes Inc.	DFLS1200-7	
F1	FUSE 1A 125V FAST	Cooper/Bussman	6125FA1A	
J5, J10	CONN HEADER .312 VERT 2POS TIN	Tyco Electronics	1-1318301-2	
L1, L2	INDUCTOR 3900µH .12A RADIAL	J.W. Miller/Bourns	RL875S-392K-RC	
L3	820µH, Shielded Drum Core	Coilcraft Inc.	MSS1038-824KL	
M1	JUMPER WIRE 0.3" J6 TO J1	3M	923345-03-C	
M2	JUMPER WIRE 0.3" J7 to J4	3M	923345-03-C	
M3	JUMPER WIRE 0.3" J2 TO J8	3M	923345-03-C	
M4	JUMPER WIRE 0.3" J3 TO J9	3M	923345-03-C	
Q1	MOSFET N-CH 240V 260MA SOT-89	Infineon Technologies	BSS87 L6327	
Q2	MOSFET N-CH 250V 4.4A DPAK	Fairchild Semi conductor	FDD6N25TM	
R1, R3	RES 200kΩ, 0.25W, 1%, 1206	Vishay-Dale	CRCW1206200kFKEA	
R2, R7	RES 274kΩ, 0.25W, 1%, 1206	Vishay-Dale	CRCW1206274kFKEA	
R4	RES 430Ω, 1/2W, 5%, 2010	Vishay-Dale	CRCW2010430RJNEF	
R5	RES 430Ω, 1/3W, 5%, 1210	Vishay-Dale	CRCW1210430RJNEA	
R6, R24	RES 30.1kΩ, 0.25W, 1%, 1206	Vishay-Dale	CRCW120630k1FKEA	
R8	RES 49.9kΩ, 0.1W, 1%, 0603	Vishay-Dale	CRCW060349K9FKEA	
R9	RES 48.7kΩ, 0.1W, 1%, 0603	Vishay-Dale	CRCW060348K7FKEA	
R10	DNP			
R12	RES 4.7Ω, 0.1W, 5%, 0603	Vishay-Dale	CRCW06034R70JNEA	
R14	RES 1.54Ω, 1/4W, 1%, 1206	Vishay-Dale	CRCW12061R54FNEA	
R15	RES 3.16kΩ, 0.1w, 1%, 0603	Vishay-Dale	CRCW06033K16FKEA	
R16	RES 255kΩ, 0.1W, 1%, 0603	Vishay-Dale	CRCW0603255KFKEA	
R22	RES 40.2Ω, 0.125W, 1%, 0805	Vishay-Dale	CRCW080540R2FKEA	
RT1	CURRENT LIMITOR INRUSH 60Ω 20%	Cantherm	MF72-060D5	
TP1, TP2, TP3, TP4	Terminal, Turret, TH, Double	Keystone Electronics	1502-2	

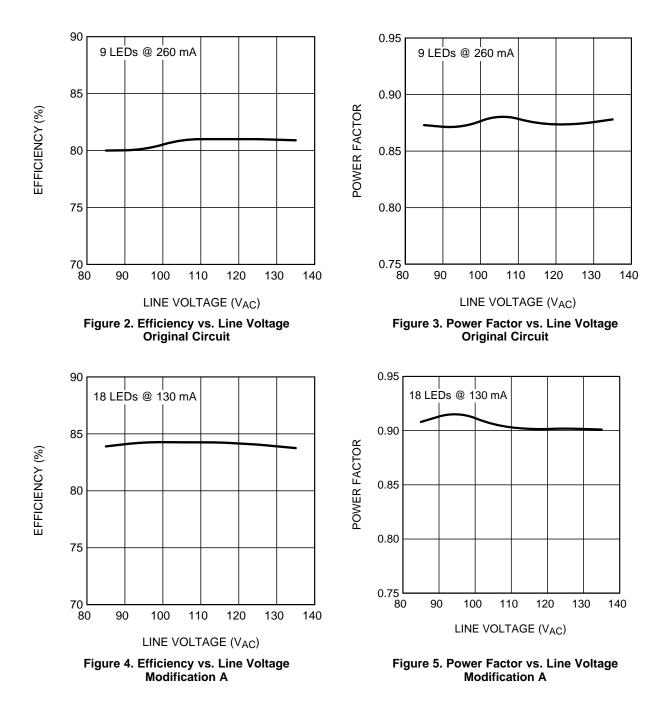
Table 2. Bill of Materials (BOM)

⁽¹⁾ C4/RBLDR is a dual purpose pad which is unpopulated by default. A ceramic capacitor (C4) may be used here if extra high frequency bypassing is desired across the LED load. Alternatively a bleeder resistor (RBLDR) in the range of 10kΩ to 100kΩ may be placed here to quickly discharge C3 and prevent prolonged LED glow due to the energy stored in C3.

7 Output Current versus Number of LEDs for Various Modifications

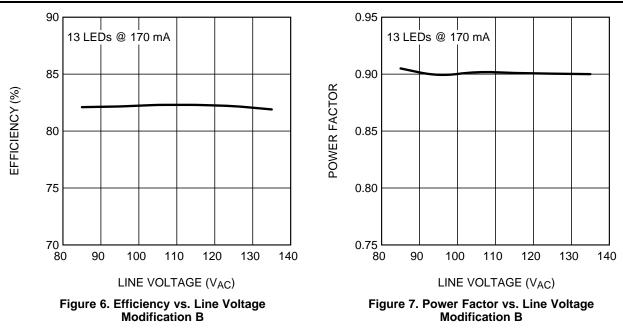
# of LEDs	Output Current (mA) Original Circuit	Output Current (mA) Modification A ⁽¹⁾	Output Current (mA) Modification B ⁽²⁾	Output Current (mA) Modification C ⁽³⁾
2				520
3				500
4				475
5	340	248	265	455
6	315	235	250	432
7	300	222	237	412
8	275	210	224	
9	260	200	212	
10	245	190	200	
11	230	180	190	
12	215	170	180	
13	205	164	170	
14 ⁽⁴⁾	196	156	162	
15 ⁽⁴⁾	190	150	155	
16 ⁽⁴⁾	183	142	148	
17 (4)	175	135	142	
18 (4)	170	130	137	

 $^{(1)}$ Modification A: R14 = 2.37 Ω , R16 = 150 k Ω , C3 = 330 μ F, 63 V.


 $^{(2)}$ Modification B: R14 = 2.2 Ω , R16 = 165k Ω .

⁽³⁾ Modification C: R14 = 1.2Ω , R16 = $137k\Omega$, L3 = 470μ H, C3 = 1000μ F, 25V.

⁽⁴⁾ For all applications using greater than 13 LEDs a 330µF, 63V output capacitor (C3) was used.



Typical Performance Characteristics

9 PCB Layout

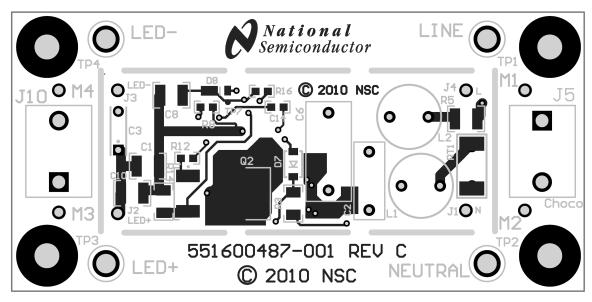
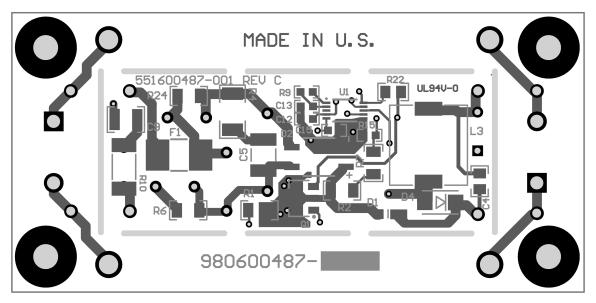
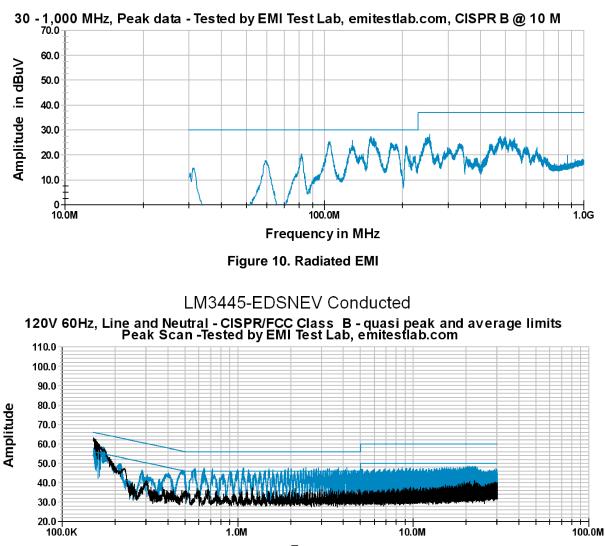



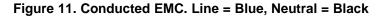
Figure 8. Top Layer

Figure 9. Bottom Layer

WARNING


The LM3445 evaluation boards have no isolation or any type of protection from shock. Caution must be taken when handling evaluation board. Avoid touching evaluation board, and removing any cables while evaluation board is operating. Isolating the evaluation board rather than the oscilloscope is highly recommended.

EMI/EMC Information


www.ti.com

10 EMI/EMC Information

LM3445-EDSNEV Radiated

Frequency

	Frequency	Quasi-Peak Amplitude	Quasi-Peak Limit	Quasi-Peak Delta	Average Amplitude	Average Limit	Average Delta
Neutral	154 kHz	57	66	-9	47	56	-9
Line	1.1 MHz				31	46	-15

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications		
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications	
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers	
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps	
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy	
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial	
Interface	interface.ti.com	Medical	www.ti.com/medical	
Logic	logic.ti.com	Security	www.ti.com/security	
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com			
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com	
Wireless Connectivity	www.ti.com/wirelessconnectivity			

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated