

SLUSAH8A - APRIL 2011-REVISED MAY 2012

SBS 1.1-COMPLIANT GAS GAUGE AND PROTECTION ENABLED WITH IMPEDANCE TRACK™

Check for Samples: bq20z655

FEATURES

- Next Generation Patented Impedance Track[™] **Technology Accurately Measures Available** Charge in Li-Ion and Li-Polymer Batteries
 - Better Than 1% Error Over the Lifetime of the Battery
- Supports the Smart Battery Specification • **SBS V1.1**
- Flexible Configuration for 2-Series to 4-Series Li-lon and Li-Polymer Cells
- Powerful 8-Bit RISC CPU with Ultralow Power Modes
- Charge Enable (CE) Affects the Normal Operation on the Charge FET when the Battery Is in Charge/Relax Mode
- Full Array of Programmable Protection Features
 - Voltage, Current, and Temperature
- **Satisfies JEITA Guidelines**
- Added Flexibility to Handle More Complex **Charging Profiles**
- Lifetime Data Logging
- Drives 3, 4, or 5 Segment Liquid Crystal **Display and LED for Battery-Pack Conditions**
- **Supports SHA-1 Authentication**
- **Complete Battery Protection and Gas Gauge** • Solution in One Package
- Available in a 44-Pin TSSOP (DBT) Package

APPLICATIONS

- **Medical and Test Equipment** •
- **Portable Instrumentation**
- **Rechargeable Battery Packs**
- Industrial Equipment

DESCRIPTION

The bq20z655 SBS-compliant gas gauge and protection IC, incorporating patented Impedance Track[™] technology, is a single IC solution designed for battery-pack or in-system installation. The bg20z655 measures and maintains an accurate record of available charge in Li-Ion or Li-Polymer batteries using its integrated high-performance analog peripherals. The bg20z655 monitors capacity change, battery impedance, open-circuit voltage, and other critical parameters of the battery pack which reports the information to the system host controller over a serial-communication bus. Together with the integrated analog front-end (AFE) short-circuit and overload protection, the bg20z655 maximizes functionality and safety while minimizing external component count, cost, and size in smart battery circuits.

The implemented Impedance Track[™] gas gauging technology continuously analyzes the battery impedance, resulting in superior gas-gauging accuracy. This enables remaining capacity to be calculated with discharge rate, temperature, and cell aging all accounted for during each stage of every cycle with high accuracy.

Table 1. AVAILABLE OPTIONS

T _A	PACKAGE ⁽¹⁾		
	44-PIN TSSOP (DBT) Tube	44-PIN TSSOP (DBT) Tape and Reel	
-40°C to 85°C	bq20z655DBT ⁽²⁾	bq20z655DBTR ⁽³⁾	

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

A single tube quantity is 40 units.

(3) A single reel quantity is 2000 units.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Impedance Track is a trademark of Texas Instruments.

bq20z655

SLUSAH8A-APRIL 2011-REVISED MAY 2012

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

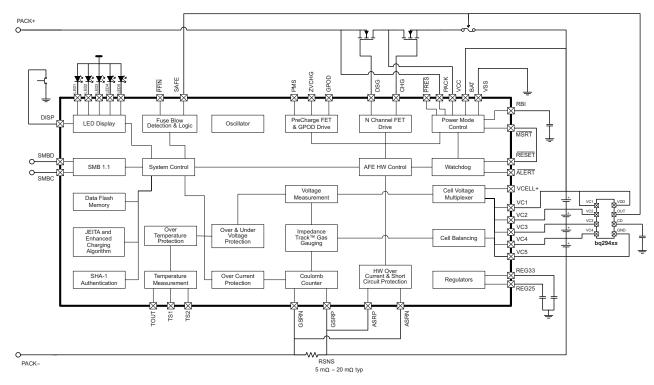
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE THERMAL DATA

THERMAL INFORMATION

		bq20z655	
	THERMAL METRIC ⁽¹⁾	TSSOP	UNITS
		44 PINS	
θ _{JA, High K}	Junction-to-ambient thermal resistance ⁽²⁾	60.9	
θ _{JC(top)}	Junction-to-case(top) thermal resistance (3)	15.3	
θ_{JB}	Junction-to-board thermal resistance (4)	30.2	°C/W
Ψյт	Junction-to-top characterization parameter ⁽⁵⁾	0.3	0.700
Ψ _{JB}	Junction-to-board characterization parameter ⁽⁶⁾	27.2	
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance (7)	n/a	

(1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, SPRA953.

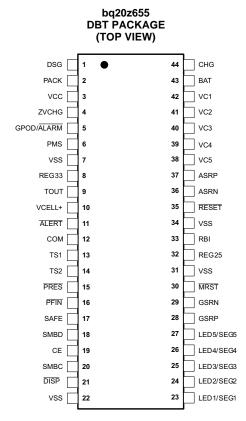

(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.

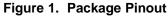
- (3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- (4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.

(5) The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(6) The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.




SYSTEM PARTITIONING DIAGRAM

SLUSAH8A - APRIL 2011 - REVISED MAY 2012

PACKAGE PINOUT DIAGRAM

TEXAS INSTRUMENTS

SLUSAH8A - APRIL 2011-REVISED MAY 2012

TYPICAL LCD IMPLEMENTATION

Figure 2 shows a typical LCD implementation.

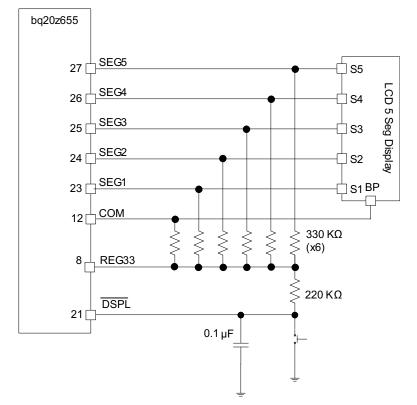


Figure 2. Typical LCD Implementation

bq20z655

SLUSAH8A - APRIL 2011-REVISED MAY 2012

www.ti.com

TERMINAL FUNCTIONS

TERMINAL		I/O ⁽¹⁾	DESCRIPTION
NO.	NAME	1000	DESCRIPTION
1	DSG	0	High side N-chan discharge FET gate drive
2	PACK	IA, P	Battery pack input voltage sense input. It also serves as device wake up when device is in shutdown mode.
3	VCC	Р	Positive device supply input. Connect to the center connection of the CHG FET and DSG FET to ensure device supply either from battery stack or battery pack input.
4	ZVCHG	0	P-chan pre-charge FET gate drive
5	GPOD	OD	High voltage general purpose open drain output. It can be configured to be used in pre-charge condition.
6	PMS	Ι	Pre-charge mode setting input. Connect to PACK to enable 0v pre-charge using charge FET connected at CHG pin. Connect to VSS to disable 0-V pre-charge using charge FET connected at CHG pin.
7	VSS	Р	Negative supply voltage input. Connect all VSS pins together for operation of device.
8	REG33	Р	3.3-V regulator output. Connect at least a 2.2-µF capacitor to REG33 and VSS.
9	TOUT	Р	Thermistor bias supply output
10	VCELL+		Internal cell voltage multiplexer and amplifier output. Connect a 0.1- μ F capacitor to VCELL+ and VSS.
11	ALERT	OD	Alert output. In case of short circuit condition, overload condition, and watchdog time out, this pin wil be triggered.
12	COM/TP		Output/open drain: LCD common connection
13	TS1	IA	1 st Thermistor voltage input connection to monitor temperature
14	TS2	IA	2 nd Thermistor voltage input connection to monitor temperature
15	PRES	Ι	Active low input to sense system insertion. Typically requires additional ESD protection.
16	PFIN	I	Active low input to detect secondary protector status, and to allow the $bq20z655$ to report the status of the 2^{nd} level protection input
17	SAFE	OD	Active high output to enforce additional level of safety protection; e.g., fuse blow
18	SMBD	I/OD	SMBus data open-drain bidirectional pin used to transfer address and data to and from the bq20z655
19	CE	—	A logical high on this pin only affects the normal operation on the charge FET when the battery is in charge/relax mode. For a logic low, the normal bq20z655 firmware controls the charge FET.
20	SMBC	I/OD	SMBus clock open-drain bidirectional pin used to clock the data transfer to and from the bq20z655
21	DISP	Ι	Input: In LED mode, this is the display enable input.
22	VSS	Р	Negative supply voltage input. Connect all VSS pins together for operation of device.
23	LED1/SEG1	-	Output/open drain: LED 1 current sink. LCD segment 1
24	LED2/SEG2	Ι	Output/open drain: LED 2 current sink. LCD segment 2
25	LED3/SEG3	Ι	Output/open drain: LED 3 current sink. LCD segment 3
26	LED4/SEG4	Ι	Output/open drain: LED 4 current sink. LCD segment 4
27	LED5/SEG5	Ι	Output/open drain: LED 5 current sink. LCD segment 5
28	GSRP	IA	Coulomb counter differential input. Connect to one side of the sense resistor.
29	GSRN	IA	Coulomb counter differential input. Connect to one side of the sense resistor.
30	MRST	Ι	Master reset input that forces the device into reset when held low. Must be held high for normal operation. Connect to RESET for correct operation of device.
31	VSS	Р	Negative supply voltage input. Connect all VSS pins together for operation of device.
32	REG25	Р	2.5-V regulator output. Connect at least a 1-mF capacitor to REG25 and VSS.
33	RBI	Р	RAM / Register backup input. Connect a capacitor to this pin and VSS to protect loss of RAM/Register data in case of short circuit condition.
34	VSS	Р	Negative supply voltage input. Connect all VSS pins together for operation of device.
35	RESET	0	Reset output. Connect to MSRT.
36	ASRN	IA	Short circuit and overload detection differential input. Connect to sense resistor.
37	ASRP	IA	Short circuit and overload detection differential input. Connect to sense resistor.

(1) I = Input, IA = Analog input, I/O = Input/output, I/OD = Input/Open-drain output, O = Output, OA = Analog output, P = Power

Texas Instruments

www.ti.com

SLUSAH8A – APRIL 2011 – REVISED MAY 2012

TERMINAL FUNCTIONS (continued)

TER	MINAL	I/O ⁽¹⁾	DESCRIPTION			
NO.	NAME	1/0()	DESCRIPTION			
38	VC5	IA, P	Cell voltage sense input and cell balancing input for the negative voltage of the bottom cell in cell stack.			
39	VC4	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the bottom cell and the negative voltage of the second lowest cell in cell stack.			
40	VC3	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the second lowest cell in cell stack and the negative voltage of the second highest cell in 4-cell applications.			
41	VC2	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the second highest cell and the negative voltage of the highest cell in 4 cell applications. Connect to VC3 in 2-cell stack applications.			
42	VC1	IA, P	Cell voltage sense input and cell balancing input for the positive voltage of the highest cell in cell stack in 4 cell applications. Connect to VC2 in 2- or 3-stack applications.			
43	BAT	I, P	Battery stack voltage sense input			
44	CHG	0	High side N-channel charge FET gate drive			

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature (unless otherwise noted) ⁽¹⁾

		PIN	UNIT
		BAT, VCC	–0.3 V to 34 V
V _{IN} I		PACK, PMS	–0.3 V to 34 V
V_{SS}	Supply voltage range	VC(n) – VC(n+1); n = 1, 2, 3, 4	–0.3 V to 8.5 V
		VC1, VC2, VC3, VC4	–0.3 V to 34 V
V		VC5	–0.3 V to 1 V
		PFIN, SMBD, SMBC. LED1, LED2, LED3, LED4, LED5, DISP	–0.3 V to 6 V
V _{IN}	Input voltage range	TS1, TS2, SAFE, VCELL+, PRES, ALERT	-0.3 V to V _(REG25) + 0.3 V
		MRST, GSRN, GSRP, RBI	-0.3 V to V _(REG25) + 0.3 V
		ASRN, ASRP	-1 V to 1 V
		DSG, CHG, GPOD	–0.3 V to 34 V
		ZVCHG	–0.3 V to V _(BAT)
V _{OUT}	Output voltage range	TOUT, ALERT, REG33	–0.3 V to 6 V
		RESET	–0.3 V to 7 V
		REG25	–0.3 V to 2.75 V
I _{SS}	Maximum combined sink current for input pins	PRES, PFIN, SMBD, SMBC, LED1, LED2, LED3, LED4, LED5	50 mA
T _A	Operating free-air temperature range		-40°C to 85°C
T _F	Functional temperature		-40°C to 100°C
T _{stg}	Storage temperature range		-65°C to 150°C

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (unless otherwise noted)

		PIN	MIN	NOM	MAX	UNIT
V _{SS}	Supply voltage	VCC, BAT	4.5		25	V
V _(STARTUP)	Minimum startup voltage	VCC, BAT, PACK	5.5			V

SLUSAH8A - APRIL 2011 - REVISED MAY 2012

www.ti.com

RECOMMENDED OPERATING CONDITIONS (continued)

Over operating free-air temperature range (unless otherwise noted)

		PIN	MIN	NOM	MAX	UNIT
		VC(n) – VC(n+1); n = 1,2,3,4	0		5	V
		VC1, VC2, VC3, VC4	0		V _{SS}	V
V _{IN}	Input voltage range	VC5	0		0.5	V
		ASRN, ASRP	-0.5		0.5	V
		PACK, PMS	0		25	V
V _(GPOD)	Output voltage range	GPOD	0		25	V
I _(GPOD)	Drain current ⁽¹⁾	GPOD			1	mA
C _(REG25)	2.5V LDO capacitor	REG25	1			μF
C _(REG33)	3.3V LDO capacitor	REG33	2.2			μF
C _(VCELL+)	Cell voltage output capacitor	VCELL+	0.1			μF
R _(PACK)	PACK input block resistor ⁽²⁾	PACK	1			kΩ

Use an external resistor to limit the current to GPOD to 1 mA in high voltage application. Use an external resistor to limit the inrush current PACK pin required. (1)

(2)

ELECTRICAL CHARACTERISTICS

Over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}C$ to $85^{\circ}C$, $V_{(REG25)} = 2.41$ V to 2.59 V, $V_{(BAT)} = 14 \text{ V}, C_{(REG25)} = 1 \text{ }\mu\text{F}, C_{(REG33)} = 2.2 \text{ }\mu\text{F}; \text{ typical values at } T_A = 25^{\circ}\text{C} \text{ (unless otherwise noted)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY CU	RRENT					
I(NORMAL)	Firmware running			550		μA
I(SLEEP)	Sleep mode	CHG FET on; DSG FET on		124		μA
		CHG FET off; DSG FET on		90		μA
		CHG FET off; DSG FET off		52		μA
I(SHUTDOWN)	Shutdown mode			0.1	1	μA
SHUTDOWN	WAKE; $T_A = 25^{\circ}C$ (unless otherwise r	noted)	I			
I(PACK)	Shutdown exit at VSTARTUP threshold				1	μA
SRx WAKE	FROM SLEEP; T _A = 25°C (unless other	wise noted)	H			
V _(WAKE)	Positive or negative wake threshold with 1.00 mV, 2.25 mV, 4.5 mV and 9 mV programmable options		1.25		10	mV
		$V_{(WAKE)} = 1 mV;$ $I_{(WAKE)} = 0, RSNS1 = 0, RSNS0 = 1$	-0.7		0.7	
	Accuracy of $V_{(WAKE)}$	$ \begin{array}{l} V_{(WAKE)} = 2.25 \ mV; \\ I_{(WAKE)} = 1, \ RSNS1 = 0, \ RSNS0 = 1; \\ I_{(WAKE)} = 0, \ RSNS1 = 1, \ RSNS0 = 0 \end{array} $	-0.8		0.8	- mV
V _(WAKE_ACR)			-1.0		1.0	- mv
		$V_{(WAKE)} = 9 \text{ mV};$ $I_{(WAKE)} = 1, \text{RSNS1} = 1, \text{RSNS0} = 1$	-1.4		1.4	
V _(WAKE_TCO)	Temperature drift of $V_{(\text{WAKE})}$ accuracy			0.5		%/°C
t _(WAKE)	Time from application of current and wake of bq20z655			1	10	ms
WATCHDOG	TIMER					
t _{WDTINT}	Watchdog start up detect time		250	500	1000	ms
t _{WDWT}	Watchdog detect time		50	100	150	μs
2.5V LDO; I _{(F}	REG33OUT) = 0 mA; T _A = 25°C (unless oth	nerwise noted)				
V _(REG25)	Regulator output voltage	4.5 < VCC or BAT < 25 V; $I_{(REG25OUT)} \le 16 \text{ mA};$ $T_A = -40^{\circ}\text{C}$ to 100°C	2.41	2.5	2.59	v
ΔV _{(REG25TEM} P)	Regulator output change with temperature	$I_{(REG25OUT)} = 2 \text{ mA};$ $T_A = -40^{\circ}\text{C} \text{ to } 100^{\circ}\text{C}$		±0.2		%
ΔV _{(REG25LINE}	Line regulation	5.4 < VCC or BAT < 25 V; I _(REG250UT) = 2 mA		3	10	mV

Copyright © 2011–2012, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS (continued)

Over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}C$ to 85°C, $V_{(REG25)} = 2.41$ V to 2.59 V, $V_{(BAT)} = 14$ V, $C_{(REG25)} = 1$ µF, $C_{(REG33)} = 2.2$ µF; typical values at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ΔV _{(REG25LOA}		$0.2 \text{ mA} \leq I_{(\text{REG25OUT})} \leq 2 \text{ mA}$		7	25	
D)	Load regulation	0.2 mA ≤ I _(REG25OUT) ≤ 16 mA		25	50	mV
(REG25MAX)	Current limit	drawing current until REG25 = 2 V to 0 V	5	40	75	mA
3.3V LDO; I _{(F}	REG25OUT) = 0 mA; T _A = 25°C (unless oth	nerwise noted)				
V _(REG33)	Regulator output voltage	4.5 < VCC or BAT < 25 V; $I_{(REG330UT)} \le 25 \text{ mA};$ $T_A = -40^{\circ}\text{C}$ to 100°C	3	3.3	3.6	V
ΔV _{(REG33TEM} P)	Regulator output change with temperature	$I_{(REG33OUT)} = 2 \text{ mA};$ $T_A = -40^{\circ}\text{C} \text{ to } 100^{\circ}\text{C}$		±0.2		%
∆V _{(REG33LINE}	Line regulation	5.4 < VCC or BAT < 25 V; I _(REG330UT) = 2 mA		3	10	mV
ΔV _{(REG33LOA}	Load regulation	$0.2 \text{ mA} \le I_{(\text{REG33OUT})} \le 2 \text{ mA}$		7	17	mV
D)		$0.2 \text{ mA} \le I_{(\text{REG33OUT})} \le 25 \text{ mA}$		40	100	IIIV
	Current limit	drawing current until REG33 = 3 V	25	100	145	mA
(REG33MAX)	Current mint	short REG33 to VSS, REG33 = 0 V	12		65	ШA
THERMISTO	R DRIVE					
V _(TOUT)	Output voltage	$I_{(TOUT)} = 0 \text{ mA}; T_A = 25^{\circ}\text{C}$		V _(REG25)		V
R _{DS(on)}	TOUT pass element resistance	$I_{(TOUT)}$ = 1 mA; $R_{DS(on)}$ = (V_{(REG25)}-V_{(TOUT)})/ 1 mA; T_A = -40°C to 100°C		50	100	Ω
LED OUTPU	TS					
V _{OL}	Output low voltage	LED1, LED2, LED3, LED4, LED5			0.4	V
VCELL+ HIG	H VOLTAGE TRANSLATION					
V		VC(n) - VC(n+1) = 0 V; T _A = -40°C to 100°C	0.950	0.975	1	
V _(VCELL+OUT)		VC(n) - VC(n+1) = 4.5 V; $T_A = -40^{\circ}C$ to 100°C	0.275	0.3	0.375	
V _(VCELL+REF)	Translation output	internal AFE reference voltage ; $T_A = -40^{\circ}C$ to 100°C	0.965	0.975	0.985	V
V _{(VCELL+PACK})		Voltage at PACK pin; $T_A = -40^{\circ}C$ to 100°C	0.98 × V _(PACK) /18	V _(PACK) /18	1.02 × V _(PACK) /18	
V _(VCELL+BAT)		Voltage at BAT pin; T _A = -40°C to 100°C	0.98 × V _(BAT) /18	V _(BAT) /18	1.02 × V _(BAT) /18	
CMMR	Common mode rejection ratio	VCELL+	40			dB
		K= {VCELL+ output (VC5=0 V; VC4=4.5 V) - VCELL+ output (VC5 = 0 V; VC4 = 0 V)}/4.5	0.147	0.150	0.153	
К	Cell scale factor	K= {VCELL+ output (VC2 = 13.5 V; VC1=18 V) - VCELL+ output (VC5=13.5 V; VC1=13.5 V)}/4.5	0.147	0.150	0.153	
I(VCELL+OUT)	Drive Current to VCELL+ capacitor	$\label{eq:VC(n) - VC(n+1) = 0 V; VCELL+ = 0 V;} \\ T_A = -40^\circ C \text{ to } 100^\circ C$	12	18		μA
V _(VCELL+O)	CELL offset error	CELL output (VC2 = VC1 = 18 V) - CELL output (VC2 = VC1 = 0 V)	-18	-1	18	mV
I _{VCnL}	VC(n) pin leakage current	VC1, VC2, VC3, VC4, VC5 = 3 V	-1	0.01	1	μA
CELL BALAI	NCING					
R _{BAL}	internal cell balancing FET resistance	$R_{DS(on)}$ for internal FET switch at $V_{DS} = 2 \text{ V}$; $T_A = 25^{\circ}\text{C}$	200	400	600	Ω
HARDWARE	SHORT CIRCUIT AND OVERLOAD PR	ROTECTION; $T_A = 25^{\circ}C$ (unless otherwise noted)			<u>.</u>	
		V _{OL} = 25 mV (min)	15	25	35	
V _(OL)	OL detection threshold voltage accuracy	V _{OL} = 100 mV; RSNS = 0, 1	90	100	110	mV
		V _{OL} = 205 mV (max)	185	205	225	
		V _(SCC) = 50 mV (min)	30	50	70	
V _(SCC)	SCC detection threshold voltage accuracy	V _(SCC) = 200 mV; RSNS = 0, 1	180	200	220	mV
	accuracy	V _(SCC) = 475 mV (max)	428	475	523	

SLUSAH8A - APRIL 2011 - REVISED MAY 2012

www.ti.com

ELECTRICAL CHARACTERISTICS (continued)

Over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}C$ to 85°C, $V_{(REG25)} = 2.41$ V to 2.59 V, $V_{(BAT)} = 14$ V, $C_{(REG25)} = 1$ µF, $C_{(REG33)} = 2.2$ µF; typical values at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{(SCD)} = -50 \text{ mV} (\text{min})$	-30	-50	-70	
(_{SCD)}	SCD detection threshold voltage accuracy	V _(SCD) = -200 mV; RSNS = 0, 1	-180	-200	-220	mV
	acturacy	$V_{(SCD)} = -475 \text{ mV} \text{ (max)}$	-428	-475	-523	
da	Delay time accuracy			±15.25		μs
pd	Protection circuit propagation delay			50		μs
	E CIRCUIT; $T_A = 25^{\circ}C$ (unless otherwis	e noted)				
V _(DSGON)	DSG pin output on voltage		8	12	16	V
√ _(CHGON)	CHG pin output on voltage		8	12	16	V
(DSGOFF)	DSG pin output off voltage	$V_{(DSGOFF)} = V_{(DSG)} - V_{(PACK)}$			0.2	V
V _(CHGOFF)	CHG pin output off voltage	$V_{(CHGOFF)} = V_{(CHG)} - V_{(BAT)}$			0.2	V
		$C_1 = 4700$ $V_{(CHG)}$: $V_{(PACK)} \ge V_{(PACK)} + 4V$		400	1000	
r	Rise time	$p\bar{F}$ $V_{(DSG)}: V_{(BAT)} \ge V_{(BAT)} + 4V$		400	1000	μs
		$C_{L} = 4700 \qquad \forall_{(CHG)}: \forall_{(PACK)} + \forall_{(CHGON)} \ge \forall_{(PACK)} + 1\forall$		40	200	
f	Fall time	$pF \qquad V_{(DSG)}: VC1 + V_{(DSGON)} \ge VC1 + 1 V$		40	200	μs
V _(ZVCHG)	ZVCHG clamp voltage	BAT = 4.5 V	3.3	3.5	3.7	V
	= -40°C to 100°C (unless otherwise n	oted)				
	Internal pullup resistance	ALERT	60	100	200	
R _(PULLUP)		RESET	1	3	6	kΩ
		ALERT			0.2	
V _{OL}	Logic low output voltage level	$\overline{\text{RESET}; V_{(BAT)}} = 7 \text{ V}; V_{(REG25)} = 1.5 \text{ V}; I_{(\overline{RESET})} = 200$ μA			0.4	v
		GPOD; I _(GPOD) = 50 µA			0.6	-
OGIC SM	BC, SMBD, PFIN, PRES, SAFE, ALERI					
/ _{IH}	High-level input voltage		2.0			V
 / _{IL}	Low-level input voltage				0.8	V
и И _{ОН}	Output voltage high ⁽¹⁾	I _L = -0.5 mA	V _{REG25} -0. 5			V
/ _{OL}	Low-level output voltage	PRES, PFIN, ALERT, DISP; $I_L = 7 \text{ mA}$			0.4	V
2	Input capacitance			5		pF
SAFE)	SAFE source currents	SAFE active, SAFE = V _(REG25) –0.6 V	-3			mA
kg(SAFE)	SAFE leakage current	SAFE inactive	-0.2		0.2	μA
kg(SAFE)	Input leakage current				1	μA
			1		-	, <u> </u>
•	Input voltage range	TS1, TS2, using Internal V _{ref}	-0.2		1	V
	Conversion time	- ,,		31.5	•	ms
	Resolution (no missing codes)		16	01.0		bits
	Effective resolution		14	15		bits
	Integral nonlinearity			10	±0.03	%FSR
	Offset error ⁽⁴⁾		1	140	±0.03	μV
		$T_A = 25^{\circ}C$ to $85^{\circ}C$	+	2.5		μν μV/°C
	Offset error drift ⁽⁴⁾ Full-scale error ⁽⁵⁾	$T_A = 25 C 10 85 C$		±0.1%	18 ±0.7%	μν/ C

(1) RC[0:7] bus

(3) Full-scale reference

(5) Uncalibrated performance. This gain error can be eliminated with external calibration.

⁽²⁾ Unless otherwise specified, the specification limits are valid at all measurement speed modes.

⁽⁴⁾ Post-calibration performance and no I/O changes during conversion with SRN as the ground reference.

ELECTRICAL CHARACTERISTICS (continued)

Over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}C$ to 85°C, $V_{(REG25)} = 2.41$ V to 2.59 V, $V_{(BAT)} = 14$ V, $C_{(REG25)} = 1$ µF, $C_{(REG33)} = 2.2$ µF; typical values at $T_A = 25$ °C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Effective input resistance ⁽⁶⁾		8			MΩ
COULOM	B COUNTER	1				
	Input voltage range		-0.20		0.20	V
	Conversion time	Single conversion		250		ms
	Effective resolution	Single conversion	15			bits
		-0.1 V to 0.20 V		±0.007	±0.034	
	Integral nonlinearity	–0.20 V to –0.1 V		±0.007		%FSR
	Offset error (7)	$T_A = 25^{\circ}C \text{ to } 85^{\circ}C$		10		μV
	Offset error drift			0.4	0.7	µV/°C
	Full-scale error ⁽⁸⁾ (9)			±0.35%		
	Full-scale error drift			150		PPM/°C
	Effective input resistance ⁽¹⁰⁾	$T_A = 25^{\circ}C$ to $85^{\circ}C$	2.5			MΩ
INTERNA	L TEMPERATURE SENSOR		L			
V _(TEMP)	Temperature sensor voltage ⁽¹¹⁾			-2.0		mV/°C
VOLTAG	EREFERENCE		L			
	Output voltage		1.215	1.225	1.230	V
	Output voltage drift			65		PPM/°C
HIGH FRE	EQUENCY OSCILLATOR		L			
f _(OSC)	Operating frequency			4.194		MHz
,	– (12) (13)		-3%	0.25%	3%	
f _(EIO)	Frequency error ⁽¹²⁾ (13)	$T_A = 20^{\circ}C$ to $70^{\circ}C$	-2%	0.25%	2%	
t _(SXO)	Start-up time ⁽¹⁴⁾			2.5	5	ms
LOW FRE	QUENCY OSCILLATOR					•
f _(LOSC)	Operating frequency			32.768		kHz
	Frequency error ⁽¹⁵⁾ (16)		-2.5%	0.25%	2.5%	
f _(LEIO)	Frequency error	$T_A = 20^{\circ}C$ to $70^{\circ}C$	-1.5%	0.25%	1.5%	
t _(LSXO)	Start-up time ⁽¹⁴⁾				500	μs

The A/D input is a switched-capacitor input. Since the input is switched, the effective input resistance is a measure of the average (6) resistance.

Post-calibration performance (7)

Reference voltage for the coulomb counter is typically $V_{ref}/3.969$ at $V_{(REG25)} = 2.5$ V, $T_A = 25^{\circ}C$. (8)

Uncalibrated performance. This gain error can be eliminated with external calibration. (9)

(10) The CC input is a switched capacitor input. Since the input is switched, the effective input resistance is a measure of the average resistance.

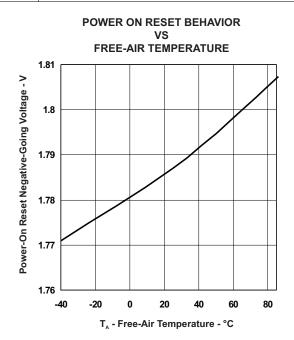
(11) -53.7 LSB/°C

(12) The frequency error is measured from 4.194 MHz.

(13) The frequency drift is included and measured from the trimmed frequency at $V_{(REG25)} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

(14) The startup time is defined as the time it takes for the oscillator output frequency to be $\pm 3\%$. (15) The frequency drift is included and measured from the trimmed frequency at V_(REG25) = 2.5 V, T_A = 25°C.

(16) The frequency error is measured from 32.768 kHz.


SLUSAH8A - APRIL 2011-REVISED MAY 2012

www.ti.com

POWER-ON RESET

Over operating free-air temperature range (unless otherwise noted), $T_A = -40^{\circ}C$ to 85°C, $V_{(REG25)} = 2.41$ V to 2.59 V, $V_{(BAT)} = 14$ V, $C_{(REG25)} = 1$ µF, $C_{(REG33)} = 2.2$ µF; typical values at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIT-	Negative-going voltage input		1.7	1.8	1.9	V
VHYS	Power-on reset hysteresis		5	125	200	mV
t _{RST}	RESET active low time	Active low time after power up or watchdog reset	100	250	560	μs

DATA FLASH CHARACTERISTICS OVER RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Typical values at $T_A = 25^{\circ}C$ and $V_{(REG25)} = 2.5 V$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
	Flash programming write-cycles		20k			Cycles
t _(ROWPROG)	Row programming time	See ⁽¹⁾			2	ms
t _(MASSERASE)	Mass-erase time				200	ms
t _(PAGEERASE)	Page-erase time				20	ms
I(DDPROG)	Flash-write supply current			5	10	mA
I(DDERASE)	Flash-erase supply current			5	10	mA
RAM/REGIS	TER BACKUP					
	RB data-retention input current	$V_{(RBI)} > V_{(RBI)MIN}$, $V_{REG25} < V_{IT-}$, $T_A = 85^{\circ}C$		1000	2500	nA
I _(RB)	RB data-retention input current	$V_{(RBI)} > V_{(RBI)MIN}$, $V_{REG25} < V_{IT-}$, $T_A = 25^{\circ}C$	90	220	ΠA	
V _(RB)	RB data-retention input voltage ⁽¹⁾		1.7			V

(1) Specified by design. Not production tested.

SMBus TIMING CHARACTERISTICS

 $T_A = -40^{\circ}C$ to 85°C Typical Values at $T_A = 25^{\circ}C$ and $V_{REG25} = 2.5$ V (Unless Otherwise Noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(SMB)	SMBus operating frequency	Slave mode, SMBC 50% duty cycle	10		100	kHz
f _(MAS)	SMBus master clock frequency	Master mode, No clock low slave extend		51.2		kHz

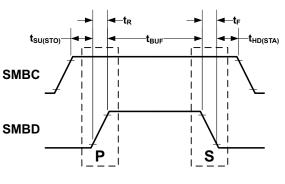
NSTRUMENTS

EXAS

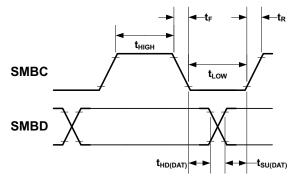
SMBus TIMING CHARACTERISTICS (continued)

 $T_{A} = -40^{\circ}$ C to 85°C Typical Values at $T_{A} = 25^{\circ}$ C and $V_{REG25} = 2.5$ V (Unless Otherwise Noted)

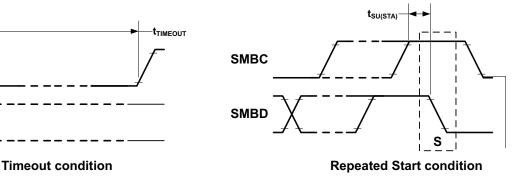
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(BUF)	Bus free time between start and stop (see Figure 3)		4.7			μs
t _(HD:STA)	Hold time after (repeated) start (see Figure 3)		4			μs
t _(SU:STA)	Repeated start setup time (see Figure 3)		4.7			μs
t _(SU:STO)	Stop setup time (see Figure 3)		4			μs
t _(HD:DAT)	Data hald time (and Figure 2)	Receive mode	0			ns
	Data hold time (see Figure 3)	Transmit mode	300			
t _(SU:DAT)	Data setup time (see Figure 3)		250			ns
t(TIMEOUT)	Error signal/detect (see Figure 3)	See ⁽¹⁾	25		35	μs
t _(LOW)	Clock low period (see Figure 3)		4.7			μs
t _(HIGH)	Clock high period (see Figure 3)	See ⁽²⁾	4		50	μs
t _(LOW:SEXT)	Cumulative clock low slave extend time	See ⁽³⁾			25	ms
t _(LOW:MEXT)	Cumulative clock low master extend time (see Figure 3)	See ⁽⁴⁾			10	ms
t _f	Clock/data fall time	See ⁽⁵⁾			300	ns
t _r	Clock/data rise time	See ⁽⁶⁾			1000	ns


(1)

The bq20z655 times out when any clock low exceeds $t_{(TIMEOUT)}$. $t_{(HIGH)}$, Max, is the minimum bus idle time. SMBC = SMBD = 1 for t > 50 ms causes reset of any transaction involving bq20z655 that is (2) in progress. This specification is valid when the NC_SMB control bit remains in the default cleared state (CLK[0]=0).


t(LOW:SEXT) is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop. (3)

t(LOW:MEXT) is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop. (4) (5) Rise time $t_r = VILMAX - 0.15$ to (VIHMIN + 0.15)


(6) Fall time $t_f = 0.9 V_{DD}$ to (VILMAX – 0.15)

Wait and Hold condition

A. SCLKACK is the acknowledge-related clock pulse generated by the master.

Figure 3. SMBus Timing Diagram

SMBC

SMBD

FEATURE SET

Primary (1st Level) Safety Features

The bq20z655 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include:

- Cell over/undervoltage protection
- Charge and discharge overcurrent
- Short Circuit protection
- · Charge and discharge overtemperature with independent alarms and thresholds for each thermistor
- AFE Watchdog

Secondary (2nd Level) Safety Features

The secondary safety features of the bq20z655 can be used to indicate more serious faults via the SAFE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety protection features include:

- Safety overvoltage
- Safety undervoltage
- 2nd level protection IC input
- Safety overcurrent in charge and discharge
- Safety over-temperature in charge and discharge with independent alarms and thresholds for each thermistor
- Charge FET and zero-volt charge FET fault
- Discharge FET fault
- Cell imbalance detection (active and at rest)
- Open thermistor detection
- Fuse blow detection
- AFE communication fault

Charge Control Features

The bq20z655 charge control features include:

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges and allows for varying the charging current according to the cell voltage
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts
- Determines the chemical state of charge of each battery cell using Impedance Track and can reduce the charge difference of the battery cells in fully charged state of the battery pack gradually using cell balancing algorithm during charging. This prevents fully charged cells from overcharging and causing excessive degradation and also increases the usable pack energy by preventing premature charge termination.
- Supports pre-charging/zero-volt charging
- Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
- Reports charging fault and also indicate charge status via charge and discharge alarms

Gas Gauging

The bq20z655 uses the Impedance Track technology to measure and calculate the available charge in battery cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge discharge learning cycle required.

See the *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm* application note (SLUA364) for further details.

Copyright © 2011–2012, Texas Instruments Incorporated

Lifetime Data Logging Features

The bq20z655 offers lifetime data logging, where important measurements are stored for warranty and analysis purposes. The data monitored include:

- Lifetime maximum temperature
- Lifetime maximum temperature count
- Lifetime maximum temperature duration
- Lifetime minimum temperature
- Lifetime maximum battery cell voltage
- Lifetime maximum battery cell voltage count
- Lifetime maximum battery cell voltage duration
- Lifetime minimum battery cell voltage
- Lifetime maximum battery pack voltage
- Lifetime minimum battery pack voltage
- Lifetime maximum charge current
- Lifetime maximum discharge current
- Lifetime maximum charge power
- Lifetime maximum discharge power
- Lifetime maximum average discharge current
- Lifetime maximum average discharge power
- Lifetime average temperature

Authentication

The bq20z655 supports authentication by the host using SHA-1.

Power Modes

The bq20z655 supports three different power modes to reduce power consumption:

- In Normal Mode, the bq20z655 performs measurements, calculations, protection decisions and data updates in 1 second intervals. Between these intervals, the bq20z655 is in a reduced power stage.
- In Sleep Mode, the bq20z655 performs measurements, calculations, protection decisions and data update in adjustable time intervals. Between these intervals, the bq20z655 is in a reduced power stage. The bq20z655 has a wake function that enables exit from Sleep mode, when current flow or failure is detected.
- In Shutdown Mode, the bq20z655 is completely disabled.

CONFIGURATION

Oscillator Function

The bq20z655 fully integrates the system oscillators therefore, no external components are required for this feature.

System Present Operation

The bq20z655 periodically verifies the PRES pin and detects that the battery is present in the system via a low state on a PRES input. When this occurs, the bq20z655 enters normal operating mode. When the pack is removed from the system and the PRES input is high, the bq20z655 enters the battery-removed state, disabling the charge, discharge, and ZVCHG FETs. The PRES input is ignored and can be left floating when non-removal mode is set in the data flash.

BATTERY PARAMETER MEASUREMENTS

The bq20z655 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage, and temperature measurement.

Charge and Discharge Counting

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from -0.25 V to 0.25 V. The bq20z655 detects charge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq20z655 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.

Voltage

The bq20z655 updates the individual series cell voltages at one second intervals. The internal ADC of the bq20z655 measures the voltage, scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track gas-gauging.

Current

The bq20z655 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5–m Ω to 20–m Ω typ. sense resistor.

Wake Function

The bq20z655 can exit sleep mode, if enabled, by the presence of a programmable level of current signal across SRP and SRN.

Auto Calibration

The bq20z655 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq20z655 performs auto-calibration when the SMBus lines stay low continuously for a minimum of a programmable amount of time.

Temperature

The bq20z655 has an internal temperature sensor and 2 external temperature sensor inputs, TS1 and TS2, used in conjunction with two identical NTC thermistors (default are Semitec 103AT) to sense the battery environmental temperature. The bq20z655 can be configured to use the internal temperature sensor or up to 2 external temperature sensors.

COMMUNICATIONS

The bq20z655 uses SMBus v1.1 with Master Mode and package error checking (PEC) options per the SBS specification.

SMBus On and Off State

The bq20z655 detects an SMBus off state when SMBC and SMBD are logic-low for \geq 2 seconds. Clearing this state requires either SMBC or SMBD to transition high. Within 1 ms, the communication bus is available.

SBS Commands

			Iable	2. SBS CO		1		1	
SBS CMD	MODE	NAME	FORMAT	SIZE IN BYTES	MIN VALUE	MAX VALUE	DEFAULT VALUE	UNIT	
0x00	R/W	ManufacturerAccess	Hex	2	0x0000	Oxffff			
0x01	R/W	RemainingCapacityAlarm	Integer	2	0	700 or 1000	300 or 432	mAh or 10 mWh	
0x02	R/W	RemainingTimeAlarm	Unsigned integer	2	0	30	10	min	
0x03	R/W	BatteryMode	Hex	2	0x0000	Oxffff			
0x04	R/W	AtRate	Integer	2	-32,768	32,767	_	mA or 10 mW	
0x05	R	AtRateTimeToFull	Unsigned integer	2	0	65,535	—	min	
0x06	R	AtRateTimeToEmpty	Unsigned integer	2	0	65,535	—	min	
0x07	R	AtRateOK	Unsigned integer	2	0	65,535	_	—	
0x08	R	Temperature	Unsigned integer	2	0	65,535	_	0.1°K	
0x09	R	Voltage	Unsigned integer	2	0	20,000	_	mV	
0x0a	R	Current	Integer	2	-32,768	32767		mA	
0x0b	R	AverageCurrent	Integer	2	-32,768	32,767	_	mA	
0x0c	R	MaxError	Unsigned integer	1	0	100	_	%	
0x0d	R	RelativeStateOfCharge	Unsigned integer	1	0	100	—	%	
0x0e	R	AbsoluteStateOfCharge	Unsigned integer	1	0	100+	_	%	
0x0f	R/W	RemainingCapacity	Unsigned integer	2	0	65,535		mAh or 10 mWh	
0x10	R	FullChargeCapacity	Unsigned integer	2	0	65,535		mAh or 10 mWh	
0x11	R	RunTimeToEmpty	Unsigned integer	2	0	65,534	_	min	
0x12	R	AverageTimeToEmpty	Unsigned integer	2	0	65,534	_	min	
0x13	R	AverageTimeToFull	Unsigned integer	2	0	65,534	_	min	
0x14	R	ChargingCurrent	Unsigned integer	2	0	65,534	_	mA	
0x15	R	ChargingVoltage	Unsigned integer	2	0	65,534		mV	
0x16	R	BatteryStatus	Hex	2	0x0000	0xdbff		—	
0x17	R/W	CycleCount	Unsigned integer	2	0	65,535	0		
0x18	R/W	DesignCapacity	Integer	2	0	32,767	4400 or 6336	mAh or 10 mWh	
0x19	R/W	DesignVoltage	Integer	2	7000	18,000	14,400	mV	

Table 2. SBS COMMANDS

Copyright © 2011–2012, Texas Instruments Incorporated

SLUSAH8A - APRIL 2011-REVISED MAY 2012

www.ti.com

SBS SIZE IN MIN MAX DEFAULT MODE NAME FORMAT UNIT CMD BYTES VALUE VALUE VALUE 0x1a R/W **SpecificationInfo** Hex 2 0x0000 **Oxffff** 0x0031 ___ 0x1b R/W ManufactureDate Unsigned 2 0 65,535 0 _ integer R/W 0x0000 0xffff SerialNumber 2 0x0000 0x1c Hex _ R/W 0x20 ManufacturerName String 20+1 ____ Texas _ _ Instruments R/W bq20z655 0x21 **DeviceName** String 20+1 ____ _ ____ R/W 0x22 **DeviceChemistry** String 4+1 LION ___ 0x23 R ManufacturerData String 14+1 _ 0x2f R/W Authenticate String 20+1 ____ _ _ _ 0x3c R CellVoltage4 Unsigned 2 0 65,535 mV integer R 2 mV 0x3d CellVoltage3 Unsigned 0 65,535 _ integer Unsigned R CellVoltage2 2 0 0x3e 65,535 m٧ integer R 2 0x3f CellVoltage1 Unsigned 0 65,535 mV _ integer

Table 2. SBS COMMANDS (continued)

Table 3. EXTENDED SBS COMMANDS

SBS CMD	MODE	NAME	FORMAT	SIZE IN BYTES	MIN VALUE	MAX VALUE	DEFAULT VALUE	UNIT
0x45	R	AFEData	String	11+1	—	—	—	_
0x46	R/W	FETControl	Hex	2	0x00	Oxff	—	_
0x4f	R	StateOfHealth	Hex	2	0x0000	Oxffff	—	%
0x51	R	SafetyStatus	Hex	2	0x0000	Oxffff	—	—
0x52	R	PFAlert	Hex	2	0x0000	Oxffff	—	—
0x53	R	PFStatus	Hex	2	0x0000	Oxffff	—	_
0x54	R	OperationStatus	Hex	2	0x0000	Oxffff	—	—
0x55	R	ChargingStatus	Hex	2	0x0000	Oxffff	—	—
0x57	R	ResetData	Hex	2	0x0000	Oxffff	—	—
0x58	R	WDResetData	Unsigned integer	2	0	65,535	_	_
0x5a	R	PackVoltage	Unsigned integer	2	0	65,535	_	mV
0x5d	R	AverageVoltage	Unsigned integer	2	0	65,535	_	mV
0x5e	R	TS1Temperature	Integer	2	-400	1200	—	0.1°C
0x5f	R	TS2Temperature	Integer	2	-400	1200	—	0.1°C
0x60	R/W	UnSealKey	Hex	4	0x0000000	Oxffffffff	—	—
0x61	R/W	FullAccessKey	Hex	4	0x00000000	Oxffffffff	—	_
0x62	R/W	PFKey	Hex	4	0x00000000	Oxffffffff	—	_
0x63	R/W	AuthenKey3	Hex	4	0x00000000	Oxfffffff	—	_
0x64	R/W	AuthenKey2	Hex	4	0x0000000	Oxfffffff	—	—
0x65	R/W	AuthenKey1	Hex	4	0x0000000	Oxffffffff	—	—
0x66	R/W	AuthenKey0	Hex	4	0x0000000	Oxfffffff		
0x68	R	SafetyAlert2	Hex	2	0x0000	0x000f		
0x69	R	SafetyStatus2	Hex	2	0x0000	0x000f		—
0x6a	R	PFAlert2	Hex	2	0x0000	0x000f		—
0x6b	R	PFStatus2	Hex	2	0x0000	0x000f	—	—

Copyright © 2011–2012, Texas Instruments Incorporated

R/W

0x7f

DataFlashSubClassPage8

www.ti.com

SLUSAH8A-APRIL 2011-REVISED MAY 2012

SBS DEFAULT SIZE IN MIN MAX MODE FORMAT NAME UNIT CMD BYTES VALUE VALUE VALUE 0x6c R ManufBlock1 20 String — — — ____ 0x6d R ManufBlock2 20 String _ ____ ____ _ R ManufBlock3 20 0x6e String — — — — R 0x6f ManufBlock4 String 20 ____ ____ _ _ 0x70 R/W ManufacturerInfo String 31+1 ____ _ _ _ R/W 0x71 SenseResistor Unsigned 2 65,535 0 ____ μΩ integer 0x72 R TempRange Hex 2 ____ ____ _ 0x73 R LifetimeData1 String 32+1 _ 0x74 R LifetimeData2 String 8+1 ____ ____ _ 0x77 R/W DataFlashSubClassID Hex 2 0x0000 **Oxffff** ____ _ 0x78 R/W DataFlashSubClassPage1 Hex 32 — ____ ____ _ 0x79 R/W DataFlashSubClassPage2 Hex 32 ____ ____ ____ _ 0x7a R/W DataFlashSubClassPage3 Hex 32 0x7b R/W 32 DataFlashSubClassPage4 Hex _ _ _ _ 0x7c R/W DataFlashSubClassPage5 Hex 32 0x7d R/W DataFlashSubClassPage6 Hex 32 _ ____ ____ _ 0x7e R/W DataFlashSubClassPage7 Hex 32 ____ ____

32

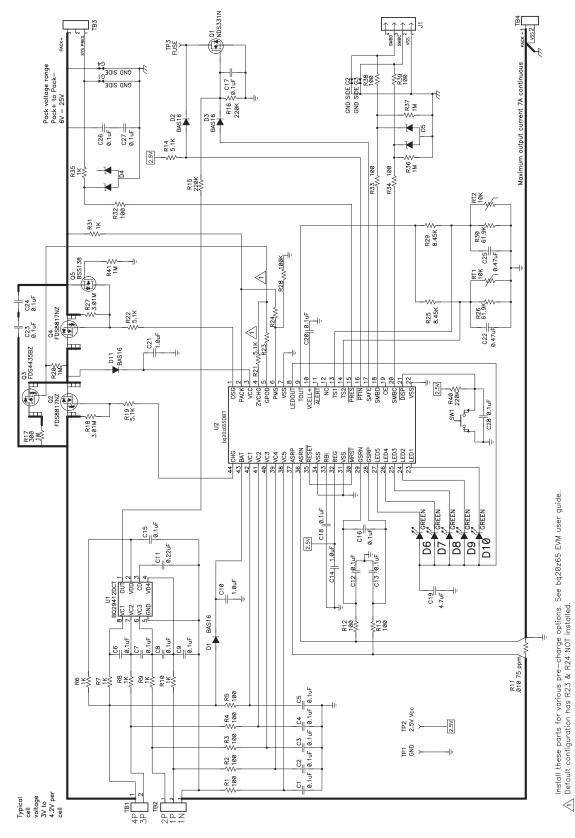

Hex

Table 3. EXTENDED SBS COMMANDS (continued)

APPLICATION SCHEMATIC

SLUSAH8A - APRIL 2011-REVISED MAY 2012

REVISION HISTORY

CI	hanges from Original (April 2011) to Revision A	Page)
•	Changed Thermal Information	2	2
•	Changed System Partitioning Diagram	2	2

www.ti.com

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
BQ20Z655DBT	ACTIVE	TSSOP	DBT	44	40	RoHS & Green	NIPDAU	Level-2-250C-1 YEAR	-40 to 85	BQ20Z655	Samples
BQ20Z655DBTR	ACTIVE	TSSOP	DBT	44	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ20Z655	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

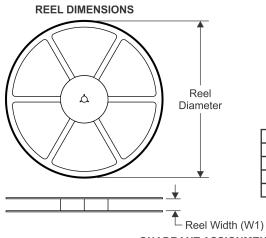
⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

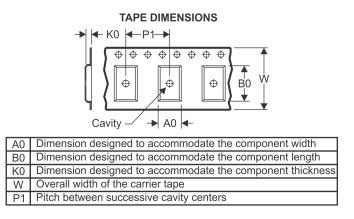
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM


10-Dec-2020

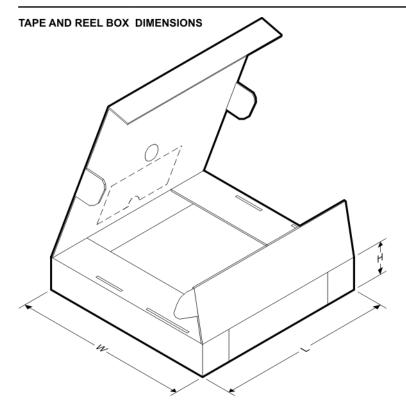

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

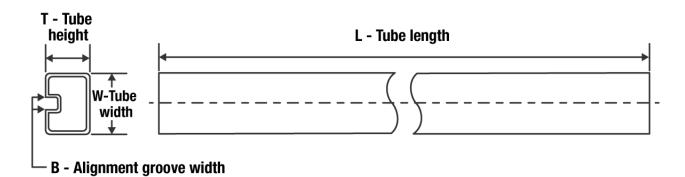
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal	*All	dimensions	are	nominal
-----------------------------	------	------------	-----	---------

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ20Z655DBTR	TSSOP	DBT	44	2000	330.0	24.4	6.8	11.7	1.6	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

5-Jan-2022


*All dimensions are nominal

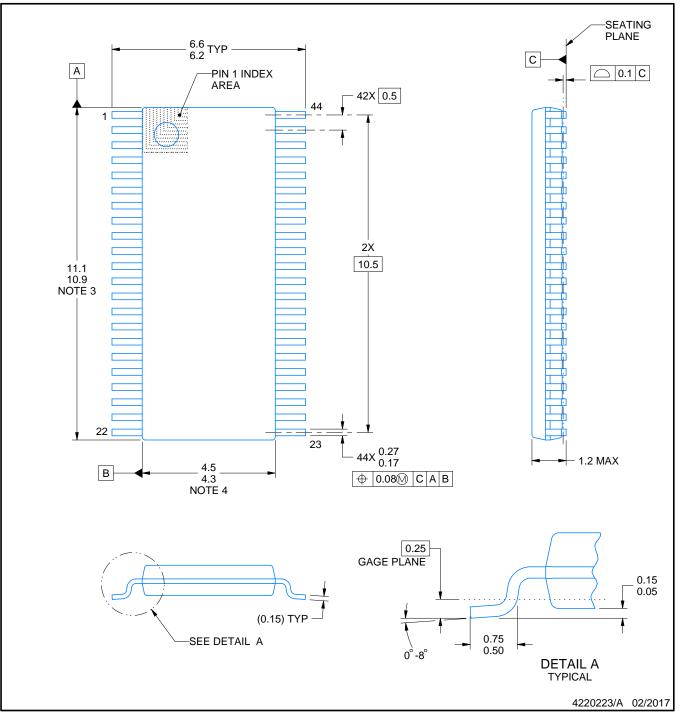
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
BQ20Z655DBTR	TSSOP	DBT	44	2000	350.0	350.0	43.0

5-Jan-2022

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
BQ20Z655DBT	DBT	TSSOP	44	40	530	10.2	3600	3.5


DBT0044A

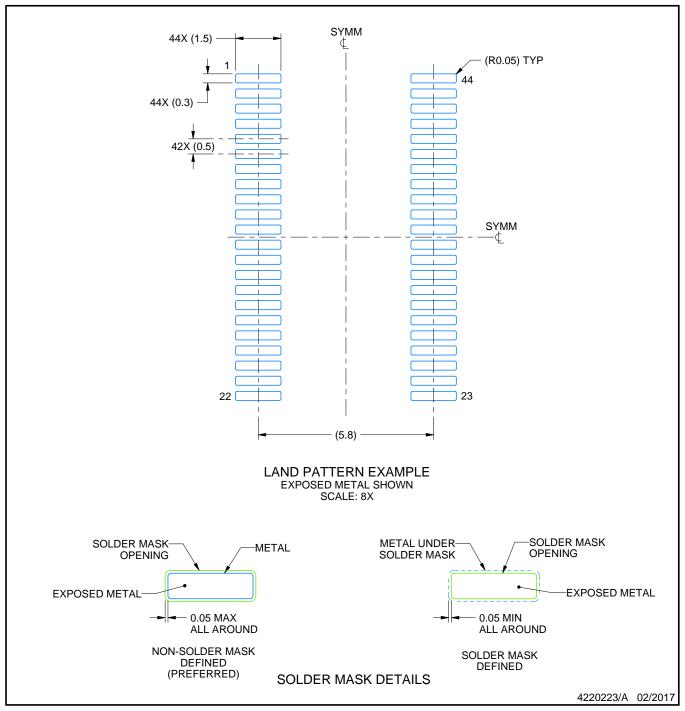
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.



DBT0044A

EXAMPLE BOARD LAYOUT

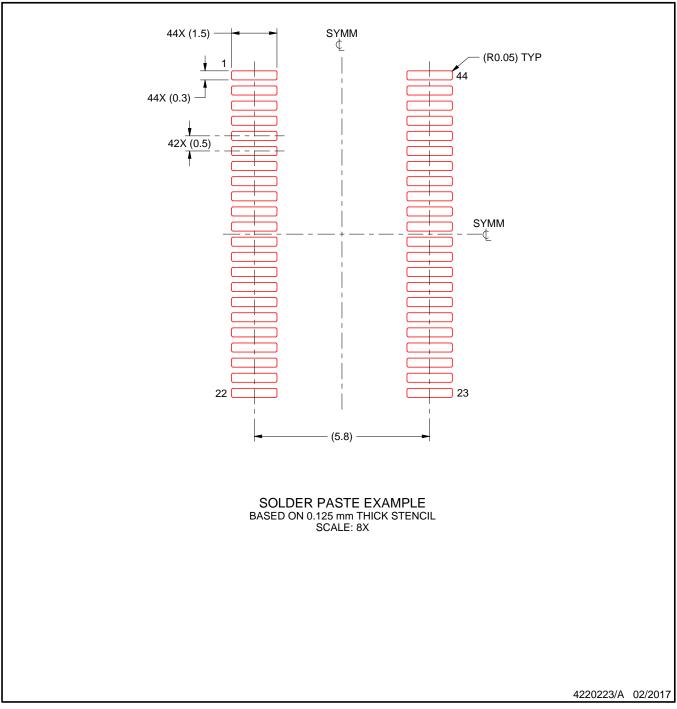
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DBT0044A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated