

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

NC7WP14

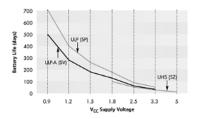
TinyLogic→ **ULP Dual Inverter** with Schmitt Trigger Inputs

General Description

The NC7WP14 is a dual inverter with Schmitt trigger inputs from Fairchild's Ultra Low Power (ULP) Series of TinyLogic -. Ideal for applications where battery life is critical, this product is designed for ultra low power consumption within the V_{CC} operating range of 0.9V to 3.6V V_{CC} .

The internal circuit is composed of a minimum of inverter stages, including the output buffer, to enable ultra low static and dynamic power.

The NC7WP14, for lower drive requirements, is uniquely designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve best in class speed operation while maintaining extremely low CMOS power dissipation.


Features

- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V
- t_{PD}
 - 4.0 ns typ for 3.0V to 3.6V $\ensuremath{\text{V}_{\text{CC}}}$
 - 5.0 ns typ for 2.3V to 2.7V V_{CC}
 - 6.0 ns typ for 1.65V to 1.95V V_{CC}
 - 7.0 ns typ for 1.40V to 1.60V V_{CC}
 - 11.0 ns typ for 1.10V to 1.30V V_{CC}
 - 27.0 ns typ for 0.90V V_{CC}
- Power-Off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL})
 - ±2.6 mA @ 3.00V V_{CC}
 - ±2.1 mA @ 2.30V V_{CC}
 - ±1.5 mA @ 1.65V V_{CC}
 - ±1.0 mA @ 1.40V V_{CC}
 - ±0.5 mA @ 1.10V V_{CC}
 - ±20 xA @ 0.9V VCC
- Uses patented Quiet Series[™] noise/EMI reduction
- Ultra small MicroPak™ leadfree package
- Ultra low dynamic power

Ordering Code:

Order Number	r Number Package Product Code Number Top Mark		Package Description	Supplied As
NC7WP14P6X	MAA06A	P14	6-Lead SC70, EIAJ SC88, 1.25mm Wide	3k Units on Tape and Reel
NC7WP14L6X	MAC06A	AZ	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

Battery Life = $(V_{battery} *I_{battery} *.9)/(P_{device})/24hrs/day$

Where, P_{device} = $(I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}^2 * f$ Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with CL = 15 pF load

TinyLogic→ is a registered trademark of Fairchild Semiconductor Corporation. Quiet Series™ and MicroPak™ are trademarks of Fairchild Semiconductor Corporation

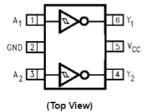
Logic Symbol

IEEE/IEC

Pin Descriptions

Pin Names	Description
A ₁ , A ₂	Data Inputs
Y ₁ , Y ₂	Output

Function Table


 $Y=\overline{\boldsymbol{A}}$

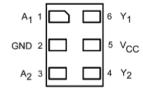
Inputs	Output
Α	Y
L	Н
Н	L

H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignments for SC70

Pin One Orientation Diagram



Pin One

AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top
product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +4.6V

DC Input Diode Current (I_{IK}) V_{IN} < 0V DC Output Diode Current (I_{OK})

 $\begin{array}{lll} V_{OUT} < 0V & -50 \text{ mA} \\ V_{OUT} > V_{CC} & +50 \text{ mA} \\ \text{DC Output Source/Sink Current (I}_{OH}/I_{OL}) & \pm 50 \text{ mA} \\ \end{array}$

DC V_{CC} or Ground Current per Supply Pin (I_{CC} or Ground)

Storage Temperature Range (T_{STG}) -65°C to +150°C

Recommended Operating Conditions (Note 3)

 $\begin{array}{ccc} -0.5 \text{V to } +4.6 \text{V} & \text{Supply Voltage} & 0.9 \text{V to } 3.6 \text{V} \\ & \text{Input Voltage (V}_{\text{IN}}) & 0.0 \text{V to } 3.6 \text{V} \end{array}$

Output Voltage (V_{OUT})

±50 mA

± 50 mA

HIGH or LOW State $V_{CC} = 0V$ 0V to V_{CC}

Output Current in I_{OH}/I_{OL}

 V_{CC} = 0.9V $\pm 20 \text{ } \text{mA}$ Free Air Operating Temperature (T_A) -40°C to $+85^{\circ}\text{C}$

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V \text{ to } 2.0V, V_{CC} = 3.0V$ 10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A =	+ 2 5°C	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$		Units	Conditions
Symbol	Farameter	(V)	Min	Max	Min	Max	Oilles	Conditions
V _P	Positive Threshold Voltage	0.90	0.35	0.65	0.35	0.65		
		1.10	0.4	1.0	0.4	1.0		
		1.40	0.5	1.2	0.5	1.2	l _v l	
		1.65	0.7	1.5	0.7	1.5	V	
		2.30	1.0	1.9	1.0	1.9		
		3.00	1.5	2.6	1.5	2.6		
V _N	Negative Threshold Voltage	0.90	0.1	0.6	0.1	0.6		
		1.10	0.15	0.7	0.15	0.7		
		1.40	0.2	8.0	0.2	8.0	l v l	
		1.65	0.25	0.9	0.25	0.9		
		2.30	0.4	1.15	0.4	1.15		
		3.00	0.6	1.5	0.6	1.5		
V _H	Hysteresis Voltage	0.90	0.07	0.5	0.07	0.5		
		1.10	0.08	0.6	0.08	0.6		
		1.40	0.09	8.0	0.09	8.0	l v l	
		1.65	0.10	1.0	0.10	1.0		
		2.30	0.25	1.1	0.25	1.1		
		3.00	0.60	1.8	0.60	1.8		

DC Electrical Characteristics (Continued)

Symbol	Parameter	V _{cc}	T _A = +	2 5°C	T _A = -40°C to +85°C		Units	Conditions
Symbol	Parameter	(V)	Min	Max	Min	Max	Units	Conditions
V _{OH}	HIGH Level	0.90	V _{CC} - 0.1		V _{CC} - 0.1			
	Output Voltage	1.10 ≤ V _{CC} ≤ 1.30	V _{CC} - 0.1		V _{CC} - 0.1			
		1.40 ≤ V _{CC} ≤ 1.60	V _{CC} - 0.1		V _{CC} - 0.1			I _{OH} = -20 ∞A
		1.65 ≤ V _{CC} ≤ 1.95	V _{CC} - 0.1		V _{CC} - 0.1			10H - 20 WA
		2.30 ≤ V _{CC} ≤ 2.70	V _{CC} - 0.1		V _{CC} - 0.1			
		3.00 ≤ V _{CC} ≤ 3.60	V _{CC} - 0.1		V _{CC} - 0.1		V	
		1.10 ≤ V _{CC} ≤ 1.30	0.75 x V _{CC}		0.70 x V _{CC}			$I_{OH} = -0.5 \text{ mA}$
		1.40 ≤ V _{CC} ≤ 1.60	1.07		0.99			I _{OH} = -1 mA
		1.65 ≤ V _{CC} ≤ 1.95	1.24		1.22			I _{OH} = -1.5 mA
		2.30 ≤ V _{CC} ≤ 2.70	1.95		1.87			I _{OH} = -2.1 mA
		3.00 ≤ V _{CC} ≤ 3.60	2.61		2.55			I _{OH} = -2.6 mA
V _{OL}	LOW Level	0.90		0.1		0.1		
	Output Voltage	1.10 ≤ V _{CC} ≤ 1.30		0.1		0.1		
		1.40 ≤ V _{CC} ≤ 1.60		0.1		0.1		I _{OL} = 20 ∞A
		1.65 ≤ V _{CC} ≤ 1.95		0.1		0.1		10L - 20 WA
		2.30 ≤ V _{CC} ≤ 2.70		0.1		0.1		
		3.00 ≤ V _{CC} ≤ 3.60		0.1		0.1	V	
		1.10 ≤ V _{CC} ≤ 1.30		0.30 x V _{CC}		0.30 x V _{CC}		$I_{OL} = 0.5 \text{ mA}$
		1.40 ≤ V _{CC} ≤ 1.60		0.31		0.37		I _{OL} = 1 mA
		1.65 ≤ V _{CC} ≤ 1.95		0.31		0.35		I _{OL} = 1.5 mA
		2.30 ≤ V _{CC} ≤ 2.70		0.31		0.33		I _{OL} = 2.1 mA
		3.00 ≤ V _{CC} ≤ 3.60		0.31		0.33		I _{OL} = 2.6 mA
I _{IN}	Input Leakage Current	0.90 to 3.60		±0.1		±0.5	œΑ	0 ≤ V ₁ ≤ 3.6V
I _{OFF}	Power Off Leakage Current	0		0.5		0.5	œΑ	$0 \le (V_1, V_0) \le 3.6V$
Icc	Quiescent Supply Current	0.90 to 3.60		0.9		0.9	œΑ	V _I = V _{CC} or GND

AC Electrical Characteristics

ation Delay	(V) 0.90 1.10 $\le V_{CC} \le 1.30$ 1.40 $\le V_{CC} \le 1.60$ 1.65 $\le V_{CC} \le 1.95$ 2.30 $\le V_{CC} \le 2.70$ 3.00 $\le V_{CC} \le 3.60$ 0.90 1.10 $\le V_{CC} \le 1.30$ 1.40 $\le V_{CC} \le 1.60$	2.5 2.0 1.5 1.0	Typ 27 11 7 6 5 4 30	26.8 15.8 12.0 9.4 8.3	3.0 2.0 1.5 1.0	37.3 16.0 12.2 9.9 9.0	Units	Conditions $C_L = 10 \text{ pF}$ $R_L = 1 \text{ M}\Omega$	Figure Number Figures 1, 2
ation Delay	$\begin{array}{c} 1.10 \le V_{CC} \le 1.30 \\ 1.40 \le V_{CC} \le 1.60 \\ 1.65 \le V_{CC} \le 1.95 \\ 2.30 \le V_{CC} \le 2.70 \\ 3.00 \le V_{CC} \le 3.60 \\ \hline 0.90 \\ 1.10 \le V_{CC} \le 1.30 \end{array}$	2.5 2.0 1.5 1.0	11 7 6 5 4	15.8 12.0 9.4	2.0 1.5 1.0	16.0 12.2 9.9	ns	I .	Figures 1, 2
ation Delay	$\begin{array}{c} 1.40 \le V_{CC} \le 1.60 \\ 1.65 \le V_{CC} \le 1.95 \\ 2.30 \le V_{CC} \le 2.70 \\ 3.00 \le V_{CC} \le 3.60 \\ \hline 0.90 \\ 1.10 \le V_{CC} \le 1.30 \\ \end{array}$	2.5 2.0 1.5 1.0	7 6 5 4 30	15.8 12.0 9.4	2.0 1.5 1.0	16.0 12.2 9.9	ns	I .	Figures 1, 2
ation Delay	$1.65 \le V_{CC} \le 1.95$ $2.30 \le V_{CC} \le 2.70$ $3.00 \le V_{CC} \le 3.60$ 0.90 $1.10 \le V_{CC} \le 1.30$	2.0 1.5 1.0	6 5 4 30	12.0 9.4	1.5 1.0	12.2 9.9	ns	I .	Figures 1, 2
ation Delay	2.30 \(\leq V_{CC} \leq 2.70\) 3.00 \(\leq V_{CC} \leq 3.60\) 0.90 1.10 \(\leq V_{CC} \leq 1.30\)	1.5 1.0	5 4 30	9.4	1.0	9.9	115	R _L = 1 MΩ	1, 2
ation Delay	$3.00 \le V_{CC} \le 3.60$ 0.90 $1.10 \le V_{CC} \le 1.30$	1.0	4 30						
ation Delay	0.90 1.10 ≤ V _{CC} ≤ 1.30		30	8.3	1.0	9.0			
-	1.10 ≤ V _{CC} ≤ 1.30	4.0							
		4.0							
	140 - 1/ - 160		11	29.8	3.5	39.3			
	1.40 2 VCC 2 1.00	3.0	8	16.5	2.5	17.5	ns	C _L = 15 pF	Figures 1, 2
	1.65 ≤ V _{CC} ≤ 1.95	2.5	6	12.6	2.0	13.6	115	$R_L = 1 M\Omega$	1, 2
	2.30 ≤ V _{CC} ≤ 2.70	2.0	5	9.9	1.5	10.8			
	$3.00 \le V_{CC} \le 3.60$	1.5	4	8.7	1.0	9.5			
ation Delay	0.90		32						
	1.10 ≤ V _{CC} ≤ 1.30	5.0	13	32.5	4.0	48.3			Figures 1, 2
	1.40 ≤ V _{CC} ≤ 1.60	4.0	9	18.8	3.5	19.2	ne	C _L = 30 pF	
	1.65 ≤ V _{CC} ≤ 1.95	3.0	7	14.4	2.0	15.9	115	$R_L = 1 M\Omega$	
	2.30 ≤ V _{CC} ≤ 2.70	2.0	6	11.3	1.5	12.8			
	$3.00 \le V_{CC} \le 3.60$	1.5	5	9.2	1.0	10.7			
pacitance	0		2.0				pF		
Capacitance	0		4.0				pF		
Dissipation	0.9 to 3.60		8				pF	V _I = 0V or V _{CC} , f = 10 MHz	
a p	pacitance apacitance	$\begin{array}{c} 1.10 \le V_{\rm CC} \le 1.30 \\ 1.40 \le V_{\rm CC} \le 1.60 \\ 1.65 \le V_{\rm CC} \le 1.95 \\ 2.30 \le V_{\rm CC} \le 2.70 \\ 3.00 \le V_{\rm CC} \le 3.60 \\ \\ \\ \text{pacitance} \\ \\ 0 \ \\ \text{position} \\ \hline \\ 0 \ \\ \text{9 to 3 60} \\ \end{array}$	1.10 ≤ V _{CC} ≤ 1.30 5.0 1.40 ≤ V _{CC} ≤ 1.60 4.0 1.65 ≤ V _{CC} ≤ 1.95 3.0 2.30 ≤ V _{CC} ≤ 2.70 2.0 3.00 ≤ V _{CC} ≤ 3.60 1.5 pacitance 0 apacitance 0 ssipation 0.9 to 3.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.10 ≤ V _{CC} ≤ 1.30 5.0 13 32.5 4.0 1.40 ≤ V _{CC} ≤ 1.60 4.0 9 18.8 3.5 1.65 ≤ V _{CC} ≤ 1.95 3.0 7 14.4 2.0 2.30 ≤ V _{CC} ≤ 2.70 2.0 6 11.3 1.5 3.00 ≤ V _{CC} ≤ 3.60 1.5 5 9.2 1.0 pacitance 0 2.0 apacitance 0 4.0 ssipation 0.9 to 3.60 8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.10 ≤ V _{CC} ≤ 1.30 5.0 13 32.5 4.0 48.3 1.40 ≤ V _{CC} ≤ 1.60 4.0 9 18.8 3.5 19.2 1.65 ≤ V _{CC} ≤ 1.95 3.0 7 14.4 2.0 15.9 2.30 ≤ V _{CC} ≤ 2.70 2.0 6 11.3 1.5 12.8 3.00 ≤ V _{CC} ≤ 3.60 1.5 5 9.2 1.0 10.7 pc. acitance 0 2.0 pc. apacitance 0 4.0 pc. sispation 0.9 to 3.60 8	1.10 ≤ V _{CC} ≤ 1.30 5.0 13 32.5 4.0 48.3 1.40 ≤ V _{CC} ≤ 1.60 4.0 9 18.8 3.5 19.2 1.65 ≤ V _{CC} ≤ 1.95 3.0 7 14.4 2.0 15.9 2.30 ≤ V _{CC} ≤ 2.70 2.0 6 11.3 1.5 12.8 3.00 ≤ V _{CC} ≤ 3.60 1.5 5 9.2 1.0 10.7 PF apacitance 0 2.0 pF apacitance 0 4.0 pF v _C = 0 v

AC Loading and Waveforms

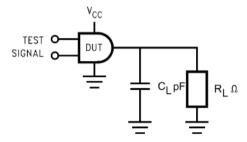


FIGURE 1. AC Test Circuit

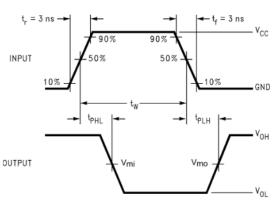
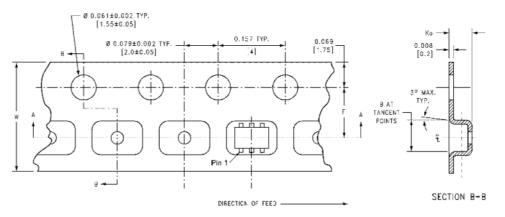
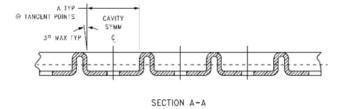
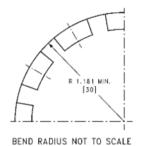


FIGURE 2. AC Waveforms

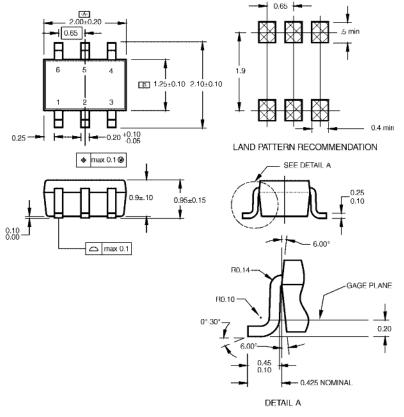

Symbol	V _{cc}							
- Symbol	3.3V ± 0.3V	2.5V ± 0.2V	1.8V ± 0.15V	1.5V ± 0.10V	1.2V ± 0.10V	0.9V		
V _{mi}	1.5V	V _{CC} /2						
V _{mo}	1.5V	V _{CC} /2						


Tape and Reel Specification


TAPE FORMAT for SC70

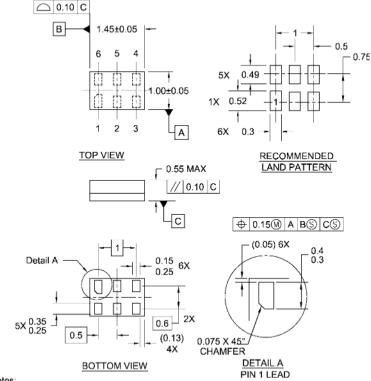
Package	Tape	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
P6X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

TAPE DIMENSIONS inches (millimeters)



Tape and Reel Specification (Continued) TAPE FORMAT for MicroPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Sealed Empty L6X Carrier 5000 Filled Sealed Trailer (Hub End) 75 (typ) Empty Sealed TAPE DIMENSIONS inches (millimeters) 1.75±0.10 3.50±0.05 8.00 +0.30 ø 0.50 ±0.05 SECTION B-B SCALE:10X DIRECTION OF FEED-0.254±0.020 C 0.70±0.05 SECTION A-A SCALE:10X REEL DIMENSIONS inches (millimeters) TAPE SLOT DETAIL X DETAIL X SCALE: 3X W1 Tape В С D N W2 W3 0.331 + 0.059/-0.000 W1 + 0.078/-0.039 7.0 0.059 0.512 0.795 2.165 0.567 8 mm (177.8)(1.50)(13.00)(20.20)(55.00)(8.40 + 1.50/-0.00)(14.40)(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted


NOTES:

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88. B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.
- C. DIMENSIONS ARE IN MILLIMETERS.

MAA06ARevC

6-Lead SC70, EIAJ SC88, 1.25mm Wide Package Number MAA06A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

- Notes:
- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in liffs support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and ho

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative