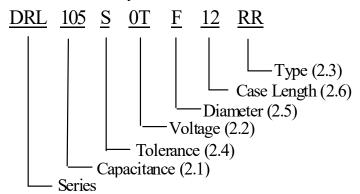
ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DRL SERIES

CONTENTS

	CONTENTS	
		Sheet
1.	Application	3
2.	Part Number System	3
3.	Characteristics	4~10
3.1	Rated voltage & Surge voltage	
3.2	Capacitance (Tolerance)	
3.3	ESR	
3.4	Leakage Current	
3.5	Temperature characteristic	
3.6	Load life test	
3.7	Damp heat test	
3.8	E	
3.9		
3.10	5	
3.1	1 Resistance to soldering heat	
4. I	Product Dimensions	11
5. N	Notice item	12


Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	2
STANDARD MANUAL				

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DRL SERIES

1. Application

The specification applies to electric double layer capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	105
Capacitance (F)	1

2.2 Rated voltage code

Code	0T
Voltage (W.V.)	2.7

2.3 <u>Type</u>

Code	RR		
Туре	Bulk		

2.4 <u>Capacitance tolerance</u>

"S" stands for $-20\% \sim +50\%$

2.5 Diameter

Code	F
Diameter	8

2.6 <u>Case length</u> 12=12mm

Issued-date: 2016-07-14	Name	Specification Sheet – DRL			
Version	01		Page	3	
STANDARD MANUAL					

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DRL SERIES

3. Characteristics

Standard atmospheric conditions

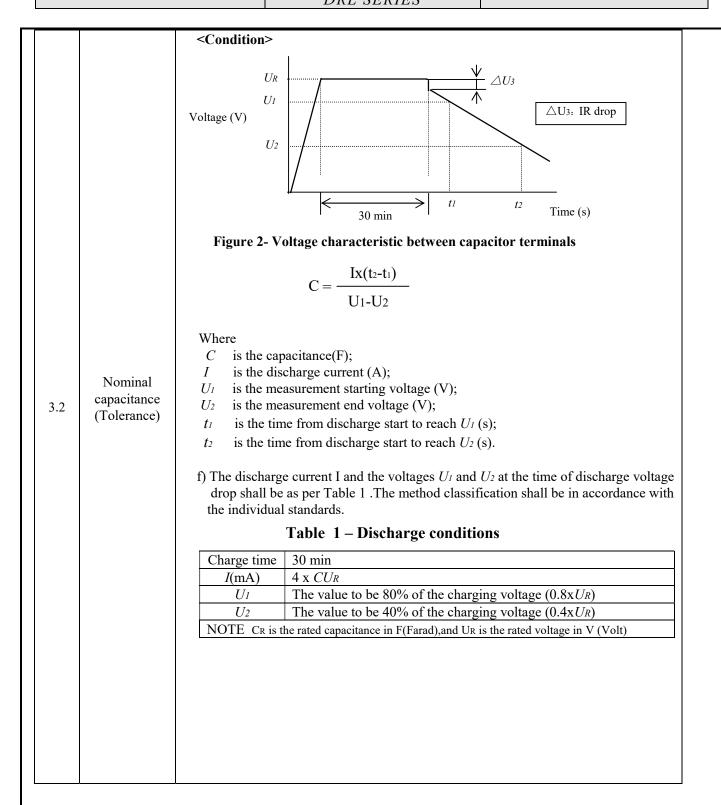
Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature: 15°C to 35°C Relative humidity : 25% to 75%

Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature: $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa


Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -40°C to 70°C.

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	4
STANDARD MANUAL				

	ITEM	PERFORMANCE
3.1	Rated voltage (WV) Surge voltage (SV)	WV (V.DC) 2.7 SV (V.DC) 2.8
3.2	Nominal capacitance (Tolerance)	Constant current discharge method: Measuring circuit: Constant current / constant voltage power supply A.c. ammeter d.c. voltmeter changeover switch capacitor under test Figure 1- Circuit for constant current discharge method Measuring method a) Set the d.c.voltage at the rated voltage (UR) b) Set the constant current value of the constant current discharger to the discharge current specified in Table 1. c) Turn the switch S to the d.c.power supply apply voltage and charge for 30 min after the constant current / constant voltage power supply has achieved the rated voltage. d) After a charge for 30 min has finished change over the switch S to the constant current discharger and discharge with a constant current. e) Measure the time tr and tr where the voltage between capacitor terminals at the time of discharge reduces from Ur to Ur as shown in Figure 2 and calculate the capacitance value by the following formula:

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	5
STANDARD MANUAL				

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	6
STANDARD MANUAL				

3.3	ESR	<pre><condition> Measuring frequency :1kHz Measuring temperature:20±2°C Measuring point : 2mm max from the surface of a sealing resin on the lead wire. <criteria> (20°C)Less than the initial limit: ESR≤400mΩ</criteria></condition></pre>						
3.4	Leakage current	<condition> 1. Ambient temperature: 25°C ± 2°C. 2. The electrification time:72H 3. Desistance value of protective resistor less than 1Ω. <criteria> Less than the initial limit(25°C ± 2°C): I≤0.008mA I is the Leakage current</criteria></condition>						
3.5	Temperature characteristic		Temperature(°C) 20±2 -40+3 Keep at 15 to 35°C for 15 minutes or more 70±2 PC/ ESR 20°C: ESR ratio at 0°C: Capacitance change;		Characteristics Within ±30% of initial capacitance Less than or equal to 4 times of the value of item 3.3 Within ±30% of initial capacitance The limit specified in 3.3			

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	7
STANDARD MANUAL				

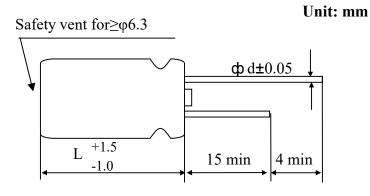
		voltage for 1000 +48/0 h	at a temperature of 70 ± 2 °C with rated tours .The result should meet the following table:
		<criteria> Item</criteria>	Performance
		Capacitance Change	Within ±30% of initial capacitance
2.6	Load life	ESR	Less than or equal to 4 times of the value of item 3.3
3.6	test	Appearance	No visible damage and no leakage of electrolyte
			exposed for 240±48 hours in an atmosphere of 90~95%RH at
		Humidity Test: The capacitor shall be 40±2°C, the characteri	exposed for 240±48 hours in an atmosphere of 90~95%RH at stic change shall meet the following requirement.
		Humidity Test: The capacitor shall be	
	Damp	Humidity Test: The capacitor shall be 40±2°C, the characteri	stic change shall meet the following requirement.
3.7	heat	Humidity Test: The capacitor shall be 40±2°C, the characteri Criteria> Item	stic change shall meet the following requirement. Performance
3.7	_	Humidity Test: The capacitor shall be 40±2°C, the characteri <criteria> Item Capacitance Change</criteria>	Performance Within ±30% of initial capacitance

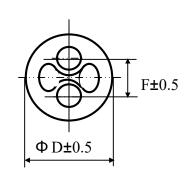
Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	8
	STA	ANDARD MANUAL		

		a) Lead pull strength		
				erminal in the axial direction and acting
		in a direction away from the		
		Lead wire diameter	r (mm)	Load force (N) 5
		d ≤0.5		3
		b) Lead be		
		one lead and then the capacitor is		ed 90° to a horizontal position and then
		returned to a vertical position thus		
3.8	Lead strength	table above is applied to	in a vertical p	position and the weight specified in the
		The additional bends are made	de in the oppo	osite direction
		Lead wire diameter (Load force (N)
		d ≤0.5		2.5
		Performance: The characteris		the following value after a) or b) test.
		Item	Performance	
		Capacitance Change		% of initial capacitance damage Legible marking and no
		Appearance	leakage of	
		L	100111085 01	
3.9	Resistance to vibration	Frequency: 10 to 55 Hz (1minute Amplitude: 0.75mm(Total excurs Direction: X、Y、Z(3 axes)Duration: 2hours/ axial (Total 6 h The capacitors are supported as the supported as the support of the capacitors are supporte	ion 1.5mm) ours)	
		Performance: Capacitance value s		drastic change compared to the initial 30 minutes. Prior to the completion of
		_		10% compared to the initial value the

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	9
STANDARD MANUAL				

T		
3.10	Solderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 2.0±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 75% of the dipped portion of the terminal shall be covered with new solder.
3.11	Resistance to soldering heat	A) Solder bath method Lead terminals of a capacitor are placed on the heat isolation board with thickness of 1.6±0.5mm. It will dip into the flux of isopropylaehol solution of colophony. Then it will be immersed at the surface of the solder with the following condition: Solder : Sn-3Ag-0.5Cu Soldering temperature : 260 ±5°C Immersing time : 5±0.5s Heat protector: t=1.6mm glass -epoxy board B) Soldering iron method Bit temperature : 350 ±10°C Application time : 3.5 ±0.5 s Heat protector: t=1.6mm glass -epoxy board For both methods, after the capacitor at thermal stability, the following items shall be measured: Item Performance Capacitance Change Within ±10% of initial capacitance Appearance No visible damage legible marking and no leakage of electrolyte


Issued-date: 2016-07-14	Name	Specification Sheet – DRL			
Version	01		Page	10	
STANDARD MANUAL					


		Capacitors cycles between specified voltage at +25 °C(500,000 cycles)	and half rated voltage under constant current
		Capacitance Change	±30% of initial measured value
		Internal Resistance	2 times of initial specified value
3.12	Cycles		

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	11
STANDARD MANUAL				

ELECTRIC DOUBLE LAYER CAPACITORS SPECIFICATION DRL SERIES

4. Product Dimensions

φD	8
L	12
F	3.5
φd	0.5

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	12
STANDARD MANUAL				

_	TA T			• .	
5.		oti	CA	110	m

- (1) The capacitor has fixed polarity.
- (2) The capacitor should be used under rated voltage.
- (3) The capacitor should not be used in the charge and discharge circuit with high frequency.
- (4) The ambient temperature affects the super capacitor life.
- (5) Voltage reduction $\Delta V=IR$ will happen at the moment of discharge.
- (6) The capacitor cannot be stored on the place with humidity over 85%RH or place with toxic gas.
- (7) The capacitor should stored in the environment within -30°C~50°C temperature and less than 60% relative humidity.
- (8) If the capacitor is applied on the double-side PCB, the connection should not be around the place on which the super capacitor can contact.
- (9) Don't twist capacitor or make it slanting after installing.
- (10) Need avoid over heat on the capacitor during soldering (The temperature should be 260°C with the time less than 5s during soldering on 1.6mm printed PCB.)
- (11) There is voltage balance problem between each capacitor unit during series connection between super capacitor.

Issued-date: 2016-07-14	Name	Specification Sheet – DRL		
Version	01		Page	13
STANDARD MANUAL				