

MH248 Specifications Micropower Hall Effect Switch

MH248 Hall-effect sensor is a temperature stable, stress-resistant, micro-power switch. Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization. This method reduces the offset voltage normally caused by device over molding, temperature dependencies, and thermal stress.

MH248 includes the following on a single silicon chip: voltage regulator, Hall voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, open-drain output. Advanced CMOS wafer fabrication processing is used to take advantage of low-voltage requirements, component matching, very low input-offset errors, and small component geometries.

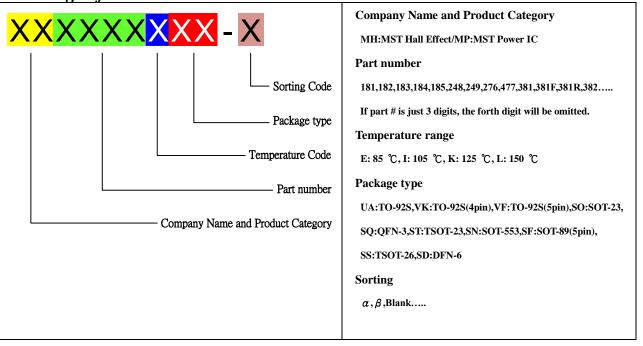
This device requires the presence of omni-polar magnetic fields for operation.

MH248 is rated for operation between the ambient temperatures -40°C and $+85^{\circ}\text{C}$ for the E temperature range. The four package styles available provide magnetically optimized solutions for most applications. Package types SO is an SOT-23(1.1 mm nominal height),SQ is an QFN2020-3(0.5 mm nominal height),Tsot-23 is an ST(0.7 mm nominal height),a miniature low-profile surface-mount package, while package UA is a three-lead ultra-mini SIP for through-hole mounting.

The package type is in a lead Halogen Free version was verified by third party Lab.

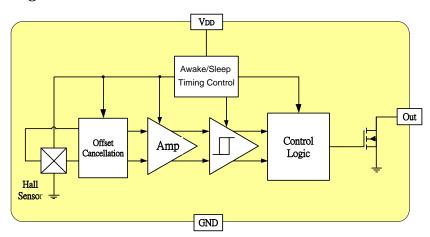
Features and Benefits

- CMOS Hall IC Technology
- Solid-State Reliability
- Micro power consumption for battery-powered applications
- Omni polar, output switches with absolute value of North or South pole from magnet
- Operation down to 2.5 V and Max at 3.5V.
- High Sensitivity for direct reed switch replacement applications
- Multi Small Size option
- Custom sensitivity selection is available in optional package.
- Pb Free/Green chip is qualified by third party lab.


Applications

- Solid state switch
- Handheld Wireless Handset Awake Switch (Flip Cell/PHS Phone/Note Book/Flip Video Set)
- Lid close sensor for battery powered devices
- Magnet proximity sensor for reed switch replacement in low duty cycle applications

MH248 Specifications Micropower Hall Effect Switch


Ordering Information

Part No.	Temperature Suffix	Package Type
MH248EUA	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	UA (TO-92S)
MH248ESO	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH248EST	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	ST (TS0T-23)
MH248ESQ	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SQ (QFN2020-3)
MH248ESO- α	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH248ESO- β	E $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$	SO (SOT-23)
MH248ESO- γ	E (-40° C to + 85° C)	SO (SOT-23)

Custom sensitivity selection is available by MST sorting technology

Functional Diagram

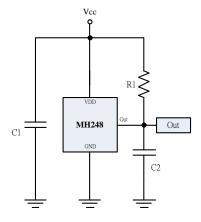
Note: Static sensitive device; please observe ESD precautions. Reverse V_{DD} protection is not included. For reverse voltage protection, a 100 Ω resistor in series with V_{DD} is recommended.

MH248 Specifications Micropower Hall Effect Switch

Absolute Maximum Ratings At (Ta=25 °C)

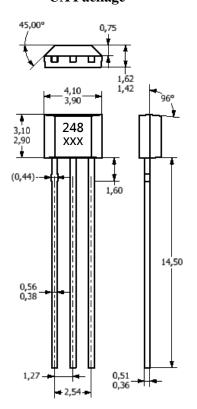
Characteristics		Values	Unit
Supply voltage,(VDD)		5	V
Output Voltage,(Vout)		5	V
Reverse voltage, (VDD) (VOUT)		-0.3	V
Magnetic flux density		Unlimited	Gauss
Output current(Iout)		2	mA
Operating temperature range, (Ta)		-40 to +85	$^{\circ}$
Storage temperature range, (Ts)		-55 to +150	$^{\circ}\!\mathbb{C}$
Maximum Junction Temp,(<i>Tj</i>)		150	$^{\circ}$
Thermal Resistance	(θ_{JA}) UA/SO/ST/SQ	206 / 543 / 310 / 543	°C/W
	(θ_{JC}) UA / SO / ST /SQ	148 / 410 / 223 / 410	°C/W
Package Power Dissipation, (P_D) UA/SO/ST/SQ		606 / 230 / 400 / 230	mW

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.


Electrical Specifications

DC Operating Parameters $T_A=+25 \, \text{°C}$, $V_{DD}=3.0 V$

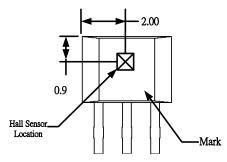
Paramete	rs	Test Conditions	Min	Тур	Max	Units
Supply Voltage,(VDD)		Operating	2.5		3.5	V
Supply Current,(IDD)		Awake State		2.5	4.0	mA
		Sleep State		8.0	12	μΑ
		Average		10	16	μΑ
Output Leakage Current,(Ioff)		Output off			1	uA
Output Low Voltage,(Vsat)		Iout=1mA			0.3	V
Awake mode time,(<i>Taw</i>)		Operating		70		uS
Sleep mode time, (T_{SL})		Operating		70		mS
Duty Cycle, (D, C)				0.1		%
Operate Point,	(Bops)	S pole to branded side, B > BOP, Vout On	6		60	Gauss
	(B_{OPN})	N pole to branded side, B > BOP, Vout On	-60		-6	
Release Point	(B_{RPS})	S pole to branded side, B < BRP, Vout Off	5		59	Gauss
	(B_{RPN})	N pole to branded side, B < BRP, Vout Off	-60		-5	
Hysteresis,(BHYS)		BOPx - BRPx		7		Gauss


Typical Application circuit

C1: 10nF C2: 100pF R1: 100KΩ

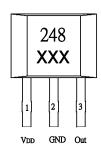
Sensor Location, Package Dimension and Marking MH248 Package

UA Package



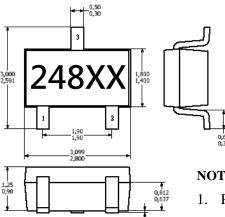
NOTES:

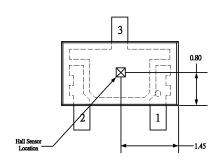
- 1).Controlling dimension:mm 2).Leads must be freeof flashand plating voids
- 3).Do not bend leads within1 mm of lead to package interface.
- 4).PINOUT:


Pin 1 VDD
Pin 2 GND
Pin 3 Output

Hall Chip location

Output Pin Assignment

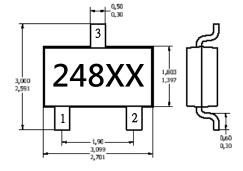

(Top view)



SO Package

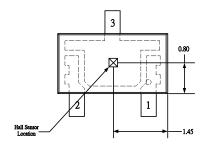
(Top View)

Hall Plate Chip Location (Bottom view)



NOTES:

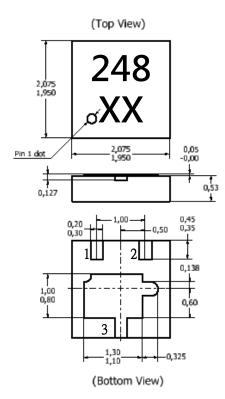
- 1. PINOUT (See Top View at left :)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 **GND**
- 2. Controlling dimension: mm
- 3. Lead thickness after solder plating will be 0.254mm maximum


ST Package (TSOT-23)

(Top View)

Hall Plate Chip Location

(Bottom view)



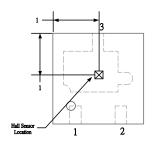
NOTES:

- PINOUT (See Top View at left:)
 - Pin 1 V_{DD}
 - Pin 2 Output
 - Pin 3 **GND**
- Controlling dimension: mm;

SQ Package

NOTES:

PINOUT (See Top View at left)


Pin 1 VDD

Pin 2 Output

Pin 3 GND

- 4. Controlling dimension: mm;
- 5. Chip rubbing will be 10mil maximum;
- 6. Chip must be in PKG. center.

Hall Plate Chip Location (Top view)

