

PI74ALVTC16373

16-Bit Transparent D-Type Latch with 3-STATE Outputs

Product Features

- PI74ALVTC family is designed for low voltage operation, $V_{DD} = 1.8V$ to 3.6V
- Supports Live Insertion
- 3.6V I/O Tolerant Inputs and Outputs
- Bus Hold
- High Drive, -32/64mA @ 3.3V
- Uses patented noise reduction circuitry
- Power-off high impedance inputs and outputs
- Industrial operation at -40° C to $+85^{\circ}$ C
- Packages available:
 - -48-pin 240 mil wide plastic TSSOP (A)
 - -48-pin 173 mil wide plastic TVSOP(K)
 - -48-pin 300 mil wide plastic SSOP (V)

Logic Block Diagram

Product Description

Pericom Semiconductor's PI74ALVTC series of logic circuits are produced in the Company's advanced 0.35 micron CMOS technology, achieving industry leading speed.

The PI74ALVTC16373 is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. This device can be used as two 8-bit latches or one 16-bit latch. When the Latch Enable (LE) input is HIGH, the Q outputs follow the (D) inputs. When LE is taken LOW, the Q outputs are latched at the levels set up at the D inputs.

A buffered Output Enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state in which the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without an interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the ouputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vdd through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The family offers both I/O Tolerant, which allows it to operate in mixed 1.8/3.6V systems, and "Bus Hold," which retains the data input's last state whenever the data input goes to high-impedance, preventing "floating" inputs and eliminating the need for pullup/ down resistors.

Product Pin Description

Pin Name	Description			
ŌĒ	Output Enable Input (Active LOW)			
LE	Latch Enable (Active HIGH)			
Dx	Data Inputs			
Qx	3-State Outputs			
GND	Ground			
Vcc	Power			

Product Pin Configuration

Truth Table⁽¹⁾

	Inputs ⁽¹⁾	Outputs ⁽¹⁾	
ŌĒ	LE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Qo
Н	Х	Х	Z

Note:

- 1. H = High Signal Level
 - L = Low Signal Level
 - X = Don't Care or Irrelevant
 - Z = High Impedance

PI74ALVTC16373

PERICOM 16-Bit Transparent D-Type Latch With 3-STATE Outputs

PERICOM

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply Voltage Range, VDD –0.5V to 4.6V	V
Input Voltage Range, VI0.5V to 4.6V	V
Output Voltage Range, Vo(3-Stated)0.5V to 4.6V	V
Output Voltage Range, Vo ⁽¹⁾ (Active) –0.5V to VDD +0.5V	V
DC Input Diode Current (IIK) VI<0V50mA	A
DC Output Diode Current (Iok)	
Vo<0V50mA	4
Vo>VDD	4
DC Output Source/Sink Current (IOH/IOL)64/128mA	A
DC VDD or GND Current per Supply Pin (Icc or GND) ±100mA	
Storage Temperature Range, T _{stg} 65°C to150°C	

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions²

			Min.	Max.	Units
V	Sumply voltage	Operating	1.8	3.6	
V _{DD}	Supply voltage	Data Retention Only	1.2	3.6	
V _{IH}	High-level input voltage	$V_{DD} = 2.7V$ to 3.6V	2.0		
V _{IL}	Low-level input voltage	$V_{DD} = 2.7V$ to 3.6V		0.8	V
VI	Input voltage		-0.3	3.6	
V		Active State	0	V _{DD}	
Vo	Output voltage	Off State	0	3.6	
	Output current in I_{OH}/I_{OL}			-32/64 ±24 ±18 ±6	mA
$\Delta t / \Delta v$	$\Delta t/\Delta v$ Input transistion rise or fall rate ⁽³⁾			10	ns/V
T _A	Operating free-air temperature		-40	85	C

Notes

1. Absolute maximum of Io must be observed.

2. Unused control inputs must be held HIGH or LOW to prevent them from floating.

3 As measured between 0.8V and 2.0V, $V_{DD} = 3.0V$.

Electrical Characteristics over Recommended Operating Free-Air Temperature Range

(unless otherwise noted)

DC Characteristics $(2.7V < V_{DD} \le 3.6V)$

	Parameter	Conditions	V _{DD}	Min.	Тур.	Max.	Units
V _{IH}	HIGH Level Input Voltage			2.0			
V _{IL}	LOW Level Input Voltage		2.7 - 3.6			0.8	
		$I_{OH} = -100 \mu A$		V _{DD} - 0.2			
		$I_{OH} = -12mA$	2.7	2.2			
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -18 \text{mA}$		2.4			
		$I_{OH} = -24mA$	3.0	2.2			
		$I_{OH} = -32 mA$		2.0			V
		$I_{OL} = 100 \mu A$	2.7 - 3.6			0.2	
		$I_{OL} = 12 \text{mA}$	2.7			0.4	
V	LOW Level Octant Values	$I_{OL} = 18 \text{mA}$				0.4	-
V _{OL}	LOW Level Output Voltage	$I_{OL} = 24 \text{mA}$	3.0			0.45	
		$I_{OL} = 32 \text{mA}$				0.5	
		$I_{OL} = 64 \text{mA}$				0.55]
II	Input Leakage Current	$V_{I} = V_{DD}$, or GND	3.6			±5.0	
I _{OZ}	3-STATE Output Leakage	$V_0 = 3.6V$	2.7			±10	μΑ
I _{OFF}	Power-OFF Leakage Current	$V_{\rm I}$ or $V_{\rm O} \le 3.6 V$	0			10	
I _{ODL}	Output Current Low	$V_{IN} = V_{IH}$ or V_{IL} , $V_0 = 1.5V^{(1)}$	3.6	150		334	mA
I _{ODH}	Output Current High	$V_{IN} = V_{IH}$ or V_{IL} , $V_0 = 1.5V^{(1)}$	3.0	-58		-114	mA
		$V_I = 0.8V$	3.0	75			
I _{HOLD}	Bus Hold Current A or B Outputs	$V_I = 2.0 V$	5.0	-75			
		$V_{\rm I} = 0$ to 3.6V	3.6			±500	
т	Quiagoont Sumply Comment	$V_{I} = V_{DD}$ or GND				50	μΑ
I _{DD}	Quiescent Supply Current	$V_{DD} \leq (V_I, V_O) \leq 3.6 V$	2.7 - 3.6			±50	
ΔI_{DD}	Increase in I _{DD} per input	$V_{IH} = V_{DD} - 0.6V,$ Other inputs at V_{DD} or Gnd				400	

Notes

1. Duration of test must not exceed 1 second with only 1 output tested at a time.

Electrical Characteristics over Recommended Operating Free-Air Temperature Range

(unless otherwise noted) (continued from previous page)

DC Characteristics $(2.3V \le V_{DD} \le 2.7V)$

Description	Parameters	Conditions	V _{DD}	Min.	Тур.	Max.	Units
V _{IH}	HIGH Level Input Voltage			1.6			
V _{IL}	LOW Level Input Voltage		2.3 - 2.7			0.7	
		$I_{OH} = -100 \mu A$		V _{DD} - 0.2			
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -12 \text{mA}$	2.2	1.8			
		$I_{OH} = -18 \text{mA}$	- 2.3	1.7			V
			2.3 - 2.7			0.2	
37		$I_{OL} = 12 \text{mA}$				0.4	
V _{OL}	LOW Level Output Voltage	$I_{OL} = 18 \text{mA}$	2.3			0.5	-
		$I_{OL} = 24 \text{mA}$	1			0.55	
II	Input Leakage Current	$V_{I} = V_{DD}$ or GND	2.7			±5.0	
I _{OZ}	3-STATE Output Leakage	$V_0 = 3.6V$	2.3			±10	μΑ
I _{OFF}	Power-OFF Leakage Current	$V_{\rm I}$ or $V_{\rm O} \le 3.6 V$	0			10	
I _{ODL}	Output Current Low	$V_{IN} = V_{IH} \text{ or } V_{IL}, V_O = 1.5 V^{(2)}$	2.7	110		264	4
I _{ODH}	Output Current High	$V_{IN} = V_{IH} \text{ or } V_{IL}, V_O = 1.5 V^{(2)}$	- 2.7	-30		-60	mA
т (1)	Bus Hold Current	$V_{I} = 0.7V$	2.5		90		
I _{HOLD} ⁽¹⁾	A or B Outputs	$V_{I} = 1.7V$	- 2.5		-90		
т	Orienant Samula Carrier ($V_I = V_{DD}$ or GND	2.3 - 2.7			40	μA
I _{DD}	Quiescent Supply Current	$V_{DD} \le (V_I, V_O) \le 3.6V$				±40	- m2 1
ΔI_{DD}	Increase in I _{DD} per input	$V_{IH} = V_{DD} - 0.6V,$ Inputs at V_{DD} or Gnd				400	

Notes:

1. Not Guaranteed

2. Duration of test must not exceed 1 second with only 1 output tested at a time.

Electrical Characteristics over Recommended Operating Free-Air Temperature Range

(unless otherwise noted) (continued from previous page)

Description	Parameters	Conditions	V _{DD}	Min.	Тур.	Max.	Units
V _{IH}	HIGH Level Input Voltage		10 22	$0.7 \ge V_{DD}$			
V _{IL}	LOW Level Input Voltage		1.8 - 2.3			0.2 x V _{DD}	
17		$I_{OH} = -100 \mu A$		V _{DD} -0.2			
V_{OH}	HIGH Level Output Voltage	$I_{OH} = -6mA$	1.8	1.4			V
X.		$I_{OL} = 100 \mu A$				0.2	
V _{OL}	LOW Level Output Voltage	$I_{OL} = 6mA$				0.3	
II	Input Leakage Current	$V_I = V_{DD}$ or GND	2.3			±5.0	
I _{OZ}	3-State Output Leakage	$V_0 = 3.6V$	1.8			±10	μΑ
I _{OFF}	Power-OFF Leakage Current	$V_I = V_O \le 3.6V$	0			10	
I _{ODL}	Output Current Low	$V_{IN} = V_{IH} \text{ or } V_{IL}, V_O = 0.9 V^{(2)}$	1.0	50		137	
I _{ODH}	Output Current High	$V_{IN} = V_{IH} \text{ or } V_{IL}, V_O = 0.9 V^{(2)}$	1.8	-14		-34	mA
т (1)	Bus Hold Current	$V_{I} = 0.4$			50		
$I_{HOLD}^{(1)}$	A or B Outputs	V _I = 1.3			-50		
т	Orierent County County	$V_I = V_{DD}$ or GND	1.8			20	μA
I _{DD}	Quiescent Supply Current	$V_{DD} \le (V_I, V_O) \le 3.6 V$				±20	
ΔI_{DD}	Increase in I _{DD} per input	$V_I = V_{DD}$ -06V, Other inputs at V_{DD} or Gnd				400	

DC Characteristics (1.8V \leq V_{DD} \leq 2.3V)

Notes:

1. Not Guaranteed

2. Duration of test must not exceed 1 second with only 1 output tested at a time.

AC Electrical Characteristics

		$T_A = -40^{\circ}C$ to +85°C, $C_L = 50pF$, $R_L = 500\Omega$						
		$V_{DD} = \pm 0.$		$V_{DD} = \pm 0$	= 2.5V .2V	V _{DD} =	= 1.8V	Units
Symbol	Parameter	Min.	Max.	M in.	Max.	Min.	Max.	
t _{PLH,} t _{PHL}	Prop Delay, D to Q	0.5	2.5	1.0	3.2	1.5	4.0	
t _{PLH} , t _{PHL}	Prop Delay, LE to Q	1.0	3.1	1.5	4.2	2.0	4.5	
t _{PZH} , t _{PZL}	Output Enable Time	1.0	3.1	1.5	4.7	2.0	4.5	ns
t _{PHZ} , t _{PLZ}	Output Disable Time	1.5	3.7	1.5	3.5	2.0	5.0	
t _{OSHL} t _{OSLH}	Output to Output Skew ⁽¹⁾		0.5		0.5		0.5	

Note

1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH or LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).

AC Setup Requirements

			TA=-40°C to +85°C, CL =50pF, RL = 500 Ω					
Symbol	Parameter	$V_{DD}=3.3V\pm0.3V$		Parameter $V_{DD} = 3.3V \pm 0.3V$ $V_{DD} = 2.5V \pm 0.2V$		V _{DD} =1.8V		
		Min.	Тур.	Min.	Тур.	Min.	Тур.	Units
$t_{\rm SU}$	Setup Time, D to LE	0.5		0		0		
t _H	Hold Time, D to LE	0.8		0.5		1.0		ns
t _W	LE Pulse Width, High	1.5		1.5		1.5		

Capacitance

Symbol	Parameter	Conditions	T _A = +25°C Typical	Units
C _{IN}	Input Capacitance	$V_{DD}\!=$ 1.8, 2.5V or 3.3V, $V_{I}\!=$ 0V or V_{DD}	6	
C _{OUT}	Output Capacitance	V_{I} = 0V or $V_{DD}\!,V_{DD}$ = 1.8V, 2.5V or 3.3V	7	pF
C _{PD}	Power Dissipation Capacitance	$V_{I} = 0V \text{ or } V_{DD} F = 10 \text{ MHz}$ $V_{DD} = 1.8V, 2.5V \text{ or } 3.3V$	20	r

Test Circuits and Switching Waveforms

Parameter Measurement Information (VDD = 1.8V - 3.6V)

Switch Position

Test	S1
tpd	Open
$t_{\rm PLZ}/t_{\rm PZL}$	$2 \mathrm{~x~V_{DD}}$
$t_{\rm PHZ}/t_{\rm PZH}$	GND

Pulse Width

Setup, Hold, and Release Timing

Propagation Delay

Notes:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Zo = 50 Ω , $t_r \leq 2ns$, $t_f \leq 2ns$, *measured from 10% to 90%, unless otherwise specified.*
- D. The outputs are measured one at a time with one transition per measurement.

Enable Disable Timing

