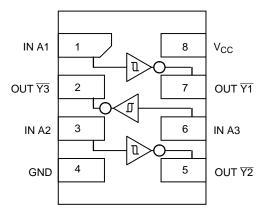
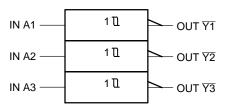
Triple Schmitt-Trigger Inverter


The NLX3G14 MiniGate[™] is an advanced high–speed CMOS triple Schmitt–trigger inverter in ultra–small footprint.


The NLX3G14 input and output structures provide protection when voltages up to 7.0 V are applied, regardless of the supply voltage.


The NLX3G14 can be used to enhance noise immunity or to square up slowly changing waveforms.

Features

- Designed for 1.65 V to 5.5 V V_{CC} Operation
- Low Power Dissipation: $I_{CC} = 1 \ \mu A$ (Max) at $T_A = 25^{\circ}C$
- 24 Balanced Output Source and Sink Capability
- Balanced Propagation Delays
- Overvoltage Tolerant (OVT) Input and Output Pins
- Ultra-Small Packages
- These are Pb–Free Devices

Figure 2. Logic Symbol

FUNCTION TABLE					
Α	Ÿ				
L	н				
Н	L				

PIN ASSIGNMENT

	FIN ASSIGNMENT						
1	IN A1						
2	OUT ¥3						
3	IN A2						
4	GND						
5	OUT ₹2						
6	IN A3						
7	OUT Y1						
8	V _{CC}						

ON Semiconductor®

www.onsemi.com

		MARKING DIAGRAMS
	UDFN8 1.45 x 1.0 CASE 517BZ	2 M 1 o
	UDFN8 1.6 x 1.0 CASE 517BY	1 °
	UDFN8 1.95 x 1.0 CASE 517CA	1 o X M
F, AC M ■	, 2 = Specific Devic = Date Code = Pb-Free Pack	

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0	V
V _{IN}	DC Input Voltage	-0.5 to +7.0	V
V _{OUT}	DC Output Voltage	-0.5 to +7.0	V
I _{IK}	DC Input Diode Current V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current V _{OUT} < GND	±50	mA
Ι _Ο	DC Output Source/Sink Current	±50	mA
I _{CC}	DC Supply Current Per Supply Pin	±100	mA
I _{GND}	DC Ground Current per Ground Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	150	°C
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	> 2000 > 200 N/A	V
ILATCHUP	Latchup Performance Above V_{CC} and Below GND at 125°C (Note 5)	±500	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow.

2. Tested to EIA / JESD22-A114-A.

3. Tested to EIA / JESD22-A115-A.

4. Tested to JESD22-C101-A.

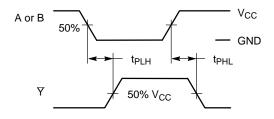
5. Tested to EIA / JESD78.

RECOMMENDED OPERATING CONDITIONS

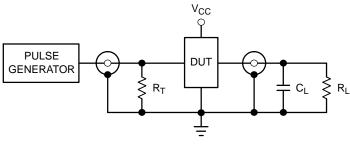
Symbol	Param	Min	Max	Unit	
V _{CC}	Positive DC Supply Voltage	1.65	5.5	V	
V _{IN}	Digital Input Voltage	0	5.5	V	
V _{OUT}	Output Voltage	0	5.5	V	
T _A	Operating Free–Air Temperature		-55	+125	°C
Δt/ΔV	Input Transition Rise or Fall Rate	$V_{CC} = 2.5 V \pm 0.2 V V_{CC} = 3.3 V \pm 0.3 V V_{CC} = 5.0 V \pm 0.5 V$	0 0 0	No Limit No Limit No Limit	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS


			V _{CC}		T _A = 25 °C		T _A = +85°C		T _A = −55°C to +125°C		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{T+}	Positive Threshold Voltage		1.65 2.3 2.7 3.0 3.0 4.5	0.6 1.0 1.2 1.3 1.9 2.2	1.0 1.5 1.7 1.9 2.7 3.3	1.4 1.8 2.0 2.2 3.1 3.6	0.6 1.0 1.2 1.3 1.9 2.2	1.4 1.8 2.0 2.2 3.1 3.6	0.6 1.0 1.2 1.3 1.9 2.2	1.4 1.8 2.0 2.2 3.1 3.6	V
V _{T-}	Negative Threshold Voltage		1.65 2.3 2.7 3.0 3.0 4.5	0.2 0.4 0.5 0.6 1.0 1.2	0.5 0.75 0.87 1.0 1.5 1.9	0.8 1.15 1.4 1.5 2.0 2.3	0.2 0.4 0.5 0.6 1.0 1.2	0.8 1.15 1.4 1.5 2.0 2.3	0.2 0.4 0.5 0.6 1.0 1.2	0.8 1.15 1.4 1.5 2.0 2.3	V
V _H	Hysteresis Voltage		1.65 2.3 2.7 3.0 3.0 4.5	0.1 0.25 0.3 0.4 0.6 0.7	0.48 0.75 0.83 0.93 1.2 1.4	0.9 1.1 1.15 1.2 1.5 1.7	0.1 0.25 0.3 0.4 0.6 0.7	0.9 1.1 1.15 1.2 1.5 1.7	0.1 0.25 0.3 0.4 0.6 0.7	0.9 1.1 1.15 1.2 1.5 1.7	V
V _{OH} Minimum High–Level	$V_{IN} \le V_{T-MIN}$ $I_{OH} = -100 \ \mu A$	1.65 to 5.5	V _{CC} – 0.1	V _{CC}		V _{CC} – 0.1		V _{CC} – 0.1		V	
	Output Voltage	$\begin{array}{l} V_{IN} \leq V_{T-MIN} \\ I_{OH} = -4 \mbox{ mA} \\ I_{OH} = -8 \mbox{ mA} \\ I_{OH} = -12 \mbox{ mA} \\ I_{OH} = -16 \mbox{ mA} \\ I_{OH} = -24 \mbox{ mA} \\ I_{OH} = -32 \mbox{ mA} \end{array}$	1.65 2.3 2.7 3.0 3.0 4.5	1.29 1.9 2.2 2.4 2.3 3.8	1.52 2.1 2.4 2.7 2.5 4.0		1.29 1.9 2.2 2.4 2.3 3.8		1.29 1.8 2.1 2.3 2.2 3.7		
V _{OL}	Maximum Low–Level Output	$\begin{array}{l} V_{IN} \geq V_{T+MAX} \\ I_{OL} = 100 \ \mu A \end{array}$	1.65 to 5.5		0	0.1		0.1		0.1	V
	Voltage	$\begin{array}{l} V_{IN} \geq V_{T+MAX} \\ I_{OH} = 4 \mbox{ mA} \\ I_{OH} = 8 \mbox{ mA} \\ I_{OH} = 12 \mbox{ mA} \\ I_{OH} = 16 \mbox{ mA} \\ I_{OH} = 24 \mbox{ mA} \\ I_{OH} = 32 \mbox{ mA} \end{array}$	1.65 2.3 2.7 3.0 3.0 4.5		0.08 0.2 0.22 0.28 0.38 0.42	0.24 0.3 0.4 0.4 0.55 0.55		0.24 0.3 0.4 0.4 0.55 0.55		0.24 0.4 0.5 0.5 0.55 0.65	
I _{IN}	Input Leakage Current	$0 \le V_{IN} \le 5.5 V$	0 to 5.5			±0.1		±1.0		±1.0	μΑ
I _{OFF}	Power–Off Output Leakage Current	V _{OUT} = 5.5 V	0			1.0		10		10	μΑ
I _{CC}	Quiescent Supply Current	$0 \le V_{IN} \le V_{CC}$	5.5			1.0		10		10	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


		V _{CC}	Test	T _A = 25 °C			T _A = +85°C		T _A = −55°C to +125°C		
Symbol	Parameter	(V)	Condition	Min	Тур	Max	Min	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay, Input A to Output Y	2.3–2.7	$\begin{array}{l} R_L = 1 \; M\Omega, \\ C_L = 15 \; pF \end{array}$	1.8	4.3	7.4	1.8	8.1	1.8	9.1	ns
		3.0–3.6	$\begin{array}{l} R_L = 1 \; M\Omega, \\ C_L = 15 \; pF \end{array}$	1.5	3.3	5.0	1.5	5.5	1.5	6.5	
			$R_L = 500 \Omega,$ $C_L = 50 pF$	1.8	4.0	6.0	1.8	6.6	1.8	7.6	
		4.5–5.5	$R_L = 1 M\Omega,$ $C_L = 15 pF$	1.0	2.7	4.1	1.0	4.5	1.0	5.5	
			$R_L = 500 \Omega,$ $C_L = 50 pF$	1.2	3.2	4.9	1.2	5.4	1.2	6.4	
C _{IN}	Input Capacitance	5.5	V _{IN} = 0 V or V _{CC}		2.5						pF
C _{PD}	Power Dissipation Capacitance (Note 6)	3.3 5.5	10 MHz V _{IN} = 0 V or V _{CC}		11 12.5						pF

AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$)

6. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the dynamic operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.

Figure 3. Switching Waveforms

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 4. Test Circuit

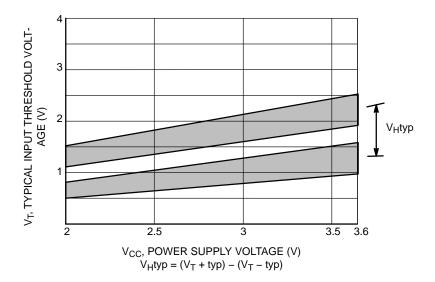
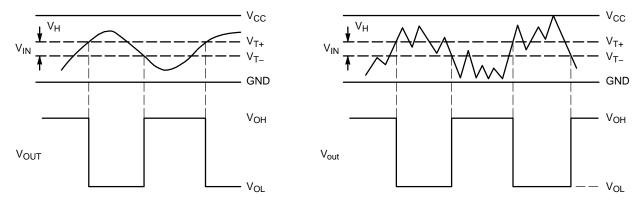
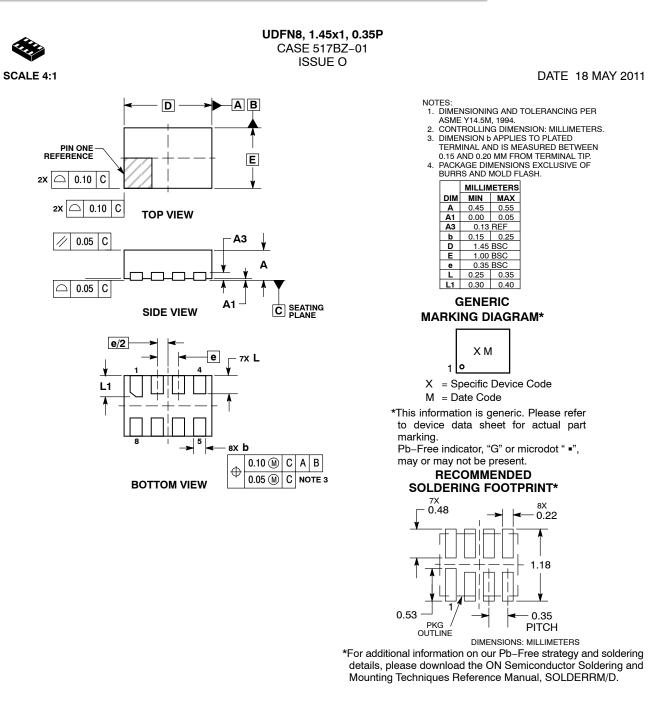



Figure 5. Typical Input Threshold, V_T+, V_T-versus Power Supply Voltage

(a) A Schmitt-Trigger Squares Up Inputs With Slow Rise and Fall Times

(b) A Schmitt–Trigger Offers Maximum Noise Immunity

Figure 6. Typical Schmitt–Trigger Applications


ORDERING INFORMATION

Device	Package	Shipping [†]
NLX3G14DMUTCG (In Development)	UDFN8, 1.95 x 1.0, 0.5P (Pb–Free)	3000 / Tape & Reel
NLX3G14EMUTCG (In Development)	UDFN8, 1.6 x 1.0, 0.4P (Pb–Free)	3000 / Tape & Reel
NLX3G14FMUTCG	UDFN8, 1.45 x 1.0, 0.35P (Pb–Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).

DOCUMENT NUMBER:	98AON56796E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	UDFN8, 1.45X1, 0.35P	I8, 1.45X1, 0.35P			.45X1, 0.35P PAG		
the suitability of its products for any pa	articular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	r circuit, and specifically				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative