2μA, 600mA Low Dropout Voltage Linear Regulator

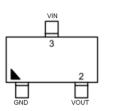
General Description

The RS1562 series are a group of low-dropout (LDO) voltage regulators offering the benefits of wide input voltage range from 1.2V to 5.5V, low dropout voltage, low power consumption, and miniaturized packaging. Quiescent current of only 2µA makes these devices

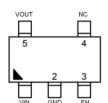
Quiescent current of only $2\mu A$ makes these devices ideal for powering the battery-powered, always-on systems that require very little idle-state power dissipation to a longer service life. There is an option of shutdown mode by selecting the parts with the EN pin and pulling it low. The shutdown current in this mode goes down to only 10nA (typical).

The RS1562 series of linear regulators are stable with the ceramic output capacitor over its wide input range from 1.2V to 5.5V and the entire range of output load current (0mA to 600mA).

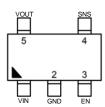
Features


- 2µA Ground Current at no Load
- ±2% Output Accuracy
- 600mA Output Current
- 10nA Disable Current (by option)
- Wide Operating Input Voltage Range: 1.2V to 5.5V
- Dropout Voltage: 0.36V at 600mA / Vout 3.3V
- Support Fixed Output Voltage 0.8V, 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V
- Stable with Ceramic or Tantalum Capacitor
- Current Limit Protection
- Over-Temperature Protection
- SOT-23-3 & SOT-23-5 Packages Available

Applications


- Portable, Battery Powered Equipment
- Low Power Microcontrollers
- · Laptop, Palmtops and PDAs
- Wireless Communication Equipment
- Audio/Video Equipment
- Car Navigation Systems

Pin Configurations


SOT-23-3

SOT-23-5

SOT-23-5

Ordering Information

RS1562-AABB

Designator Description		Symbol	Description
		08	V _{OUT} = 0.8V
		25	V _{OUT} = 2.5V
AA	Output Voltage		
			33
		1K	Vout =1.05V
		2H	Vоит =2.85V
ВВ	Dockogo type	S3	SOT-23-3
	Package type	S5	SOT-23-5

RS1562N-AABB (For SOT-23-5 with SNS pin)

Designator	Description	Symbol	Description
		08	V _{OUT} = 0.8V
AA	Output Voltage		
		33	V _{OUT} =3.3V
BB	Package type	S5	SOT-23-5

Description of Functional Pins

RS1562

Pin	No	Din Name	Din Function	
SOT-23-3	SOT-23-5	Pin Name	Pin Function	
1	2	GND	Ground	
2	5	VOUT	Output of the Regulator	
3	1	VIN	Input of Supply Voltage.	
	3	EN	Enable Control Input.	
	4	NC	No internal connection	

RS1562N (For SOT-23-5 with SNS pin)

Pin No	Din Nama	Pin Function	
SOT-23-5	Pin Name		
1	VIN	Input of Supply Voltage.	
2	GND	Ground	
3	EN	Enable Control Input.	
4	SNS	Sense of Output Voltage.	
5	VOUT	Output of the Regulator	

Typical Application Circuit

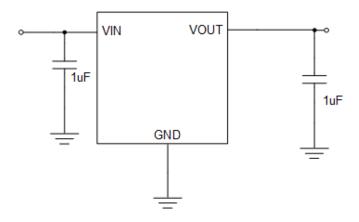


Figure 1: Application circuit of Fixed Vout LDO

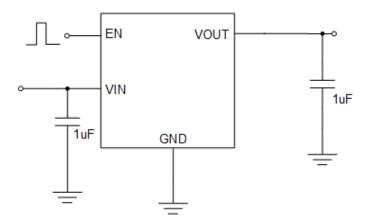


Figure 2: Application circuit of Fixed V_{OUT} LDO with enable function

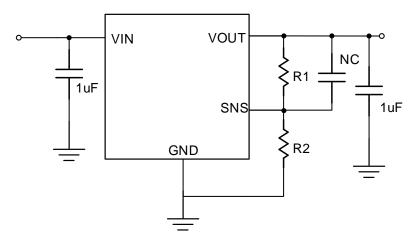
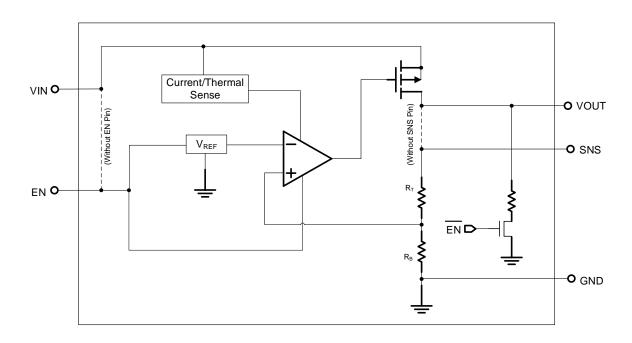
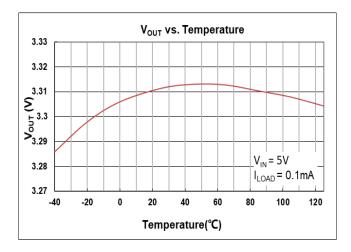



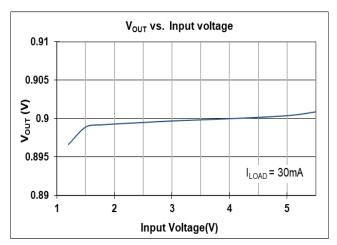
Figure 3: Application circuit of Fixed V_{OUT} LDO with enable and sense functions

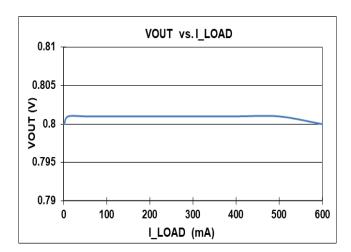
Function Block Diagram

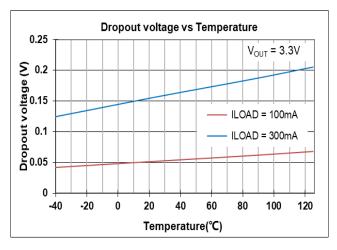
Absolute Maximum Ratings (Note 1)

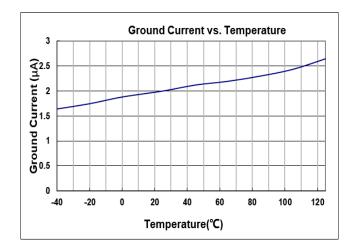
VIN to GND	0.3V to 6.5V
VOUT, EN to GND	0.3V to 6V
VOUT to VIN	6V to 0.3V
Package Thermal Resistance (Note 2)	
SOT-23-3 & SOT-23-5, θ_{JA}	200 °C /W
Lead Temperature (Soldering, 10 sec.)	260 °C
Junction Temperature	150 °C
Storage Temperature Range	-60 °C to 150 °C
ESD Susceptibility	
HBM	2KV
MM	200V
CDM	2KV
Recommended Operating Conditions	
Input Voltage VIN	- 1.2V to 5.5V
Junction Temperature Range	-40 °C to 125 °C
Ambient Temperature Range	-40 °C to 85 °C

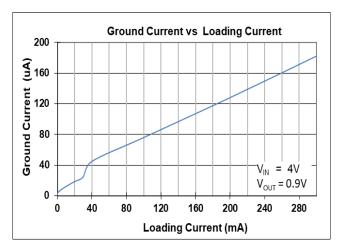

Electrical Characteristics

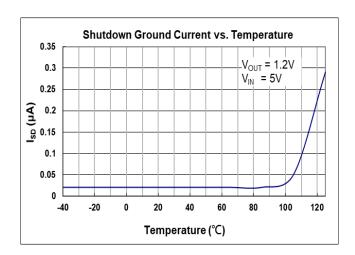

(V_{IN} =5V, V_{EN} = 5V T_A =25°C unless otherwise specified)

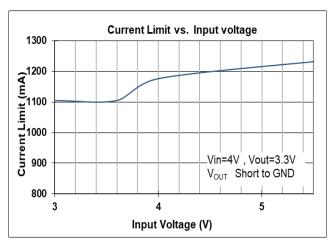

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
Supply Voltage	VIN			1.2		5.5	V
DC Output Voltage Accuracy		I _{LOAD} =0.1mA		-2		2	%
SNS Input Current	Isns	SNS = Vout			0.7		μA
	V _{DROP_3V}	V _{OUT} ≥ 3V	V _{OUT} ≥ 3V		0.36		
	V _{DROP_2.8V}	Vout = 2.8V			0.45		
Decree AValtage (I COOss A)	V _{DROP_2.5} V	V _{OUT} = 2.5V			0.45		
Dropout Voltage (I _{LOAD} =600mA)	V _{DROP_1.8V}	V _{OUT} = 1.8V			0.57		V
(Note 3)	V _{DROP_1.5V}	V _{OUT} = 1.5V			0.71		
	V _{DROP_1.2V}	V _{OUT} = 1.2V			0.9		
	V _{DROP_0.8V}	V _{OUT} = 0.8V			1.05		
Ground Current	ΙQ	I _{LOAD} = 0mA			2		μΑ
Shutdown Ground Current	I _{SD}	$V_{EN} = 0V$,			0.01	0.5	
V _{OUT} Shutdown Leakage Current	I _{LEAK}	V _{OUT} = 0V			0.01	0.5	μA
	V _{IH}	EN Rising	V _{OUT} ≥ 1.2V	1.0			- V
			V _{OUT} < 1.2V	1.7			
Enable Threshold Voltage	VıL	EN Falling	V _{OUT} ≥ 1.2V			0.4	- V
			V _{OUT} < 1.2V			0.6	
EN Input Current	I _{EN}	V _{EN} = 5V	l		10	100	nA
Line Regulation	ΔLINE	$I_{LOAD} = 30 \text{mA},$ $1.5 \text{V} \le \text{V}_{IN} \le 5.5 \text{V} \text{ or}$ $(\text{V}_{OUT} + 0.2 \text{V}) \le \text{V}_{IN} \le 5.5 \text{V}$			0.2		%
Load Regulation	ΔLOAD	10mA ≤ I _{LOAD}			0.2		%
Output Current Limit	Іш	V _{OUT} =0		601	1100		mA
Power Supply Rejection Ratio		V _{OUT} =1.2V,	f = 100Hz		80		
(ILOAD =5mA)	PSRR	V _{IN} = 2V	f = 1kHz		75		dB
Output Voltage Noise (BW = 10Hz to 100kHz, Cout		V _{IN} = 3.5V	V _{OUT} =0.9V		50		μV _{RMS}
=1µF,)		I _{LOAD} =0.1A	Vout =2.8V		110		p - 1
Thermal Shutdown Temperature	T _{SD}	I _{LOAD} =10mA			155		°C
Thermal Shutdown Hysteresis	ΔT_{SD}				15		°C
Discharge Resistance		EN = 0V , V _{OUT} = 0.1V			100		Ω

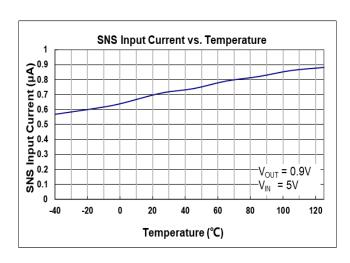

- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at T_A = 25°C on a DSTECH EVB board.
- **Note 3.** $V_{DROP} = V_{IN} V_{OUT}$ when the V_{OUT} is 98% of its target value.

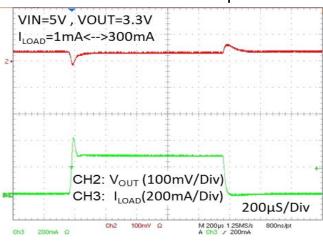

Typical Characteristics







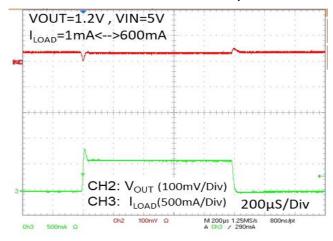




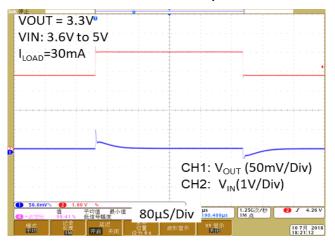
Current Limit Response

CH1: V_{OUT}

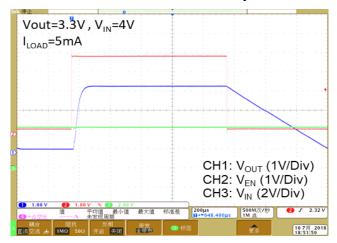
CH4: I_{OUT}

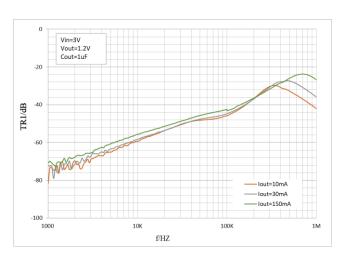

Load Transient Response I

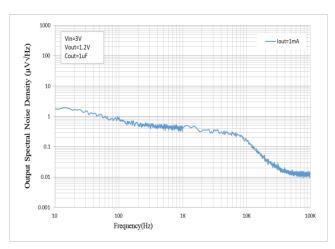
Load Transient Response II


P均值 最小值 2mS/Div 00ms

I_{LOAD}(400mA/Div)




Line Transient Response


V_{OUT} Turn On/Off by EN

PSRR vs. Frequency

Noise Density Spectrum

Application Guideline

Input and Output Capacitor Requirements

The external input and output capacitors of RS1562 series must be properly selected for stability and performance. Use a 1µF or larger input capacitor and place it close to the IC's V_{IN} and GND pins. Any output capacitor meeting the minimum 1m Ω ESR (Equivalent Series Resistance) and effective capacitance between 1µF and 22µF requirement may be used. Place the output capacitor close to the IC's V_{OUT} and GND pins. Increasing capacitance and decreasing ESR can improve the circuit's PSRR and line transient response.

Current Limit

The RS1562 series contain the current limiter of output power transistor, which monitors and controls the transistor, limiting the output current to 1100mA (typical).

The output can be shorted to ground indefinitely without damaging the part.

Dropout Voltage

The RS1562 series use a PMOS pass transistor to achieve low dropout. When ($V_{IN} - V_{OUT}$) is less than the dropout voltage (V_{DROP}), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the $R_{DS(ON)}$ of the PMOS pass element. V_{DROP} scales approximately with the output current because the PMOS device behaves as a resistor in dropout condition.

As any linear regulator, PSRR and transient response are degraded as (V_{IN} – V_{OUT}) approaches dropout condition.

Adjustable Output Voltage Application

The RS1562N by SNS pin also can work as an adjustable output voltage LDO. Figure 1 gives the connections for the adjustable output voltage application. The resistor divider from V_{OUT} to SNS sets the output voltage when in regulation.

The voltage on the SNS pin sets the output voltage and is determined by the values of R1 and R2. To keep a good temperature coefficient of output voltage, the values of R1 and R2 should be selected carefully to ignore the temperature effect of input current at the SNS pin. A current greater than 50µA in the resistor divider is recommended to meet the above requirement. The adjustable output voltage can be calculated using the formula given in equation 1:

$$V_{OUT} = \frac{R1 + R2}{R2} \times V_{SNS}$$
 (1)

where V_{SNS} is determined by the output voltage selections in the ordering information of RS1562N-08. The minimum recommended $50\mu A$ in the resistor divider makes the application no longer a $2\mu A$ low quiescent LDO.

OTP (Over Temperature Protection)

The over temperature protection function of RS1562 series will turn off the P-MOSFET when the junction temperature exceeds 155°C (typ.). Once the junction temperature cools down by approximately 15°C, the regulator will automatically resume operation.

Thermal Application

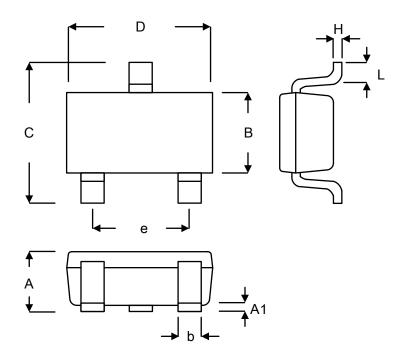
For continuous operation, do not exceed the absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated as below:

T_A=25°C, DSTECH PCB,

The max PD (Max) = $(125^{\circ}C - 25^{\circ}C) / (200^{\circ}C/W) = 0.5W$ for SOT-23-3 & SOT-23-5 packages.

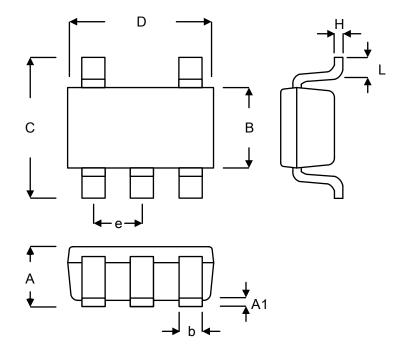
Power dissipation (PD) is equal to the product of the output current and the voltage drop across the output pass element, as shown in the equation below:

$$PD = (V_{IN} - V_{OUT}) \times I_{OUT}$$


Layout Consideration

By placing input and output capacitors on the same side of the PCB as the LDO, and placing them as close as is practical to the package can achieve the best performance. The ground connections for input and output capacitors must be back to the RS1562 ground pin using as wide and as short of a copper trace as is practical.

Connections using long trace lengths, narrow trace widths, and/or connections through via must be avoided. These add parasitic inductances and resistance that results in worse performance especially during transient conditions.


RS1562-07

Package Information:

Symbol	Millim	eters	Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	1.803	2.007	0.071	0.079	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-3L

Cymbol	Millim	eters	Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	0.838	1.041	0.033	0.041	
Н	0.080	0.254	0.003	0.010	
L	0.300	0.610	0.012	0.024	

SOT-23-5L